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Abstract The recognition of protein folds is an important step in the prediction of protein

structure and function. Recently, an increasing number of researchers have sought to improve

the methods for protein fold recognition. Following the construction of a dataset consisting of

27 protein fold classes by Ding and Dubchak in 2001, prediction algorithms, parameters and the

construction of new datasets have improved for the prediction of protein folds. In this study, we

reorganized a dataset consisting of 76-fold classes constructed by Liu et al. and used the values

of the increment of diversity, average chemical shifts of secondary structure elements and secondary

structure motifs as feature parameters in the recognition of multi-class protein folds. With the com-

bined feature vector as the input parameter for the Random Forests algorithm and ensemble clas-

sification strategy, we propose a novel method to identify the 76 protein fold classes. The overall

accuracy of the test dataset using an independent test was 66.69%; when the training and test sets

were combined, with 5-fold cross-validation, the overall accuracy was 73.43%. This method was

further used to predict the test dataset and the corresponding structural classification of the first

27-protein fold class dataset, resulting in overall accuracies of 79.66% and 93.40%, respectively.

Moreover, when the training set and test sets were combined, the accuracy using 5-fold

cross-validation was 81.21%. Additionally, this approach resulted in improved prediction results

using the 27-protein fold class dataset constructed by Ding and Dubchak.
� 2015 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is

an open access article under the CCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The large numbers of protein sequences generated in the

post-genomic era has challenged researchers to develop a
high-throughput computational method to structurally
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annotate these sequences. The protein fold reflects a key topo-
logical structure in proteins, as it contains three major aspects
of protein structure: units of secondary structure, the relative

arrangement of structures, and the overall relationship of pro-
tein peptide chains (Martin et al. 1998; Ming et al., 2015).

The proper spacial structure of a protein is highly

correlated with its physiological functions. Abnormal protein
folding may cause different diseases, for example, the neurode-
generative diseases such as Alzheimer’s disease, spongiform

encephalopathy, Parkinson’s disease, mad cow disease etc.
Thus, the correct identification of protein folds can be valuable
for studies on pathogenic mechanisms and drug design
(Thomas et al., 1995; Christopher and Michelle, 2004;

Krishna and Grishin, 2005; Lindquist et al., 2001; Scheibel
et al., 2004; Ma et al., 2002; Ma and Lindquist, 2002) and
represents an important topic in bioinformatics.

In 2001, Ding and Dubchak (2001) constructed a dataset
consisting of 27 protein fold classes using multiple feature
parameters, including amino acid composition, predicted sec-

ondary structure, etc., and proposed support vector machines
and neural network methods to predict the 27 protein fold
classes, achieving an overall accuracy of 56.0%.

Subsequently, using the dataset constructed by Ding and
Dubchak and identical feature parameters, several studies have
suggested algorithmic improvements for protein fold identifi-
cation. For example, Chinnasamy et al. (2005) introduced

the phylogenetic tree and Bayes classifier for the identification
of protein folds and achieved an overall accuracy of 58.2%.
Nanni (2006) proposed a new ensemble of K-local hyperplanes

based on random subspace and feature selection, achieving an
overall accuracy of 61.1%. Guo and Gao (2008) presented a
novel hierarchical ensemble classifier termed GAOEC

(genetic-algorithm optimized ensemble classifier) and achieved
an overall accuracy of 64.7%. Damoulas and Girolami (2008)
proposed the kernel combination methodology for the predic-

tion of protein folds and achieved an accuracy of 70%. Lin
et al. (2013) exploited novel techniques to impressively increase
the accuracy of protein fold classification.

Additional studies have suggested the selection of feature

parameters to predict protein folds. For example, Shamim
et al. (2007) used the structural properties of amino acid resi-
dues and amino acid residue pairs and achieved an overall

accuracy of 65.2%. Dong et al. (2009) proposed a method ter-
med ACCFold and achieved an overall accuracy of 70.1%.
Nanni et al. (2010) proposed a method to extract features from

the 3D structure and achieved significant improvement; how-
ever, this method does not solely rely on protein primary
sequences to predict protein folds. Li et al. (2013) proposed
a method termed PFP-RFSM and obtained improved results

for protein fold identification.
Numerous studies have not only focused on the selection of

feature parameters but also on the improvement of algorithms

to identify protein folds. For example, Zhang et al. (2009) pro-
posed an approach that utilizes the increment of diversity by
selecting the pseudo amino acid composition, position weight

matrix score, etc., and used these parameters to predict the
27 protein fold classes, with an overall accuracy of 61.1%.
Shen and Chou (2006) applied the OET-KNN ensemble classi-

fier to identify folds by introducing pseudo amino acids with
sequential order information as a feature parameter and
achieved an overall accuracy of 62.1%. Chen and Kurgan
(2007) proposed the PFRES method using evolutionary
Please cite this article in press as: Feng, Z. et al., The recognition of multi-class protei
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information and predicted secondary structure, obtaining an
accuracy of 68.4%. Ghanty and Pal (2009) proposed the fusion
of heterogeneous classifiers approach, with features including

the selected trio AACs and trio potential, and the overall
recognition accuracy was 68.6%. Shen and Chou (2009)
applied an identification method to protein folds using func-

tional domain and sequential evolution information and
achieved an overall accuracy of 70.5%. Yang and Kecman
(2011) proposed a novel ensemble classifier termed MarFold,

which combines three margin-based classifiers for protein fold
recognition, and the overall prediction accuracy was 71.7%.

Additional studies have constructed and analyzed new 27-
fold class datasets. For example, with a sequence identity less

than 40%, Mohammad et al. (2007) constructed a dataset
composed of 2554 proteins belonging to 27-fold classes, pro-
posed structural properties of amino acid residues and amino

acid residue pairs as parameters, and achieved an overall accu-
racy of 70.5% using 5-fold cross-validation. With sequence
identity below 40%, Dong et al. (2009) constructed a 27-fold

class dataset (containing 3202 sequences), proposed the ACC-
Fold method, and obtained an overall accuracy of 87.6% using
5-fold cross-validation. Liu and Hu (2010) constructed a new

27-fold class dataset according to the construction of the Ding
and Dubchak dataset (2001). This new dataset contains 1895
sequences with a sequence identity below 35%. Motif fre-
quency, low-frequency power spectral density, amino acid

composition, predicted secondary structure, and autocorrela-
tion function values were combined as the set of feature
parameters. Using the SVM algorithm and the ensemble clas-

sification strategy, the overall accuracy in the independent test
was 66.67%. Moreover, studies on datasets consisting of 76,
86, and 199 fold classes have demonstrated improvements

(Liu et al., 2012; Dong et al., 2009).
In this study, we reorganized the dataset constructed by Liu

et al. (2012). According to the biological characteristics, values

of the increment of diversity, motif frequency, predicted sec-
ondary structure motifs and the average chemical shift infor-
mation of predicted secondary structure elements were
extracted as feature parameters. Based on the ensemble classi-

fication strategy, these combined features were used as the
input parameter for the Random Forests algorithm. An inde-
pendent test and 5-fold cross-validation were used to predict

the 76 protein fold classes, which resulted in good protein fold
identification. The protein folds of the 27-fold class dataset
and the corresponding structural classes were also identified,

yielding improved results.

2. Materials and methods

2.1. Protein fold dataset

The 76-fold class dataset constructed by Liu et al. (2012) was
reorganized; 8 and 5 protein sequences were added to the train-
ing and test set, respectively. Then the training set contains
1744 proteins for training, and the test set contains 1726 pro-

teins for test. The sequence identity of the dataset was below
35%. The number of sequences of each type of protein fold
was 10 or greater. The training and test set contained 1744

and 1727 protein chains, respectively. The distribution of the
corresponding fold names and sequence numbers is shown in
Table 1. The 76-fold class dataset is available at http://202.

207.29.245:8080/Ha/HomePage/fzxHomePage.jsp.
n folds by adding average chemical shifts of secondary structure elements. Saudi
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Table 1 Datasets of 76 protein fold classes.

Fold (name) Ntrain/(Ntest) Fold (name) Ntrain/(Ntest) Fold (name) Ntrain/(Ntest)

1 (GL) 14/14 27 (ITL) 41/41 53 (SM) 44/44

2 (CY) 10/10 28 (RCD) 13/13 54 (PT-L) 31/31

3 (DB) 92/90 29 (SR) 13/13 55 (PBPI) 26/26

4 (HB) 25/24 30 (F-L) 21/21 56 (CD-L) 7/7

5 (4HC) 8/8 31 (SD) 15/14 57 (L-L) 8/8

6 (EF) 25/23 32 (a-T) 16/16 58 (I-L) 8/7

7 (IL) 86/85 33 (CP) 9/8 59 (C-L) 29/30

8 (CD) 18/18 34 (a-S) 32/33 60 (U-L) 9/8

9 (VCP) 24/24 35 (NRL) 7/7 61 (GRP) 16/16

10 (CLL) 18/17 36 (MC) 9/9 62 (C-DP) 8/9

11 (SH3) 41/41 37 (CFD) 14/14 63 (TED) 26/25

12 (OB) 29/28 38 (C2D) 9/9 64 (DL) 8/9

13 (BT) 11/10 39 (GD) 16/16 65 (ETK) 10/9

14 (TSP) 17/16 40 (PDL) 24/25 66 (BCM) 8/9

15 (LIP) 16/15 41 (AP) 8/8 67 (Z-L) 12/11

16 (TIM) 93/92 42 (PDB) 29/29 68 (S-L) 7/8

17 (FAD) 5/5 43 (6BP) 10/9 69 (ACN) 33/32

18 (FLL) 37/36 44 (7BP) 8/8 70 (PL) 19/19

19 (NAD) 17/16 45 (SR-b) 12/13 71 (Nu) 12/12

20 (P-L) 74/73 46 (DSH) 40/40 72 (Tbp) 18/18

21 (THL) 37/36 47 (b-C) 8/7 73 (DNA) 11/11

22 (RHM) 39/40 48 (AN-a) 13/12 74 (PK) 22/22

23 (HYD) 33/33 49 (HL) 25/26 75 (NH-L) 15/15

24 (PBP) 6/6 50 (RCC) 9/9 76 (CTL) 12/12

25 (b-G) 39/39 51 (P/H) 17/17

26 (FEL) 101/99 52 (P-L) 12/13

Note: Ntrain/(Ntest) represents the number of folds in the training/(test) dataset.

Full names: (1) globin-like, (2) cytochrome c, (3) DNA-binding 3-helical bundle, (4) 4-helical up-and-down bundle, (5) 4-helical cytokines, (6)

EF hand, (7) immunoglobulin-like b-sandwich, (8) cupredoxins, (9) viral coat and capsid proteins, (10) ConA-like lectin/glucanases, (11) SH3-

like barrel, (12) OB-fold, (13) b-trefoil, (14) trypsin-like serine proteases, (15) lipocalins, (16) TIM barrel, (17) FAD (also NAD)-binding motif,

(18) flavodoxin-like, (19) NAD(P)-binding Rossmann fold, (20) P-loop, (21) thioredoxin-like, (22) ribonuclease H-like motif, (23) hydrolases,

(24) periplasmic binding protein-like, (25) b-grasp, (26) ferredoxin-like, (27) small inhibitors/toxins/lectins, (28) RuvA C-terminal domain-like,

(29) spectrin repeat-like, (30) ferritin-like, (31) SAM domain-like, (32) a/a toroid, (33) cytochrome P450, (34) a–a superhelix, (35) nuclear

receptor ligand-binding domain, (36) multiheme cytochromes, (37) diphtheria toxin/transcription factors/cytochrome f, (38) C2 domain-like,

(39) galactose-binding domain-like, (40) PDZ domain-like, (41) acid proteases, (42) PH domain-like barrel, (43) 6-bladed b-propeller, (44) 7-
bladed b-propeller, (45) single-stranded right-handed b-helix, (46) double-stranded b-helix, (47) b-clip, (48) adenine nucleotide a hydrolase-like,

(49) HAD-like, (50) rhodanese/cell cycle control phosphatase, (51) phosphorylase/hydrolase-like, (52) PRTase-like, (53) S-adenosyl-L-

methionine-dependent methyltransferases, (54) PLP-dependent transferase-like, (55) periplasmic binding protein-like II, (56) cytidine deami-

nase-like, (57) lysozyme-like, (58) IL8-like, (59) cystatin-like, (60) UBC-like, (61) glyoxalase/bleomycin resistance protein/dihydroxybiphenyl

dioxygenase, (62) CBS-domain pair, (63) thioesterase/thiol ester dehydrase-isomerase, (64) dsRBD-like, (65) eukaryotic type KH domain (KH-

domain type I), (66) Bacillus chorismate mutase-like, (67) zincin-like, (68) SH2-like, (69) acyl-CoA N-acyltransferases (Nat), (70) profilin-like,

(71) Nudix, (72) TBP-like, (73) DNA clamp, (74) protein kinase-like (PK-like), (75) Ntn hydrolase-like, and (76) C-type lectin-like.

Recognition of multi-class protein folds 3
The first 27 types of the 76 protein fold classes correspond
to the dataset of Ding and Dubchak (2001), and each type of

fold has been expanded. The number of sequences in the data-
set is threefold greater than that of the Ding and Dubchak
dataset.

The second dataset used in this study was constructed by
Ding and Dubchak. The previously used dataset, with
sequence identity below 35%, contained a training set that

included 311 protein chains and a test set that included 383
protein chains.

2.2. The selection of feature parameters

2.2.1. Increment of diversity (ID)

The ID algorithm has been successfully used in the classifica-

tion of protein structure and subcellular localization (Chen
and Li, 2007). The ID can be used as a classification prediction
Please cite this article in press as: Feng, Z. et al., The recognition of multi-class protei
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algorithm and can extract characteristics of the sequence as
parameters of the classification prediction.

In the state space of k dimensions, mi indicates the absolute
frequency of the ith state. The diversity measure for diversity
source S:{m1, m2,. . ., mk} is defined as follows:

DðKÞ ¼ M log M�
Xk

i

mi log mi ð1Þ

Here, M ¼ Pk
i¼1mi; logð0Þ ¼ 0 if ni ¼ 0

In this state space, the ID between the source of diversity X

(n1, n2,. . ., nk) and Y(m1, m2,. . ., mk) is defined as follows:

IDðX;YÞ ¼ DðXþ YÞ �DðXÞ �DðYÞ ð2Þ

where D(X+ Y), which is termed the combination diversity
source space, is the measure of the diversity of the sum of
two diversity sources.
n folds by adding average chemical shifts of secondary structure elements. Saudi

http://dx.doi.org/10.1016/j.sjbs.2015.10.008


4 Z. Feng et al.
The ID is used to measure the similarity level between two
diversity sources. If X is similar to Y, then the value of
ID(X, Y) will be small, particularly if X= Y, then ID(X, Y) = 0.

Considering the local conservation of fold sequences, the
sequence of each protein fold was divided into n segments,
and in each segment, the occurrence frequencies of 20 amino

acid residues in the protein sequences were extracted as a
parameter, as previously described (Chen and Li, 2007;
Wang et al., 2014). Thus, the initial parameter of each

sequence was converted into a 20*n-dimensional vector that
was inputted into the ID algorithm for classification, and an
improved result was obtained. Following substantial iterative
calculations, when an enzyme sequence was divided into 10

segments, a relatively better result was obtained. Therefore,
we selected a 200-dimensional vector as the initial parameter
for input into the ID algorithm and obtained 76 ID values

for each sequence.

2.2.2. Average chemical shift (ACS)

Several studies have noted that the ACS of a particular nucleus

in the protein backbone correlates well to its secondary struc-
ture (Sibley and Cosman, 2003; Zhao et al., 2010). Mielke and
Krishnan (2003), Mielke and Krishnan (2004), Mielke and

Krishnan (2009) have presented a CS-based empirical
approach to predict secondary structure and the protein struc-
tural class. Arai et al. (2010) have predicted the protein struc-

tural class using 1H–15N HSQC spectra. Moreover, CS
information has been used to improve the prediction quality
for various protein subcellular localizations (Fan and Li,

2012a; Fan and Li, 2012b).
These results suggest that CS information can be regarded

as important parameters in the prediction of protein folds.
Chemical shift values corresponding to the protein backbone

atoms were obtained from the BMRB (http://www.bmrb.
wisc.edu) (Seavey et al., 1991). The online web server
PSIPRED (http://bioinf.cs.ucl.ac.uk/psipred/) was used to

obtain the predicted secondary structure of each protein
sequence in the 76-protein fold class dataset.

We calculated the ACS using a previously described

method (Mielke and Krishnan, 2003; Fan and Li, 2012a;
Fan and Li, 2012b; Fan et al., 2013; Fan and Li, 2013;
Anaika et al., 2003). We selected chemical shift values of 1Ha

and 1HN (two types of protein backbone atoms for every

amino acid residue of protein sequence P) to calculate the cor-
responding ACS. Subsequently, each amino acid in the
sequence was replaced by its ACS. Following iterative calcula-

tions, we selected the averaged chemical shifts of 1Ha and
1HN,

which were more suitable for predicting protein folds. Protein
sequence P is expressed as follows:

P ¼ ½Ci
1;C

i
1; � � �Ci

L�ði ¼ 1Ha;
1HNÞ ð3Þ

The auto cross covariance (ACC) (Wold et al., 1993) has

been successfully adopted for the prediction of protein folds
(Dong et al., 2009; Qi et al., 2015), G-proteins (Guo et al.,
2006; Wen et al., 2007), protein interactions (Guo et al.,

2008), and b-hairpins (Jun et al., 2010). However, the ACC
has primarily been used to study interactions between residues
or bases. We are the first to use the ACC at the level of pre-
dicted secondary structure elements (helix, strand, or coil)

for protein fold prediction (Xinghui et al., 2015). The ACC
contains two types of variables: the AC variable measures
Please cite this article in press as: Feng, Z. et al., The recognition of multi-class protei
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the correlation between identical properties (i.e., an identical
secondary structure element) and the CC variable measures
the correlation between different properties. Given the corre-

sponding predicted secondary structure elements (helix, strand,
or coil) in one sequence, AC variables describe the average
interactions between identical predicted secondary structure

elements, and the separation distance between two predicted
secondary structure elements is given by lg elements. For
example, if two secondary structure elements are neighboring,

then lg = 1; if the two secondary structure elements are next-
to-neighboring, then lg = 2, etc. The AC variables were rede-
fined and calculated according to Eq. (4), as follows:

AC ði; lgÞ ¼
XL�lg

j¼1

ðSi;j � �SiÞðSi;jþlg � �SiÞ=ðL� lgÞ ðlg < LÞ

0 ðlg P LÞ

8><
>:

ð4Þ
Here �Si ¼

PL
j¼1Si;j=L ði ¼ 1; 2; 3Þ,where i represents a sec-

ondary structure element (helix, strand, or coil), L is the num-
ber of secondary structure elements in the protein sequence,
and Sij is a feature value of secondary structure element i at

position j. �Si is the average value for the secondary structure
element i along the entire sequence (Zhang et al., 2014).

Given the ACS values for 20 amino acid residues in a
sequence, the secondary structure element i contains m resi-
dues, and Sij represents the summation of ACS values for m
residues.

CC variables were redefined and calculated according to
Eq. (5), as follows:

CC ði1; i2; lgÞ¼
XL�lg

j¼1

ðSi1;j� �Si1ÞðSi2;jþlg� �Si2Þ=ðL� lgÞ ðlg<LÞ

0 ðlgPLÞ

8><
>:

ð5Þ
where i1 and i2 are two different types of secondary structure

elements (helix, strand, or coil), and Si1,j is a feature value of

secondary structure element i1 at position j. �Si1 ð �Si2Þ is the

average value for secondary structure element i1(i2) along
the entire sequence (Li et al., 2015). The dimension of CC vari-
ables is 3*2*lg. The ACC is the summation of variables AC
and CC. Following substantial calculations and a comparison

of the prediction results, the optimal maximal value of lg was
selected as 8 in this study (Zhiwei et al., 2015).

2.2.3. Motif information (M)

A motif is the local conserved region in a protein during evo-
lution (Ben-Hur and Brutlag, 2003) that is often related to bio-
logical function. For example, some motifs are related to DNA

binding sites and enzyme catalytic sites (Wang et al., 2003). As
feature parameters, motif information has been successfully
applied for the prediction of superfamilies, protein folds, etc.

(Ben-Hur and Brutlag, 2003; Liu et al., 2012; Wang et al.,
2014).

Two types of motifs were used in this study: motifs with a

biological function obtained by searching the existing func-
tional motif database PROSITE (de Castro et al., 2009) and
statistical motifs that were obtained using MEME (http://
meme.nbcr.net/meme/cgi-bin/meme.cgi). Motif information

(M) includes functional and statistical motifs.
n folds by adding average chemical shifts of secondary structure elements. Saudi
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(1) Functional motif

The PROSITE database was used to obtain protein
sequence patterns with notable biological functions.

PS_SCAN packets provided by the PROSITE database were
used and compiled using a Perl program as a motif-scan tool
to search the sequences of the 76-fold class training set, and
181 functional motifs were selected. For an arbitrary sequence

in the dataset, the frequencies of different motifs in the
sequence were recorded. If a motif occurs once, the corre-
sponding frequency value was recorded as ‘‘1”; if the motif

occurs twice, the value was recorded as ‘‘2”, etc.; otherwise if
the motif is absent, the corresponding frequency value was
recorded as ‘‘0”. Thus, the frequencies of different functional

motifs in a protein sequence were converted into a 181-
dimensional vector.

(1) Statistical motif

For statistical motifs, MEME was applied as the motif-scan
tool (Bailey et al., 2006). The motifs with the three highest fre-

quencies were selected. Each motif contained 6–10 amino acid
residues; thus, 228 motifs were obtained and selected from the
76-fold class training set. For an arbitrary sequence in the

dataset, if a motif occurs once, the frequency value was
recorded as ‘‘1”; if the motif occurs twice, the value was
recorded as ‘‘2”, etc.; otherwise if the motif is absent, the cor-

responding frequency value was recorded as ‘‘0”. Thus, fre-
quencies of different statistical motifs in a protein sequence
were converted into a 228-dimensional vector.

2.2.4. Predicted secondary structure motifs (P)

Because the protein fold is a description based on the sec-
ondary structure, the formation of secondary structure from

the sequence influences the folding of the protein. We extracted
the occurrence frequencies of three types of predicted sec-
ondary structure motifs (P1) from previous studies (Shen and
Chou, 2006; Chen and Kurgan, 2007; Yang et al., 2011) as fea-

ture parameters, resulting in a 3-dimensional vector. The
occurrence frequencies of four types of supersecondary motifs
(P2) were subsequently extracted as feature parameters, result-

ing in a 4-dimensional vector. Finally, the occurrence frequen-
cies of complex supersecondary motifs (P3) were extracted as
parameters (Pi represents the three feature sets, with i = 1,

2, or 3). Thus, the frequencies of secondary structure motifs,
supersecondary motifs, and complex supersecondary motifs
were converted into a 15-dimensional vector represented by
P. The online web server PSIPRED (http://bioinf.cs.ucl.ac.
Table 2 Summary of predicted secondary structure motifs.

Feature set Occurrence frequencies of the selected features

P1 ‘‘E”, ‘‘C” and ‘‘H”

P2 ‘‘ECE”, ‘‘ECH”, ‘‘HCH” and ‘‘HCE”

P3 ‘‘ECECE”, ‘‘ECECH”, ‘‘ECHCE”, ‘‘ECHCH”

‘‘HCECE”, ‘‘HCECH”, ‘‘HCHCE” and ‘‘HCHCH”

Note: ‘‘H” indicates ‘‘helix”, ‘‘E” indicates ‘‘strand”, and ‘‘C”

indicates ‘‘coil”.

Please cite this article in press as: Feng, Z. et al., The recognition of multi-class protei
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uk/psipred/) was used to obtain the predicted secondary struc-
ture of each protein sequence. The three feature sets are pro-
vided in Table 2.

2.3. Random Forests

Random Forests is a classification algorithm developed by Leo

Breiman (2001). The general idea of the algorithm is that mul-
tiple weak classifiers constitute a strong individual classifier.
Random Forests uses a collection of multiple decision trees,

in which each decision tree and each split of the decision tree
is a classifier, and the final predictions are made by the major-
ity vote of the trees. The advantages of Random Forests

include (1) a few parameters to adjust and (2) the data do
not require preprocessing. Random Forests uses two impor-
tant parameters: (1) the number of feature parameters selected
by each node of a single decision tree at each split, which is

represented by m (m=
ffiffiffiffiffi
M

p
, where M is the total number of

features that were initially selected), and (2) the number of
decision trees, which is represented by k (in this study,
k= 1000).

The Random Forests algorithm has been successfully used
in the prediction of antifreeze proteins (Kandaswamy et al.,
2011), DNA-binding residues (Wang et al., 2009), the meta-

bolic syndrome status and b-hairpins (Jia and Hu, 2011).
The Random Forests algorithm was applied using R-2.15.1
software (http://www.r-project.org/) and the Random Forest

program package.

3. Results and discussion

3.1. Comparison using different parameters

For the 76-fold class dataset, ID, M, P, and ACS values were
extracted as feature parameters, with the combined feature
vector as input parameters for the Random Forest algorithm.
The overall accuracy of the test set in the dataset was 66.69%

using an independent test (Fig. 1). As some features and their
combinations may give rise to higher accuracies, and in order
to know the basis for them to give high accuracies, we also test

the effectiveness of the individual features and their various
systematic combinations, and the detailed fold-discriminatory
accuracies. We then combined the test set with the training

set, as previously described (Lin et al., 2013; Shamim et al.,
2007; Ghanty and Pal, 2009), and the overall accuracy was
73.43% using 5-fold cross-validation. The identification results

from the gradual addition of relevant feature parameters are
summarized in Fig. 1.

When only the ID values, which can reflect the local conser-
vation of fold sequences, were used as the feature parameter in

the independent test, the overall accuracy was 26.59%. Fol-
lowing the addition of the ACSs of secondary structure ele-
ments, the overall accuracy increased to 57.01% (a 30.42%

higher overall accuracy). The accuracies for folds 2, 4, 6,
etc., increased more than 50%, and the accuracies of folds 1,
3, 11, etc., increased approximately 30%. The accuracies of

the remaining folds also improved to varying extents. Note
that the ACSs of secondary structure elements substantially
affected the identification of protein folds. Furthermore, we
can see that the ACSs of secondary structure elements were

shown to provide better accuracies than the other individual
n folds by adding average chemical shifts of secondary structure elements. Saudi
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Figure 1 Prediction accuracies for 76 protein fold classes using

combinations of different parameters in the test set (%). Note:

parameter1: ID, increment of diversity values (76 dimensions);

parameter2: ID + ACS, values of the increment of diversity and

average chemical shifts of secondary structure elements (220

dimensions); parameter3: ID + ACS + M, values of the incre-

ment of diversity, average chemical shifts of secondary structure

elements and motif frequency (629 dimensions); parameter4: ID

+ ACS + M+ P, values of the increment of diversity, average

chemical shifts of secondary structure elements, motif frequency

and predicted secondary structure information (644 dimensions);

parameter5: ID + ACS + M+ P (5-fold cross-validation), val-

ues of the increment of diversity, average chemical shifts of

secondary structure elements, motif frequency and predicted

secondary structure information (644 dimensions); and Q, the

overall accuracy.

Figure 2 Prediction accuracies of 27 protein fold classes using

combinations of different parameters. Note: parameter1: ID,

increment of diversity values (76 dimensions); parameter2: ID

+ ACS, values of the increment of diversity and average chemical

shifts of secondary structure elements (220 dimensions); param-

eter3: ID + ACS + M, values of the increment of diversity,

average chemical shifts of secondary structure elements and motif

frequency (629 dimensions); parameter4: ID + ACS +M + P,

values of the increment of diversity, average chemical shifts of

secondary structure elements, motif frequency and predicted

secondary structure information (644 dimensions); parameter5:

ID + ACS +M+ P (5-fold cross-validation), values of the

increment of diversity, average chemical shifts of secondary

structure elements, motif frequency and predicted secondary

structure information (644 dimensions); Q, the overall accuracy.

The parameter6 summarizes the results of Liu et al. (2012) using

an identical dataset. The parameter7 summarizes our results using

the dataset constructed by Ding and Dubchak (2001).

6 Z. Feng et al.
features. With the specific biological background of protein
folds, the proposed feature parameter of ACSs of secondary
structure elements was very suitable for predicting 76-fold

classes.
Upon the addition of motif frequency information to the

values of the ID and ACSs of secondary structure elements,
the overall accuracy increased to 63.19%, which represents a

6.18% higher overall accuracy. During this process, the accu-
racies of folds 2, 10, 14, 40, 49, 50, 60, 71 substantially
increased. Furthermore, it was shown that the individual fea-

ture of motif frequency information, which reflects the func-
tion and structure information of folds, performed very well
on the accuracies of folds above. Through investigation on

the folds above, the local conservation of the sequences is bet-
ter than other fold classes, and the sensitivity to motif fre-
quency information is higher.

Finally, addition of the predicted secondary structure
motifs, which influence the spatial folding of the protein,
resulted in an overall accuracy of 66.69%, and the prediction
accuracies of various folds were further improved, resulting

in the best overall accuracy (Fig. 1). However, as can be seen,
upon the combinations of ACSs of secondary structure ele-
ments, motif frequency information and the predicted sec-

ondary structure motifs, the overall accuracy was 66.74%,
which represents only a 0.05% higher overall accuracy. Over-
all, as relevant feature parameters were gradually added, the

accuracies of a majority of the folds improved to varying
extents. The great majority of combinations of features are
Please cite this article in press as: Feng, Z. et al., The recognition of multi-class protei
Journal of Biological Sciences (2015), http://dx.doi.org/10.1016/j.sjbs.2015.10.008
shown to provide better accuracies than the individual feature.
Thus, the combined feature parameters were effective in
predicting the 76-fold classes.

For an additional comparison, we combined the training
and test set as previously described (Lin et al., 2013; Shamim
et al., 2007; Ghanty and Pal, 2009), and the corresponding

prediction results using 5-fold cross-validation are summarized
in Fig. 1. As can be seen, the overall prediction accuracy
using 5-fold cross-validation reached 73.43%, which

represents a 6.74% higher overall accuracy. In addition to
the 76-protein fold class dataset, the previous results of Liu
et al. (2012) using an independent test are also summarized
for comparison. Note that the overall accuracy using an

independent test was 21.77% higher than that of Liu et al.
(2012).

Overall, the results of the 76-protein fold class prediction

are encouraging. However, the prediction results for 17, 48,
57, 66 and 67 folds were poor, indicating that future studies
are necessary. The web server for protein fold prediction is

accessible to the public (http://202.207.29.245:8080/Ha/Home-
Page/fzxHomePage.jsp).

3.2. Comparison with predictions using the 27-fold class dataset

To evaluate the efficiency of our method, using identical
feature parameters, classification strategy, and algorithm, the
n folds by adding average chemical shifts of secondary structure elements. Saudi
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Table 3 Identification accuracy using the 27-protein fold class

dataset constructed by Ding and Dubchak (%).

Author Classifier Accuracy

Ding and Dubchak

(2001)

SVM (all-versus-all) 56.0

Chinnasamy et al.

(2005)

Tree-augmented naive

Bayesian classifier

58.2

Shen and Chou (2006) OET-KNN 62.1

Nanni (2006) Fusion of classifiers 61.1

Chen and Kurgan

(2007)

PFRES 68.4

Guo and Gao (2008) GAOEC 64.7

Damoulas and

Girolami (2008)

Multi-class multi-kernel 70.0

Zhang et al. (2009) Increment of diversity 61.1

Ghanty and Pal (2009) Fusion of different classifiers 68.6

Dong et al. (2009) ACCFold 70.1

Shen and Chou (2009) PFP-FunDSeqE 70.5

Yang and Kecman

(2011)

MarFold 71.7

Liu et al. (2012) SVM 69.8

Present study Random Forests 70.8

Recognition of multi-class protein folds 7
first 27-fold classes in the 76-fold class dataset and the dataset
constructed by Ding and Dubchak (2001) were also evaluated.

Overall accuracies of 79.66% and 70.76%, respectively, for the
two datasets were achieved using an independent test (Fig. 2).
Moreover, we combined the training and test set of the first 27-

fold classes in the 76-fold class dataset and achieved an overall
accuracy of 81.21% (which is higher than that of the
independent test) using 5-fold cross-validation. The identifica-

tion results from the gradual addition of relevant feature
parameters are summarized in Fig. 2. We also test the
effectiveness of the individual features and their various sys-
tematic combinations, and the detailed fold-discriminatory

accuracies.
Using the identical dataset and test method, the overall

accuracy was 13% higher than that of Liu et al. (2012)

(Fig. 2), and the prediction using 5-fold cross-validation was
superior.

The previous results for the Ding and Dubchak dataset are

also summarized in Table 3 for comparison. The accuracy was
slightly lower than the best results of Yang et al. (2011), but
Table 4 Overall accuracies of structural class identification using d

Dataset Author St

a

Liu et al. (2012) Present study 95

Liu and Hu (2010) 97

Ding and Dubchak (2001) Present study 85

Liu and Hu (2010) 86

Zhang et al. (2009)

Chinnasamy et al. (2005)

Please cite this article in press as: Feng, Z. et al., The recognition of multi-class protei
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the overall accuracy in our analysis was higher than previously
achieved accuracies (Table 3).

3.3. Identification of the structural classes for the 27-fold classes

Aspreviously described by Shen andChou (2006), the 27 protein
fold classes belong to four structural classes. To evaluate the effi-

ciency of our method, we extracted values of the ID, motif fre-
quency, predicted secondary structure motifs and ACSs of
secondary structure elements as feature parameters. The com-

bined feature parameters were used as input parameters for
the Random Forests algorithm, and the overall accuracy of
the test set for the four structural classes was 93.40% using an

independent test. This overall accuracy was 4% higher than
the method of Liu et al. (2010) (Table 4). Using this approach,
we also evaluated the Ding and Dubchak dataset, which has
been used in several studies, and the results were superior to pre-

vious results obtained from this dataset (Table 4).
4. Conclusion

Using an identical dataset with different feature parameters
can correctly or falsely classify a given protein sequence. Our
approach resulted in good predictions and is valid for the fol-

lowing reasons. First, considering the correlation between the
biological function of protein folds and secondary structure
elements, the composition and combined features of secondary

structure elements were adopted as prediction parameters. We
additionally calculated the ACSs of secondary structure ele-
ments because chemical shifts reflect structural information,
such as the nature of hydrogen exchange dynamics, ionization

and oxidation states, the influence of the ring current of aro-
matic residues, hydrogen bonding interactions and long-
range correlation information of the sequence. Second, each

sequence was divided into segments according to the local con-
servation of folds, selecting the composition of amino acids as
an initial parameter, after which the ID algorithm was further

used to obtain ID values as a prediction parameter. Third,
motif information, including functional and statistical motifs,
was extracted considering the local conservation of kernel

structure in the protein folds. Finally, the Random Forests
algorithm, as a convenient and highly efficient combination
classifier, was employed to yield final classification results that
are decided by votes from decision trees.
ifferent approaches in the test set (%).

ructural class Accuracy

b a/b a+ b

.2 92.91 97.63 84.36 93.40

.04 85.43 94.07 78.21 89.24

.25 88.03 83.22 69.35 82.77

.89 88.03 83.22 59.68 81.46

79.11

80.52

n folds by adding average chemical shifts of secondary structure elements. Saudi
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