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ABSTRACT 

Automated spot weeding with an efficient weed classification can increase 

production in crops and reduce herbicide usage. A proposed strategy of applying 

excessive feature sets followed by feature selection was applied on development of 

the classifiers to eliminate the non-discriminating features. Artificial Neural Network 

(ANN) and Support Vector Machines (SVM) were applied in the classification using 

a combination of image derived features. Optimising the classifier involves a 

tedious selection of subsets and parameters which can be considered a solution 

searching problem. Optimising the classifier parameters can be solved using 

heuristic methods such as Genetic Algorithm since it is a non - convex optimisation 

problem. In ANN structures, the features subset (input numbers) and hidden 

neuron layer are configurable while for SVM, the hyper parameter and the feature 

subset are configurable. In order to optimise the structures, feature subset and 

parameters, two optimisation approach were considered. These two optimisation 

approach include using backward Sequential Feature Selection (SFS) and Genetic 

Algorithm (GA) approach. GA requires a careful design of chromosome and fitness 

function in representing the structure, parameters and feature sets. In the fitness 

function for SVM optimisation, the fitness score is weighted between feature 

reduction term and fitness evaluation term of the candidate solution. For the SVMs 

optimised with GA, it was observed that all the GA configurations yielded better 

results (both on validation/test sets) as compared to SFS optimised counterpart. 

The results suggest that optimisation fitness function for SVM requires a 

simultaneous selection of feature subset /hyper parameters and a small value of 

weightage (between 0% to 20%) of the total fitness score should be allocated 

from the feature reduction term to avoid over fitting to training sets. As for the 

ANN optimisation using GA, fitness function (which includes the error reduction 

term, feature reduction term and neuron reduction term) showed lesser 

generalization with independent test sets in comparison with the SFS optimisation 

approach. The ANN configuration with SFS feature selection gave best results on 

validation error therefore showing better subset selection using SFS algorithm as 

compared to GA selection. 
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ABSTRAK 

PENGUNAAN ALGORITHA GENETIK UNTUK HENGOPTIMUHKAN 

KLASIFIKASI DATA BAGI TUJUAN KLASIFIKASI RUMPUT-RUMPAI 

Penyemburan racun rumput-rumpai secara automatik boleh dilakukan dengan 

sistem klasifikasi yang cekap bagi membolehkan peningkatan dalam produktiviti 

dan penjimatan dalam pengunaan racun rumput-rumpai. Suatu strategi yang 

digunakan untuk membentuk sistem klasifikasi adalah dengan memperkenalkan 

sekumpulan ciri yang banyak serta menggunakan teknik penyaringan untuk 

memilih ciri-ciri. Jaringan Neural (ANN) dan Mesin Vektor Sokongan (SVM) 

digunakan untuk pengelompokan dengan menggunakan ciri-ciri dari teknik 

pengimejan. Walau bagaimanpun, pengoptimuman pengklasifikasi dari segi 

struktur dan subset ciri merupakan suatu tugas yang mencabar yang boleh 

dise/esaikan dengan kaedah heuristik seperti Algoritma Genetik (GA) 

memandangkan ia adalah suatu masalah bukan convex. Oua kaedah digunakan 

untuk mengoptimumkan pengklasifikasian yang disebutkan iatu i) cara pemilihan 

ciri secara berurutan (SFS) dan Ii) berdasarkan kaedah Algoritma Genetik (GA). 

Kaedah GA memerlukan konfigurasi fungsi kemantapan yang sesuai untuk 

berfungsi. Fungsi kemantapan adalah persamaan yang digunakan untuk menilai 

suatu konfigurasi dan ia terdiri daripada beberapa bahagian. Untuk fungsi 

kemantapan untuk SVftt ia terdiri daripada 2 bahagian terma (sebahagian untuk 

mengurangkan ciri dan sebahagian lagi untuk menilai tahap kemantapan). Hasil 

kajian menunjukkan bahawa bahagian untuk mengurangkan ciri perlu diberi 'nilai 

kepentingan' yang kurang (diantara 0%-20%) daripada skor kemantapan untuk 

mengelakkan situasi terlebih padan. Untuk optimisasi ANN menggunakan GA, 

fungsi kemantapan yang terdiri daripada 3 bahagian (sebahagian untuk 

mengurangkan maklumat cir~ sebahagian untuk menilai kemantapan konfigurasi 

dan sebahagian untuk mengurangkan bilangan neuron dalam lapisan 

tersembunyi), perubahan nita; kepentingan antara tiga bahagian kurang mengubah 

generalisasi pengklasifikasian berbanding dengan optimisasi SFS. Untuk ANN 

ada/ah didapati bahawa konfigurasi SFS memperoleh keputusan yang lebih baik 

berbanding semua konfigurasi GA. Ini menunjukkan keadah SFS adalah lebih 

sesuai dari GA untuk ANN dari segi pengoptimuman. 
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CHAPTER 1 

INTRODUCTION 

1.1 Overview 

In recent developments, the advancement of technology in imaging has benefitted 

various industries such as engineering, internet development, and security. 

Subsequently, researchers are exploring the concept of imaging technology in 

agriculture, mainly in discriminating between crops and weeds or between the 

categories of weeds. This dissertation explores the possibility of applying a species 

based vegetation classification at a window of approximately 1-4 weeks post 

emergence. Imaging technology applied in crop/weed recognition can lead to 

advancement in technology such as automated spot weeding. Spot weeding 

technology has the potential to increase production in crops while reducing 

herbicide usage (McCarthy et aI., 2010). Researches conducted include various 

types of crop/weed classification distinguishing the broad category of weeds 

(Ahmed et al., 2012) and species classification (Weis, 2010). The decision to spray 

a certain amount of herbicide can be mechanized by applying computer vision 

system and classification algorithms. 

The significant challenges faced in such image based weed classification are 

the classifier optimization which includes parameter fine tuning and selection of 

discriminant features to train the classifier. This process is referred to as classifier 

optimization. In order to optimize such classifiers, various strategies were 

employed, which involves Grid Search, Sequential Feature Search (SFS) and REUEF 

Feature weighting. Although Support Vector Machines (SVM) were often used to 

develop the classifier for the weed-crop discrimination or the individual weed 

species, optimizing SVM is known to be a complex task as it requires the selection 
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of hyperparamters and feature subset (Huang and Wang, 2006). Apart from the 

fine tuning and optimization of the classifier, the selection of specific type of 

features such as shape and color features is also imperative to ensure optimal 

classification success. 

In order to achieve a sufficient machine autonomy in executing task of 

automated weed spraying, machine vision is required to identify in the batch of 

vegetation, if there exist a specified crop, a specified type of weed and more 

specifically the number of weed counts. This can be achieved by applying image 

processing technologies with the application of artificial intelligence, such as an 

Artificial Neural Network (ANN) and Support Vector Machines (SVM). However, the 

image of vegetation that was investigated needs to be non-occluded from one 

another. Hence, such methods of analyzing vegetation from shape features are 

more suitable for early stage of vegetation. Although this limits the application to 

analysis on certain stages of crops development and types of crops, this is still 

useful as vegetation are mostly separable in the early stages of development. 

Based on the current developments in vegetation recognition , this thesis 

will attempt to apply Genetic Algorithm (GA) to optimize the selected types of 

classifiers to recognize individual species of weed and crops using a combination of 

shape and color features. The advantage of using Genetic Algorithm is that 

parameters selection and features selection can be done simultaneously. 

1.2 Problem Statement 

The application of Machine Learning classifiers namely Artificial Neural Network 

(ANN) and Support Vector Machines (SVM) have been applied in various image 

classification works but optimization of the classifiers remain an open ended 

optimization. Various feature selection and parameter selection algorithms were 

proposed for optimization. However every algorithm has its weakness and the 

overall best solution (combination of feature subset and parameters) could be 

harder to discover with more feature subsets in the selection pool and the wide 

range of parameters. Heuristic approach ~ optimization such as : etic i:JlVI s 
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enables the discovery of such combination of subsets/parameters by a process of 

'biological evolutionary' inspired mechanism such as selection/crossover and 

mutation. However, such heuristic methods are highly dependent on various 

elements such as fitness function and encoding the classifier parameters into 

chromosome which can be further refined based on existing literature. 

1.3 Research Objectives 

Genetic Algorithm provides a heuristic approach to solution search in a vast search 

space. This feature in GA is a suitable candidate for optimization to select classifier 

structure and feature subsets. The objectives of the research are: 

1) To investigate the feasibility of using Genetic Algorithm to optimize the 

structure and select features for Back Propagation Artificial Neural Network 

(ANN). 

2) To investigate the feasibility of using Genetic Algorithm to optimize the 

hyper parameters and select features for Support Vector Machines (SVM). 

3) To investigate the feasibility of using Sequential Feature Selection for 

Support Vector Machines (SVM) and Artificial Neural Network (ANN) for 

classifying the species of vegetation. 

1.4 Research Scope 

This thesis will focus on the development of the classification algorithm for non -

occluded vegetation images. Most weeds are non-occluded/non overlapping at the 

stage of 1-4 weeks. The training images are acquired from a fixed distance and 

setting with controlled lighting, which will be discussed in the following chapter. 

Only three groups of weeds; Monocotyledon (MONO), Agerantum Conyzoides 

(AGECO) and Borreris Repens (BOIRE) and one type of crops - Brassica Juncea 

(BRSJU) were considered as target class and several other classes of weeds 

considered as outlier class used as image tests for our research 
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