

Current trends in

Artificial Intelligence and Applications

Editors:

Sazali Yaacob R. Nagarajan Ali Chekima G. Sainarayanan

> School of Engineering and Information Technology Universiti Malaysia Sabah Kota Kinabalu, Sabah

CURRENT TRENDS IN ARTIFICIAL INTELLIGENCE AND APPLICATIONS

.

•

•

CURRENT TRENDS IN ARTIFICIAL INTELLIGENCE AND APPLICATIONS

Editors

Sazali Yaacob, R.Nagarajan, Ali Chekima and G.Sainarayanan

Published by:

.

School of Engineering and Information Technology Universiti Malaysia Sabah 88999 Kota Kinabalu Malaysia

CONTENTS

Lis Lis Lis Pre	List of Contents List of Figures List of Tables Preface	
AR	TIFICIAL INTELLIGENCE	
1.	Artificial Intelligence: From Biology to Industry Marzuki Khalid	1
2.	Improvements in Back propagation procedure for Pattern Identification S.N.Sivanandam, M.Paulraj and G.Sainarayanan	15
3.	AI Approach for Lifting Reentry Vehicle S.N.Sivanandam, D.Nalini, C.Tharini and P.A.Ignatius Vinoth	27
KI	NOWLEDGE BASED SYSTEMS	
4.	Knowleged Database For Human Meal Kansei Taki Kanda	33
5.	Agents In Online Auctions Patricia Anthony and Nicholas R. Jennings	43
6.	Expert Agents to Recommend Products in Electronic Shopping Cheng-Che Lu and Wei-Po Lee	51
A	RTIFICIAL INTELLIGENCE IN MEDICINE	
7.	Seed Based Region Growing Technique in Breast Cancer Detection P.A. Venkatachalam, Umi Kalthum Ngah, Ahmad Fadzil Mohd Hani and Ali Yeon Md Shakaff	61
8.	An Intelligent Decision Support System for Medical Diagnosis Chee Peng Lim Mei Ming Kuan, , Omar Bin Ismail, R.M.Yuvaraj and Inderjit Singh	. 69
9.	Computer-Aided Diagnosis System for Breast Cancer Detection Wan Mimi Diyana Wan Zaki, Zulaikha Kadim and Rosli Besar	79
1	0. Iris Recognition using Self Organizing Neural Network Lye Wil Liam, Ali Chekima, Liau Chung, Jamal Ahmad Dargham	87

INTELLIGENT IMAGE PROCESSING

11. Fuzzy Image Processing Methodology in Blind Navigation	93
Farrah Wong HT, R. Nagarajan, Sazali Yaacob.	

© Universiti Malaysia Sabah 2004

All rights are reserved. Except as permitted by Act 332, Malaysian Copyright Act of 1987, no part of this publication may be reproduced or distributed in any form or by any means, or stored in data base or retrieval system, without prior written permission from the Universiti of Malaysia Sabah. Permission or rights are subjected to royalty payment.

Perpustakaan Negara Malaysia Catalouging-in-Publication Data

Current trends in artificial intelligence and application/editors Sazali Yaacob ... [et al] ISBN 983-2369-14-2 1. Artificial intelligence 2. Artificial intelligence - Medical applications 3. Expert systems (Computer science) I Sazali Yaacob 006.3.

Layoutartist: Gomera Jumat Editor: Sazali Yaacob R. Nagarajan Ali Chekima G.Sainarayanan

Typeface for text: Times New Roman Text type and leading size: 11/13 pts Published by School of Engineering and Information Technology Universiti Malaysia Sabah Locked Bag 2073, 88999 Kota Kinabalu Sabah.

First Printing: 2004

Printed by: Seribu Jasa Sdn. Bhd (240080-D) Lot 16, Delta Industrial Centre, Lrg. Buah Mata Kucing 1, Off Jln. Lintas, 88778 Kota Kinabalu, Sabah.

12. Smooth Surface Classification Using Shadow Moiré And Neural Network Mani Maran Ratnam and Chee Peng Lim	101
13. FLVQ Scheme for Image Processing in Vision Substitutive System R.Nagarajan, Sazali Yaacob and G.Sainarayanan	111
14. Robust Neural Network Based Robot Visual Positioning Dhanesh Ramachandram, Mandava Rajeswari,	123
15. A Method of Representing Human Postures and Motions M. Masudur Rahman and Seiji Ishikawa	131
NEURAL NETWORKS APPLICATIONS	139
16. Neural Network for Object Recognition - A Survey Jamal Ahmad Dargham, Ali Chekima and Nour-Eddine Belkhamza	102
17. Classification of Italian Liras Using the LVQ Method Sigeru Omatu	147
18. Carbon Monoxide Level Forecasting Using Neural Network Mazlina Mamat, Mohd. Yusof Mashor, Abdul Rahman Saad and Ahamad Farhan Sadullah	155
19. Prediction of Slab Deflections Using Statistical Neural Networks Mansour Nasser Jadid	163
20. Neural Network to Predict the Reaction Rate Data of Hydrogenation of Triglycerides Dudukku Krishnaiah and Rosalam Hj. Sarbatly	171
21. Development of a Neural Network Predictor for Enhanced Water Coagulation Jude Mattew Isidore, Sivakumar Kumaresan and Abdul Noor @ Yeo Kiam Beng	177
22. A Neural Network-Based Electronic Taste Sensing System for Mineral Water Amir Shauqee A.Rahman, Ali Yeon M.Shakaff, M.Noor Ahamad, J.S Teo, M.Sazuri Hitam and Zhari Ismail	185
OPTIMIZATION TECHNIQUES	
23. Industrial Production Planning Using Interactive Fuzzy Linear Programming Pandian M, R.Nagarajan and Sazali Yaacob	195
24. Transmission System Expansion Planning using Fuzzy Branch and Bound Method Jaeseok Choi, Hongsik Kim, Seungpil Moon and Junzo Watada	203
25. Genetic Parallel Programming Evolving Parallel Machine Codes Kwong Sak Leung, Kin Hong Lee and Sin Man Cheang,	213

.

26. Optimization of Economic Production Quantity Model With Fuzzy Opportunity Cost Shan Huo Chen	223
INTELLIGENT CONTROL	
27. Fuzzy Logic Predictive Controller Performance Under Disturbance - A Simulation Study Sazali Yaacob, R.Nagarajan, T.T.K Kenneth	229
28. Fuzzy Control of a Waste Water Treatment Plant for Nutrients Removal Shunsaku Yagi, Hiroshi Kohara, Yutaka Nakamura and Sadataka Shiba	241
29. An Intelligent Voting Technique In Behavior-Based Mobile Robot Navigation Tan Chee Kwong, Shamsudin H.M Amin, Rosbi Mamat, Imre J. Rudas,	249
LIST OF AUTHORS AND ADDRESSES	257

LIST OF FIGURES

•

ŧ

Figure 1.1 Categories of popularly used AI techniques and disciplines that have contributed to the AI field.	2
Figure 1.2 Breakdown of the human nervous system from organizational	2
Figure 1.3 An example of a model of an insect decision-making mechanism	3
Figure 1.4 The architecture of a biological neuron	4
Figure 1.5 An artificial neuron model. There is almost like a one-to-one	5
correspondence between the components of the biological and artificial neurons	5
Figure 1.6 The GA operators and cycle	6
Figure 1.7 A block diagram of the proposed adaptive neuro-fuzzy control system.	0 7
Figure 1.8 Comparison of the adaptive neuro-fuzzy (RBF-NFC) controller	8
based on the RBF neural networks to a generalized predictive	_
controller with respect to changes in plant dynamics.	
Figure 1.9 A block diagram of a neuro-fuzzy-GA technique. GA is used to	8
optimize the parameters of the RBF-based neuro-fuzzy controller.	-
Figure 1.10 A block diagram showing the main components of an intelligent system	9
which are intelligent man-machine interface, perception, cognition and execution.	
Figure 1.11 Tracking performance of the fuzzy train by Hitachi Ltd. Japan.	9
Figure 1.12 Example of the Pavilion Technologies Inc. software Process Insights	10
which first models a process offline and then used for control purposes online.	
Figure 2.1 Three Layer Neural Network.	17
Figure 2.2 Self Loop scheme	18
Figure 2.3 Block Diagram of Image Processing	21
Figure 2.4 Cumulative Error Vs Epoch graph for two bit XOR problem.	21
Figure 2.5 Cumulative Error Vs Epoch graph for image data.	21
Figure 3.1 Co-ordinate System for Re-entry Problem	28
Figure 3.2 Heating Rate Profile	31
Figure 3.3 Reentry Down Range	31
Figure 3.4 Reentry Velocity Profile	32
Figure 3.5 Reentry Altitude (above) and Reentry Trajectory (below) Profiles	32
Figure 4.1 Distribution of Sample Scores	35
Figure 4.2 Comparison of the Distribution of Sample Scores and the	36
Standard Normal Distribution	
Figure 4.3 Distribution of the Total of the Convenience, Health	38
and Earnest-Oriented Sample Scores	
Figure 6.1 The system architecture.	53
Figure 6.2 The questionnaire presents by the interface agent	54
Figure 6.3 The typical recommendation result	54
Figure 6.4 The flow of transferring a product from its component names.	56
Figure 6.5 The correspondence between feature rank and weight	57
Figure 6.6 The correspondence among the feature ranks for different	57
feature dimensions.	
Figure 6.7 Some results of recommendation.	58

Figure 7.1	Seed pixel	62
Figure 7.2	Side 4-pixels	62
Figure 7.3	Diagonal 4-pixels	62
Figure 7.4	8-pixels	62
Figure 7.5a	Original breast image	62
Figure 7.5b	ROI marked on original Image	62
Figure 7.5c	Microcalcifications after Zooming and Region Growing	63
Figure 7.6	The Expert System architecture	64
Figure 7.7	The MAMMEX Flow diagram	64
Figure 7.8	The Features of IMMEX	66
Figure 8.1	The architecture of the Fuzzy ARTMAP network	70
Figure 8.2	The percentages of accuracy versus baseline vigilance	75
-	parameter $(\overline{\rho}_{a})$ with three different learning rates (β_{a}) .	
Figure 8.3.	The percentages of three performance metrics (accuracy (•),	76
e	sensitivity (\times), and specificity (\blacktriangle)) versus baseline vigilance.	
Figure 9.1	A block diagram of the proposed system.	80
Figure 9.2	3D representation of lower (erosion) and upper (dilation)	84
8	blankets of the mammogram for $r = 26$.	
Figure 9.3	Extraction of ROIs.	84
Figure 9.4	Clustered MCCs extracted from a digital mammogram.	85
Figure 9.5	An example of progressive reconstruction of a mammogram.	85
Figure 10.1	Block diagram of the Iris Recognition.	87
Figure 10.2	Original Picture of the Iris Image and its Histogram.	88
Figure 10.3	Result of Histogram Stretch Image of Figure 2.	89
Figure 10.4	Histogram of Figure 10.3	89
Figure 10.5	Result of Threshold Image Figure 10.3	89
Figure 10.6	Steps Taken in Extracting the Center Coordinate and	90
1.6010.000	the Radius of the Iris	70
Figure 10.7	(a) Reconstruction Iris and Punil From Figure 10.2 (b) Extracted Iris	90
	and Punil (c) Selected Iris Pattern	
Figure 10.8	Reconstructed Iris in Rectangle Shape from Figure 10.7(c)	91
Figure 10.9	Architecture of Self-Organizing Man	91
Figure 10.10	Performance of the Network.	92
Figure 11 1	The headgear system also known as the audio-vision headgear	94
Figure 11.2	The main steps in the FIP-segmentation procedure	96
Figure 11.3	Method to obtain threshold range	96
Figure 11.4	Granh for the Four Measures of Fuzziness in (h) for the	07
	Picture of 'Tiger' in (a)	<i>)</i>
Figure 11.5	Simulation of The Quadrant Division of a 32-by-32 sized picture	07
	of 'tiger'in 9a) Quadrant division of (b) 4 (c) 16 (d) 64 (e) 256 (f) 1024	71
Figure 11.6	Final Output (in black and white) of the FIP process shown in	08
1.5010 11.0	(a) and the whitened portion representation of the original image in (b)	90
Figure 117	(a) Picture of 'Spoon and Knife' (b) Segmented Image	00
i igui o i i	(c) Segmented Image in Black and White	99
Figure 11 8	(a) Picture of a 'Polo Games' (b) Segmented Image (c) Segmented Image	00
Tigure 11.0	in Black and White	99
Figure 12 1	Schematic of shadow main mathed	100
Figure 12.1	Schematic of shauow mone method.	102
Figure 12.2	Bow maine layout of the experimental setup. Row maine frings patterns on ages of along (a) A_{1} (b) D_{2} (c) C_{2}	102
rigure 12.5	and (d) D respectively	103
Figure 12 A	Moiré nattern after smoothing and contract enhancement	102
1 iguie 12.4	mone pattern after smoothing and contrast enhancement.	103

Figure 12.5	Data extraction for parameter set 1.	104
Figure 12.6	Plot of parameter x and y.	104
Figure 12.7	Data extraction for parameter set 2.	105
Figure 12.8	Neural network used in the classification.	105
Figure 12.9	Plot of classification accuracy for all four classes.	106
Figure 12.10	Plot of classification accuracy for three classes.	107
Figure 12.11	Effect on training algorithm on classification accuracy.	108
Figure 13.1	Prototype model of Headgear.	113
Figure 13.2	Blind Volunteer with Prototype System.	113
Figure 13.3	Sequence of acoustic transform of image.	114
Figure 13.4	Image processing stages of a simulated image.	118
Figure 13.5	Image processing stages of a real world image.	118
Figure 14.1	Two target objects used in this work.	127
Figure $14.2(a)$	SDOF Recursive Positioning Results for Positioning-Scenario L	129
Figure $14.2(b)$	SDOF Recursive Positioning Results for Positioning-Scenario 2.	129
Figure 15.1	Experimental environment. A doll stands on a turntable: A camera	134
I iguite I sti	is fixed in front and takes images of the doll as the table rotates	
Figure 15.2	Representation of 36 differential images of a standing doll in	134
	the eigenspace. The doll wears a fine textured light vest	
Figure 15.3.	Comparing posture representation in the eigenspaces obtained	134
	from original images: (a) dress 4 and (b) dress 5	
Figure 15.4.	Comparing posture representation in the eigenspaces obtained	135
e	from differential images; (a) dress 1, (b) dress 2, (c) dress 3	155
	(d) dress 4, (e) dress 5, and (f) dress 6. The original images	
	are as well shown for reference.	
Figure 15.5.	Sampled images of a series of motions.	136
Figure 15.6.	Created eigenspace and a closed curve representing the motion.	137
	The numbered points represent the images of the same number	157
D1 4 4 4	in Figure 15.5. Six images are shown here for reference.	
Figure 16.1	Basic Elements of an Artificial Neuron.	140
Figure 16.2	A Typical Object Recognition System.	140
Figure 17.1	Structure of the LVQ networks.	141
Figure 17.2	Principle of the LVQ algorithm.	140
Figure 17.3	Preprocessing algorithm.	150
Figure 17.4	Four directions of bill money.	150
Figure 17.5	Image of four directions of 1,000 Lira.	151
Figure 17.6	New and old 50,000 Liras.	151
Figure 17.7	New and old 100,000 Liras.	154
Figure 18.1	Graph R ² Value versus Number of Input Lag (Single Model)	159
Figure 18 2	Graph R ² Value versus Number of RBF Center (Single Model)	150
Figure 183	Granh R ² Value versus Number of Input Lags (Multiple Model)	150
Figure 18 A	Craph R ² Value versus Number of RBF Center (Multiple Model)	150
Figure 195	The Combined Wind Sneed Forecaster and Carbon Manavide Forecaster	159
Figure 10.1	The Combined wind Speed Forecasier and Carbon Monoxide Porecasier.	165
Figure 10.2	Slab digital representation	105
Figure 10 3	Loading on Denals Somplas for Training Set	166
Figure 194	Loading on Panels for Four Testing set	147
Figure 19 5	Testing case Correspond to Figure 10 4a	107
Figure 19.6	Testing case Correspond to Figure 19.4a.	107
Figure 19.7	Testing case Correspond to Figure 19.40.	10/
Figure 19.8	Testing case Correspond to Figure 19.4d	100
—	B care conception to Figure 17.4d.	108

Figure 19.9	Network output prediction.	168
Figure 20.1	Comparison of Rate Data With Neural Output Values.	174
Figure 21.1	Moyog Plant Schematic Process Diagram.	178
Figure 21.2	Multiple Layer Perceptron Architecture.	179
Figure 21.3	Elman Network Architecture.	179
Figure 21.4	Validation Plot MLP [10 5 1].	183
Figure 22.1	A Simplified Block Diagram of an Electronic Taste Sensing System.	186
Figure 22.2	Cross-Sectional View of a Screen-Printed Lipid-Membrane 'Taste'	186
	Sensor Array.	
Figure 22.3	The Sensor Interface.	187
Figure 22.4	Signal Patterns of the 8 Lipid-Membrane Sensors for the Various Samples.	188
Figure 22.5	Block Diagram of the Processing Unit.	189
Figure 22.6	A Multi-Layer Feed-Forward Artificial Neural Network.	189
Figure 22.7	Error Convergence During Training Process Using	190
	Levenberg-Marquart Algorithm.	
Figure 22.8	Recognition Results for 6 Brands of Mineral Water and Distilled Water.	192
Figure 22.9	A Closed-Up View of the Recognition Output for Mineral Water Samples.	192
Figure 23.1	Membership Function μ_{b_i} and Fuzzy Interval for b_i	196
Figure 23.2	Objective Function in terms of Degree of Satisfaction.	198
Figure 23.3	Objective Values and Degree of Satisfaction for $2 \le \alpha \le 20$.	198
Figure 23.4	Variation of Objective Values z' in Terms of μ an α .	199
Figure 24.1	21 buses test system for case studies [MW].	208
Figure 24.2	The configuration of the transmission system expansion planning	209
- B	of the crisp case.	
Figure 24.3	Membership function of construction cost.	210
Figure 24.4	Membership function of supply and delivery reserve rate.	210
Figure 24.5	The configuration of the transmission system expansion planning	211
e	of the case F1.	
Figure 25.1	The Genetic Parallel Programming Paradigm	214
Figure 25.2	The narallel instruction format	215
Figure 25.3	70-bit instruction for the MAP emulator	217
Figure 25.4	The best Cubic program evolved	218
Figure 25.5	The best Sextic program evolved	219
Figure 25.6	The CLEVER program evolved for the Santa Fe Trail	220
Figure 25.7	The FAST program evolved for the Santa Fe Trail	220
Figure 26.1	The graded mean h-level value of generalized fuzzy number	224
1.50.0 2000	$= (a_1, a_2, a_3, a_4, w_1)_{a_1}$	
Figure 26.2	The fuzzy addition operation of Function Principle and Extension Principle	225
Figure 26.3	The comparing of fuzzy multiplication operation under Eulerian Principle.	225
i igule 20.5	and Extension Principle	223
Figure 27.1	The prescribed temperature profile $r(k)$	220
Figure 27.2	The reactor system	230
Figure 27.2	The predictive FLC scheme	231
Figure 27.4	FLC Rules	232
Figure 27.4	Adaptive form of Predictive FLC system	233
Figure 27.6	Scheme of the Predictive FLC with Adaptive Loop	233
11gui 0 27.0	(realized in MATLAR SIMULINK)	231
Figure 27 7	Temperature response without adaptive control	222
Figure 27.8	Temperature response with adaptive control	257
Figure 27.0	Fror square response without adaptive loon	251
Figure 27.10	Error square response with adaptive loop.	257
	zitor oquare response with adaptive toop.	251

Figure 27.11	Forcing Function, up(k) response.	238
Figure 27.12	LC output, up'(k) response.	238
Figure 27.13	pE(k+1) response.	238
Figure 27.14	pCE(k+1) response.	238
Figure 27.15	e (k) response.	238
Figure 27.16	q(k+1) response.	238
Figure 27.17	f(k+1) response.	238
Figure 28.1	Two-tank Intermittent Aeration Process.	242
Figure 28.2	Results of Simulation in Tank 2.	243
Figure 28.3	Nitrogen Removal and Time Ratio.	243
Figure 28.4	Phosphorus Removal and Time Ratio.	243
Figure 28.5	Contour Lines of Nitrogen Removal.	244
Figure 28.6	Contour Lines of Phosphorus Removal.	244
Figure 28.7	Measured DO, pH, and ORP in Tank 1.	246
Figure 28.8	Measured DO, pH, and ORP in Tank 2.	246
Figure 28.9	Removal Efficiency: Timer and Fuzzy.	247
Figure 29.1	The Mobile Robot Architecture for Intelligent Voting Technique.	251
Figure 29.2	Command fusion process in center arbiter.	252
Figure 29.3	Vote evaluation in goal-seeking behavior.	253
Figure 29.4	The UTM AIBOT.	254
Figure 29.5	Navigation to goal point with an obstacle in the middle.	254
Figure 29.6	Navigation in a cluttered environment.	255

LIST OF TABLES

PAGES

Table 2.1	XOR Problem – Conventional BP.	22
Table 2.2	XOR Problem – Conventional BP with Slope Fixing.	22
Table 2.3	XOR Problem – Conventional BP with Slope Fixing and self loop.	22
Table 2.4	Iris Data Classification – Conventional BP.	22
Table 2.5	Iris Data Classification – Conventional BP with Slope Fixing.	22
Table 2.6	Iris Data Classification – Conventional BP with Slope Fixing and	23
	Self loon.	23
Table 2.7	Image Data Classification – Conventional BP.	23
Table 2.8	Image Data Classification – Conventional BP with Slope Fixing.	23
Table 2.9	Image Data Classification – Conventional BP with Slope Fixing and	24
14010 2.7	Self Loon.	24
Table 4.1	Example of Answers of Two Subjects.	34
Table 4.2	Associated Sample Scores and Perturbed Sample Scores.	34
Table 4.3	Menu Scores and Menu Scales for Corned Beef.	37
Table 4.4	Menus Which Do Not Need to Correct Menu Scores.	40
Table 4.5	Menus Which Need to Correct Menu Scores.	41
Table 4.6	Process to Correct Menu Scores for Stew.	41
Table 4.7	Corrected Menu Scales.	42
Table 5.1	Characteristics of Different Types of Auctions.	46
Table 7.1	Certainty classes.	65
Table 7.2	Classification of Breast diseases.	65
Table 8.1	The results of the FAM-FCM systems using the OCS approach.	76
Table 14.1	Results for Scenario 1.	127
Table 14.2	Results for Scenario 2.	128
Table 17.1	Recognition rate(%) at t=0.	152
Table 17.2	Not fired rate(%) at t=0.	152
Table 17.3	Recognition rate(%) at t=160.	153
Table 17.4	Not fired rate(%) at t=160.	153
Table 17.5	Number of units after learning.	153
Table 18.1	Selected Input Lags For Single Model.	157
Table 18.2	The Highest R ² Value Achieved For Each Lag.	157
Table 18.3	Selected Input Lags For Multiple Model.	159
Table 18.4	The Highest R ² Value Achieved For Each Lag.	159
Table 18.5	R ² Value Achieved By Wind Speed Forecaster.	160
Table 18.6	R ² Value for Combined Forecaster.	161
Table 20.1	Experimental Rate Data and Neural Prediction.	173
Table 21.1	Effects of Sampling on Network prediction.	181
Table 21.2	Effects of Architecture on Network prediction	182
Table 21.3	Effects of Past Data on Network prediction.	182
Table 21.4	Effectiveness in prediction of CWT(2hr).	182
Table 22.1	Lipid Materials Used in the 'Taste' Sensor Array.	187
Table 22.2	Number of Hidden Nodes vs. Percentage Recognition.	191
Table 22.3	Example of Weights and Biases for the 8 Hidden Nodes Obtained	191
	After the Training and Validation Process and Now Embedded into	
	the System.	
Table 23.1	Optimal Solutions with S-curve Membership Function.	197
Table 23.2	Fuzzy Parameter and Objective Value	199
	(50% Degree of Satisfaction).	

Table 23.3	Vagueness and Degree of Satisfaction at $z' = 2.8 \times 10^{\circ}$.	200
Table 23.4	Distribution of z' Against μ and α .	200
Table 23.5	The Range (Δz) and Performance Measure (J) for $2 \le \alpha \le 20$.	201
Table 24.1	Various aspects of power supply bottle neck.	205
Table 24.2	Input data of capacity and cost.	208
Table 24.3	Results of the crisp and fuzzy cases with maximization of the	209
	satisfaction level of decision maker.	
Table 24.4	The supply and delivery reserve rates and satisfaction level of the	210
	composite power system.	
Table 24.5	Flow and reserve powers of transmission lines of the cases.	211
Table 25.1	GPP parameters for all experiments in this work.	217
Table 25.2	Execution times of solution programs for the Cubic function.	218
Table 25.3	Dry-run of the best evolved parallel programs for Cubic and	218
	Sextic functions.	
Table 25.4	Execution times of solution programs for the Sextic function.	219

PREFACE

It is well known that Artificial Intelligence (AI) is an ever growing field and its applications are vast and limited only by human intelligence. AI techniques have been proved to solve problems whose behaviors cannot be fully understood and modeled. Such problems are very natural and are encountered by us in everyday life. Every year, we find several new research outcomes are being reported from around the world.

The International Conference on Artificial Intelligence in Engineering and Technology, ICAIET 2002, an effort by the School of Engineering and Information Technology, University Malaysia Sabah, has been appreciated by several experts of AI around the world. A total of 112 papers from 15 different countries have been accepted through a peer review process by a group of International experts.

The next conference, ICAIET 2004, will be organized during August 2004.

This book, Current Trends in Artificial Intelligence and Applications, is a collection of some of the papers presented in the ICAIET 2002, selected by a committee, reviewed again, format modified and critically edited. The book has a wealth of information on current research trends in AI Technology and Applications. The papers are organized in seven Sections in accordance to various applications of AI. It is envisaged that this book is specially useful to researchers in the general field of AI.

The editors are indebted to Vice Chancellor of Universiti Malaysia Sabah, Tan Sri Prof Datuk Seri Panglima Dr. Abu Hassan Othman, for his continuous encouragement and guidance even from the start of our planning of ICAIET 2002.

The editors are grateful to all the reviewers of ICAIET 2002 for taking pains in reviewing the papers and ensuring that each of the papers of having a level of high quality. They are also thankful to Associate Professor Dr. Ideris Zakaria, Dr Paulraj Pandian, Mrs. Farrah Wong, Mr. Muralindran and Mr. M. Karthigayan of the School of Engineering and Information Technology, UMS, for associating with us in the compilation of this book.

Sazali Yaacob R. Nagarajan Ali Chekima G.Sainarayanan