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Renewable energy is the current trend of energy sourcing. Numerous scientists, inventors, and engineers
are working hard to harness renewable energy. The application of renewable energy is very wide; it can
be as small as lighting an LED bulb or as large as generating the electricity of a town or even a country.
Wind energy plays an important role in the context of electricity generation. Wind energy is highly
dependent on the wind speed at a wind site. Wind prediction is necessary for a wind energy assessment
of a potential wind farm. In this study, the wind energy assessment is based on wind prediction using the
Mycielski algorithm and K-means clustering in Kudat, Malaysia. The predicted results are analysed using
Weibull analysis to obtain the most probable wind speed. From the results of this study, K-means
clustering is more accurate in prediction when compared with the Mycielski algorithm. The most
probable wind in Kudat is sufficient to operate the wind turbines.

& 2015 Elsevier Ltd. All rights reserved.
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Nomenclature
1
2

3

4
5

Name
 Symbol
 SI
Unit
Description
. Giga Watt
 GW
 GW
 unit of power (electric).

. Multi criteria
decision making
method
MCDM
 –
 abbreviation of a statis-
tical method.
. Number of
cluster
k
 –
 to be determine by using
K-means clustering
algorithm.
. Function
 f
 –
 symbol of function.
. Wind speed
 v
 m s�1
 speed of wind measure in
meter per second.
1. Introduction

Renewable energy is the current trend of energy generation.
Various types of energy resources are available. The selection of
suitable energy resources is highly dependent on the potential
site's topography. Wind power is suitable for sites with wind
speed greater than the cut in speed. Meanwhile, hydropower is
suitable for areas with high water capacity. The intensity of solar
radiation is the keystone that determines the suitability of solar
power in a particular area.

The trend of renewable energy's application is because of the
saturation of carbon dioxide in the atmosphere. Although carbon
dioxide might be absorbed by the plants during the daytime
through photosynthesis, excessive carbon dioxide emission and
illegal deforestation contributed to global warming. The effects of
global warming have recently been seen and encountered by
mankind. The increasing sea water level could sink some islands
and countries in the coming decades.

Electricity is necessary sources in our life. However, conven-
tional power generation using coal fire definitely produces carbon
dioxide because of the fuel's combustion during the energy con-
version process. According to the United States Energy Information
Administration (U.S. EIA), 31,780.36 million metric tons of carbon
dioxide were emitted from electric power generation in 2010, and
it has increased 10% since 2006. Approximately, half of the global
carbon dioxide emission was produced by coal [1,2].

To overcome climate issues, more countries are implementing
renewable electricity generation. According to the Renewable 2012
Global Status Report [3], the investment in renewable energy
increased from US $ 161 billion to US $ 257 billion. This investment
increased significantly up to 60% within 3 years. Wind power is
one of the fastest growing renewable energies. The total capacity
of wind energy installed in the year 2009 was 159 GW and was
gradually increased by 50% in 2011 [3,4]. The amount of wind
power installed globally has steadily increased since 2010.

According to Bloomberg New Energy Finance (BNEF), a newly
established renewable energy power plant is cheaper than a newly
built coal and gas-fired power plant [5]. Wind energy is 14%
cheaper than the new coal-fired power plant and 18% cheaper
than a new gas-fired power plant, excluding the cost of emissions
under the Australian carbon pricing scheme.

Numerous researchers from other countries are putting efforts
into the carbon-reducing issues [6–10]. Although the types of
renewable energy used might differ from each other, the main
objective is to reduce carbon emission during electricity produc-
tion. As discussed in the paper [6], the issue of biomass energy
generation was discussed. A system dynamic study was done by
using feedback loop to investigate the ways to achieve 30 GW
biomass power generation in China. It is undeniable that govern-
ment policies and acts are main players in renewable energy
development. In the paper [7], government strategies, policies,
acts, and planning were discussed for Queensland scenario. On the
other hand, Turkey is an energy importing country. Potential of
various type of renewable energies that could be utilised in Turkey
was discussed [8]. Energy market will be very promising if Tur-
key's government can take consideration on renewable energy
development. The efforts on promoting renewable energy can
mitigate global warming issues [10].

The development of renewable energy is increasing gradually
since last decades; education line should have been contributed a
lot in this context. As technology become more advance, there will
be new directions for academicians for knowledge transfer [9].

For this paper, the main objective is to investigate the viability
of wind power implementation in Malaysia. In Malaysia, the
renewable energy market, especially in wind power, is not as
mature as other countries [11]. Hence, a preparation and assess-
ment of wind power are needed. The assessment of wind speed
prediction at the potential site will be analysed in this paper using
the Mycielski algorithm, K-means clustering and a Weibull dis-
tribution. Related research works conducted earlier will be
explained in the next chapter.
2. Literature review

In this section, a literature review of respective methods is
presented. This review can be categorised into wind prediction,
system prediction and wind site selection. In wind speed predic-
tion, there are two methods used for the analysis: the Mycielski
algorithm and K-means clustering. The results for both prediction
methods are compared using a Weibull distribution. Scale and
shape parameters need to be determined beforehand to achieve
better analysis results.

2.1. Wind power in Malaysia

Wind speed is one of the key factors in determining the
potential power that could be generated from a wind turbine. A
wind resource map could be very helpful at the early stage of the
development process. Throughout this research, the feasibility of
wind power in Malaysia is emphasised. There are some
researchers that contributed the assessments of wind energy
potential in Malaysia. For instance, Sopian et al. from Universiti
Kebangsaan Malaysia analysed the wind energy potential over 10
years for 10 different stations in 1995 [12]. The outcome from the
research was the data bank of wind patterns in select wind mea-
surement stations in the Peninsula of Malaysia, Sabah and Sar-
awak, by using a Weibull Distribution. Additionally, wind direction
was tabulated in the paper. In 2011, a group of researchers from
the University of Malaya used a Weibull distribution function to
analyse the wind potential, especially in Kudat and Labuan, which
is located in Sabah, Malaysia [13]. Islam et al. used the “WRPLOT”
software to show wind direction. Graphical illustrations of the
results provide clear presentations for readers. The researchers
claim that Kudat and Labuan are suitable for a small-scale wind
power plant. Additionally, research had been performed regarding
wind farm allocation in Malaysia using a multi-criteria decision-
making method (MCDM) [14]. In this particular research, two
locations were chosen as the research target: Kota Bahru and
Kudat. Literature studies in Malaysia are summarised in Table 1.



Table 1
The summary of literature studies for wind speed analysis in Malaysia.

Authors Contribution Field

K. Sopian Ten years wind speed analysis inclu-
sive direction of wind blow in ten
stations by using Weibull distribution.

1. Weibull
distribution.

2. Wind speed analysis
in Malaysia.

M.H.Y.
Othman

A. Wirsat
(1995)

M.R. Islam WRPLOT for wind speed and wind
direction analysis in Kudat and
Labuan. Recommend small scale wind
power plant to establish in both sites.

1. Wind speed analysis
in Malaysia.

2. Weibull analysis.
3. Wind farm site

selection.

R. Saidur
N.A. Rahim
(2011)

H.H. Goh Wind farm allocation based on multi-
criteria decision making method on
Kota Bahru and Kudat. The results
shown that Kudat is more suitable for
wind power plant installation.

1. Wind speed analysis
in Malaysia.

2. Multi criteria deci-
sion making, AHP
and Fuzzy AHP.

3. Wind farm site
selection

S.W. Lee
B.C. Kok
S.L. Ng (2011)
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2.2. Mycielski algorithm

In terms of wind speed analysis, Bivona et al. analysed the
hourly wind speed in Sicily using a Weibull distribution function
[15]. The authors used the meteorology department's wind data to
study the characteristics of wind speed at nine locations in Sicily.
In that particular research, the fitness of the Weibull distribution
function to wind speed was clearly seen. As part of that work,
Louka et. al. introduced modelling that is being applied in Greece
[16]. For instance, the University of Athens used SKIRON modelling
to forecast wind speed for up to 5 days ahead. At the same time,
the Regional Atmospheric Modelling System (RAMS) was devel-
oped at Colorado State University and Mission Research Inc. ASTeR
Division. RAMS can forecast wind up to 48 h later. In addition, an
adaptive fuzzy neural network (F-NN) also applied wind power
prediction for up to 120 h ahead. However, these methods cannot
handle systematic errors that are caused by local adaptation pro-
blems. The authors proposed Kalman filtering to improve the
performance of the aforementioned methods. Kalman filtering is
one of the statistically optimal sequential estimation procedures
for dynamic systems. The results from the research show that
systematic errors can be eliminated using Kalman filtering.

For this research, the prediction of wind speed is performed
using the Mycielski algorithm. The Mycielski approach is a data
compression method that has been widely used in communica-
tions engineering. This method fully utilises historical data as the
reference for the prediction value. The Mycielski method is actu-
ally the advanced version of the Limpel Ziv (LZ). Research on
hourly wind speed prediction in Turkey was performed by
Hacaoglu et al. using the Mycielski approach [17]. It is a new
approach in wind power prediction. Researchers analysed and
predicted the wind speed in Kayseri, Izmir and Antalya. The result
of the prediction is promising and very close to the actual data.
The comparison of data fitting for both actual and predicted data
was performed using a Weibull distribution function. The com-
parison proved the accuracy of the predicted result. In 2011, the
same group of researchers modified the algorithm to solve the
looping problem by adding a random number into the predicted
data [18]. The modified algorithm is called Mycielski-1 and
Mycielski-2. In Mycielski-1, a random number between �0.4 to
0.4 is added to the predicted value. This random number can be
changed according to the requirement of the research. Meanwhile,
the historical data were rounded to the nearest integer number
and divided into a few clusters in Mycielski-2. The prediction is
performed by randomly selecting the historical data from a
different cluster. In addition, the authors also made the compar-
ison between the modified Mycielski approach and Markov chain.

2.3. K-means clustering

The application of K-means clustering can be traced to more
than a half century ago [19,20]. The main idea of K-means clus-
tering is to group sets of data into clusters. The data in each cluster
can be analysed. Normally, this method is used in the application
of image indexing [21,22]. Cao et al. proposed an additional
algorithm to overcome the “zero value” dilemma which affects the
efficiency of centroid selection in image recognition [21]. Addi-
tionally, it is also widely being used in system architectures
[23,24]. An and Mattausch proposed the combination of a com-
puter's hardware and the K-means software to shorten the time of
the image segmentation process [23]. The results show that the
time of execution is gradually reduced by using the proposed
method. Meanwhile, Di Fatta et al. researched the application of
the K-means algorithm in communications engineering. Clustering
of the multimedia data could reduce the loss of messages [24].
Researchers are using the clustering to analyse protein interaction
[25] and the natural environment [26].

K-mean clustering is a statistical data mining method. The
method of choosing the number of k in the algorithm decisively
leads to appropriate analysis [22,27]. It has become an argument of
the k number selection for decades. The selection might present in
different ways with different applications. For instance, the k
cluster in the prediction of velocities on motorways that had been
performed by Asamer and Din was by self selection [28]. In that
particular paper, the cluster is divided into 4 centred clusters
known as centroids. The quantisation error for 4 clusters is
reduced dramatically when compared with 1–3 clusters.

Moreover, the K-means algorithm is applicable in the predic-
tion of software faults [29]. The Quad Tree method was added into
the K-means algorithm to find the initial cluster. It was claimed
that the combination of the algorithms will make the prediction
perform better. In the context of prediction, Kusiak and Li applied
K-means clustering to predict wind power that could be produced
by a wind turbine [30]. Five parameters have been investigated for
power prediction. The power produced is categorised into a few
clusters up to 1500 kW for different wind speed. The variation of
wind speed varies the power produced. The performance of the
prediction is then tested by using the mean absolute error (MAE),
mean relative error (MRE), standard deviation of MAE and stan-
dard deviation of MRE [31].

Many improvements of K-means clustering have been per-
formed by researchers to overcome the drawbacks of the algo-
rithm [27,32–42]. Most modifications were based on the initi-
alisation of the centroids. As stated in the research of Xu [27], the
centroids of data would be inappropriate if the “out of boundary”
data had never been updated by the algorithm. The term “dead
unit” describes this circumstance. The time consumption for the
algorithm is critical to pattern recognition technology. Hence, the
improvement of the algorithm's processing time is a hot topic for
researchers [23,38–40]. This is a great improvement in image and
signal processing technology. By shortening the processing time,
the process will be more efficient.

2.4. Weibull distribution

Weibull distribution is commonly used to describe the wind
speed frequency distribution of a region. There are various types of
Weibull distributions available. Different types of methods are
applied to estimate Weibull parameters. The application of the
Weibull distribution type is dependent on the research require-
ments. For decades, Weibull distribution was used in wind load



Table 2
The iteration of wind state.

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

yi (m s�1) 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 10.5 11.0
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studies by Davenport [43]. Another group of researchers found
that the Weibull distribution was useful and appropriate for wind
energy applications [44–46]. Justus et al. noted the advantages of
five methods in Weibull distribution in wind energy applications
[44]. The five methods mentioned in the research were as follows:

i. Least squares fit to observed distribution, also known as the
graphic method [47].

ii. Median and quartile wind speeds.
iii. Mean wind speed and standard deviation, also known as the

empirical method [48].
iv. Mean wind speed and fastest mile.
v. Trend of k vs V .

As in the journal paper [44], Justus et al. commented that
methods (iv) and (v) are simpler when compared with others.
Additionally, these methods also provided reasonably accurate
representations of the actual wind speed frequency distribution.

Decades later, comparisons of the Weibull parameter estima-
tions were performed by several researchers [47,48]. Akdag and
Dinler recommended a power density method as the parameter
estimation and the performance is compared with conventional
methods [47]. However, Chang analysed six different types of
parameter estimation methods. From the result, Chang concluded
that maximum likelihood, modified maximum likelihood and the
moment method (empirical method) are more accurate when
compared to others [48].

Few types of parameter estimations are applicable in the dif-
ferent fields of study being applied [49–53]. In the research of
Seguro and Lambert [54], a two-parameter Weibull function was
used to analyse wind energy. In that research, Seguro and Lambert
commented that the maximum likelihood parameter estimation
method is more suitable than the graphical method. In terms of
wind speed analysis, the hourly wind speed in Sicily was analysed
using a Weibull distribution function by the researchers [15].
Researchers used the meteorology department's wind data to
study the characteristics of wind speed at nine locations in Sicily.
In that particular research, the fitness of the Weibull distribution
function to wind speed was clearly seen. Meanwhile, previous
research [13,55,56] also preferred the two-parameter Weibull
distribution as the wind frequency analyser. Islam et al. used the
moment method to estimate the Weibull parameters for the wind
energy assessment in Malaysia [13]. Despite the diversity of
parameter estimation, the selection of estimation method should
consider the availability of the data.
3. Methodology

The methods discussed in the previous chapter were com-
monly applied in various fields of study. To suit the corresponding
methods for this study, some alterations are needed.

3.1. Mycielski prediction

Mycielski is an algorithm that performs a prediction on time
series data. The prediction is performed based on historical data.
The wind speed prediction will be focused on the selected
potential wind farm. The wind speed data will be modified to fit in
the Mycielski algorithm. To utilise the Mycielski algorithm, the
obtained wind data have to be rounded into the nearest wind
states. This step purposely simplifies the searching process.
Rounding is based on Eq. (1).

if : x�yi
�� ��r0:2;

then : x¼ yi; iZ0 ð1Þ
where x denotes the wind speed; y denotes the value of the wind
state and i is positive integer that represents the iteration of wind
state as shown in Table 2.

After the rounding process was completed, the Mycielski-3
algorithm can proceed further. The prediction starts with search-
ing the latest historical data back to the earlier historical database.
The algorithm will keep searching the exact same historical data
until the pattern of searched data never appears in the history data
set. The prediction value is the next value of the last best fit
pattern.

For instance, let the data that need to be predicted be x
^
nþ1½ �,

where n represents the number of the time series data sample. To
predict the data precisely, the difference in the predicted and the
actual value of should be minimal. The historical data, fn, can be
expressed as the function shown in Eq. (2).

f n ¼ ðx 1½ �; x 2½ �;…; x n�1½ �; x n½ �Þ ð2Þ
The algorithm searching process starts from the latest data x[n]

back to x[1]. The main objective of this algorithm is to find the
longest pattern of historical data that matches the pattern of the
current data. Hence, the pattern searching is started from the
nearest historical data; in this case, x[n]. If the value of x[n] hap-
pened in the historical data, the algorithm will continue to search
the pattern of (x[n�1], x[n]). The algorithm will make a prediction
when no equivalent pattern can be found in the remaining data-
base. For example, the pattern of (x[n�1], x[n]) happened in (x[5],
x[6]) before, and no pattern of (x[n�2], x[n�1], x[n]) can be found
in the historical data. Therefore, the algorithm will halt. The pre-
diction will be accomplished by taking the value of x̂ nþ1½ � ¼ x 7½ �,
because the pattern after (x[5], x[6]) is x[7]. This can be explained
by the main philosophy of this algorithm, which is the pattern of
the historical data, and then the current data will be the same
pattern. Referring to the previous works by Fidan et al. and Gerek
[17,18], an equation was created to express the aforementioned
prediction process. This particular equation is shown in Eq. (3).

m¼ argmax
L

fx½k� ¼ x½n�; x½k�1� ¼ x½n�1�g;
f nþ1 ¼ x½nþ1� ¼ x½m� ð3Þ

Although it was not written in the papers published by Meh-
met Fidan et al., it is believed that the symbol L in the equation
represents the location of the longest pattern found in the history.
The prediction value will be the data after the longest pattern.
Hence, the prediction value can be expressed as argmax

L
½n�Lþ1�.

As mentioned earlier, the prediction value is x½nþ1�, so the pre-
diction value can be expressed as in Eq. (4).

x½nþ1� ¼ argmax
L

½n�Lþ1� ð4Þ

However, a looping error happened in the earlier version of the
Mycielski approach. Hence, Mehmet Fidan et al. modified the
approach by adding the random number range from �0.4 to þ0.4
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Fig. 2. The basic flow of K-means clustering algorithm.

1/1/2013 6/1/2013

1/2/13 1/3/13 1/4/13 1/5/13

X[n+1] X[n+2] X[n+3] X[n+4] X[n+5]

Prediction Values

1/2/12 - 1/3/12
Average Difference

2012-01-01 2013-01-01

1/2/12 1/3/12 1/4/12 1/5/12 1/6/12 1/7/12 1/8/12 1/9/12 1/10/12 1/11/12 1/12/12

X[1] X[2] X[3] X[4] X[5] X[6] X[7] X[8] X[9] X[10] X[11] X[12]

Historical Data

1/1/2013
Searching for pattern from historical data

1/1/2012 - 12/1/2012
Historical Data

Fig. 1. The flow of Mycielski algorithm.

H.H. Goh et al. / Renewable and Sustainable Energy Reviews 54 (2016) 1389–1400 1393



H.H. Goh et al. / Renewable and Sustainable Energy Reviews 54 (2016) 1389–14001394
to the predicted value to make the Mycielski-1 approach. In
addition, the randomness of the number will cause the predicted
result to become unreliable. As one of the contributions of this
research, a novel approach to determining the random number is
presented. The random number is found to be more reliable by
obtaining the average difference, davg from the history. The prin-
ciple of obtaining the davg is the same as the principle of Mycielski,
which is the transitional behaviour of wind speed. Basically, the
davg can be obtained by taking the difference between the months
and finding the average for the past few years, depending on the
database. The random number will be added into the predicted
value. Once the prediction is completed, the predicted value will
be updated in the historical data. The next prediction x̂ nþ2½ � can
be done based on the updated history data. This approach is
named Mycielski-3. An illustration of the Mycielski-3 algorithm is
shown in Fig. 1.

The random number will be added to the predicted value. Once
the prediction is completed, the predicted value will be updated in
the historical data. Last but not least, the next prediction x½nþ2�
can be performed based on the updated historical data.

3.2. K-means clustering prediction

In this section, one of the innovative approaches in wind speed
prediction is presented. K-means clustering is a technique that
classifies cases into the most similar groups. However, it needs a
long computation time because it uses manual calculations. There
might be many calculation steps, or iterations, needed to find the
suitable cluster. Therefore, the computation time for the iterations
can be minimised with the aid of computer software. The statis-
tical software, SPSS was used for the analysis of the clustering
process. The software includes analysis methods for various types
of required analysis. For the analysis of wind speed prediction, the
first element to sort out is the number of clusters that could be
generated from a series of 96 data.

The general idea of the K-means clustering algorithm is
described in Fig. 2. The Euclidean distance is involved in the K-
means process and is mathematically presented in Eq. (5).

dðxt ; crÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxt�crÞ2

q
ð5Þ

where xi denotes the data point, xt ¼ x1; x2; x3;…; xN; and r denotes
the centroid, .

The number of cluster, k, is initialised, and cluster assignment
of the data can be represented by the group member function as
stated in Eq. (5). The dataset ranges from x1, x2, x3, … xN and is
represented in the general form of xt. The xt data are assigned into
k clusters. The assignment of data into the jth cluster is presented
in Eq. (6).

IðjjxtÞ ¼ 1; if : j¼ dmin1r rrk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxt�crÞ2

q
;

0;otherwise

8<
: ð6Þ

As in Fig. 2, step 2 and step 3 repeat until the convergence of
the centroids. When such a circumstance occurs, the centroid is
considered stable and the optimal solution of the average dis-
tances is met. For implementation of K-means clustering in the
prediction of wind speed, both manual and computer aid methods
are utilised. SPSS is used to obtain the number of clusters, k, for
8 years of wind speed data in Kudat. Once the value for each
cluster was defined, the computation of wind prediction could be
achieved.

For the next step, the Euclidean distance in between the wind
dataset and the cluster had to be obtained. This step purposely
matches the wind data to a cluster. Before obtaining the second
probability function, the frequency of each cluster that occurred in
a particular month throughout 8 years is obtained. The number of
clusters can be determined using a scree diagram. A scree diagram
is a graph that consists of the latent root, which can judge the best
number of factors from a factor analysis. The suitable cluster
number is selected when there is a larger difference in the dis-
tance coefficient from one point to another and then subtracting
from the number of total cases. Additionally, the numbers of the
cluster can be identified using numerical observation of the dis-
tance coefficient.
3.3. Weibull estimation

The Weibull distribution is commonly known as a distribution
that expresses wind speed frequency distribution well. More than
five methods are being discussed by researchers around the world
on the two Weibull parameters' estimation. There are advantages
and disadvantages for the proposed methods. However, the most
decisive criterion that determines the method to be used in the
Weibull analysis is the provided dataset. Different time series of
wind speed data in terms of hourly, daily or monthly sets might
contribute to various analysis methods. For this research, two
Weibull parameter's estimations are used to analyse wind speed
data. The descriptions of the calculation steps for the parameters'
estimation are presented in this section.

Under normal circumstances, there are two Weibull para-
meters: scale parameter, c (m s�1) and shape parameter, k
(dimensionless). Generally, the probability distribution function of
the Weibull distribution is defined as in Eq. (7).

f ðvÞ ¼ k
c

v
c

� �k�1
exp � v

c

� �k
� �

ð7Þ

Normally, the scale parameter and shape parameter can be
altered to the desirable height. However, it is stated in [46] that:
“the alterations are valid provided the terrain is relatively flat …”.
Therefore, the surface roughness for Kudat might not be suitable
for the alteration using a modification of the scale parameter and
shape parameter to the corresponding height.

The relationship between the mean wind speed, V , standard
deviation, σ and k is defined in Eq. (8).

k¼ σ
V

� 	�1:086

ð8Þ

The wind speed data are in monthly mean values. Therefore,
the fifth method, as discussed in Section 2.4, is used. According to
Justus et al. [44,46], a constant that relates mean wind speed and
the shape parameter k. The variability of the wind speed in the
lower stage (10th percentile), average and higher stage (90th
percentile) could be expressed as in Eq. (9).

k¼
1:05

ffiffiffiffi
V

p
; low

0:94
ffiffiffiffi
V

p
; average

0:83
ffiffiffiffi
V

p
;high

8>><
>>: ð9Þ

Once the value of k is obtained, the value of the scale parameter
c can be computed. The equation for c is defined in Eq. (10).

V ¼ cΓ 1þ1
k

� 	
ð10Þ

Γ 1þ1
k


 �
is the gamma function and can be solved by using

the Stirling approximation. Let Γ 1þ1
k


 �
be Γ 1þxð Þ. In the gamma

function, Γ 1þxð Þ will be analysed as xΓ xð Þ. Therefore, the Stir-
ling approximation for Γ 1þxð Þ is defined in Eq. (11). Alter-
natively, the expanded version of Eq. (11) as in Eq. (12) can also
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be applied.

Γ xð Þ ¼
ffiffiffiffiffiffiffiffiffi
2πx

p x
e

� �x
1þ 1

2ð6xÞþ
1

23ð6xÞ2
� 139

23ð2:3:5Þð6xÞ3
þ…

" #
ð11Þ

Γ xð Þ ¼
ffiffiffiffiffiffiffiffiffi
2πx

p x
e

� �x
1þ 1

12x
þ 1
288x2

� 139
51;840x3

þ…
� �

ð12Þ
Fig. 4. Location of anemometer in Kudat.

Fig. 5. Proposed location of wind turbine.
4. Mycielski-3 wind prediction result

Based on wind potential analysis, Kudat was selected as the
potential wind farm site. Therefore, the wind data of Kudat will be
used as the source for wind speed prediction in this section.
Freeware called FirstLook, was provided by 3TIER for the wind
rank assessment. By using FirstLook, the wind rank for a particular
place around the world can be obtained. This enables researchers
to analyse the corresponding wind speed at a preliminary stage of
wind power development. Basically, Malaysia has two areas
highlighted in light green colour that possessed a higher potential
to harness wind energy. The highest wind rank is near the Kudat
coast, as shown in Fig. 3.

FirstLook only provided the wind rank but not the wind speed.
Therefore, a complete analysis of the potential site essentially
needs both wind data and wind rank. From data obtained from the
Malaysian Meteorological Department, the actual place of the
anemometer in Kudat is 6°550N, 116°500E, and it is equivalent to
lat. 6.916, long. 116.83 in decimal. The global wind rank calculated
by the FirstLook software is 66%, as shown in Fig. 4. For the project
assessment, 3TIER claims that 80% of the wind project can be done
if the wind rank is higher than 65%.

The location of the anemometer has a high wind rank, faces
the Sulu Sea and is located at an airport. However, an airport is
not a suitable location to install wind turbines, and therefore,
the power plant should be installed away from the airport. It is
found that the wind speed at the coast facing the South China
Sea is higher than other locations. The global wind rank at the
coastline facing the South China Sea is 80%. Because of changes
in location, some amendments are needed for the mean wind
speed provided by the Malaysian Meteorological Department to
fulfil site conditions. Fig. 5 shows the proposed site's global
wind rank, which was obtained using the Firstlook software. The
distance from the anemometer station to the proposed site is
approximately 25–30 km if using road access. However, the
topography is quite different between the two sites. Therefore,
Fig. 3. The overview of w
the wind shear exponent could describe the wind regime in
such a circumstance.

The initial wind rank at the anemometer station is 66% instead
of 80%. Hence, the observed wind speed data in Kudat will be
multiplied by 114% as defined by a 14% increment of the original
values.

According to the methodology described in Section 3.1, the
obtained wind data have to be rounded into the nearest wind
ind rank in Malaysia.



Table 3
The wind speed data (m s�1) for Kudat after rounding process.

Month year Jan Feb Mac Apr May Jun Jul Aug Sep Oct Nov Dec

2002 11.0 8.0 6.5 4.5 3. 3.5 5.5 6.5 4.0 4.0 3.0 7.0
2003 9.0 10.5 7.5 5.0 4.5 3.5 5.5 5.0 6.0 6.5 4.0 9.0
2004 11.0 7.5 5.5 5.0 5.0 7.5 4.5 6.5 3.0 6.5 3.5 4.5
2005 5.0 6.0 5.5 6.5 5.5 5.0 6.0 6.0 6.5 6.0 6.0 4.0
2006 6.5 9.0 6.0 5.5 5.5 5.5 5.5 6.5 6.0 7.0 5.5 6.0
2007 6.5 8.0 6.5 6.0 5.0 5.0 6.0 5.5 7.5 5.5 7.5 5.5
2008 6.5 6.5 5.5 5.0 6.5 5.0 5.5 4.5 6.5 5.0 4.5 5.0
2009 6.5 6.0 5.5 6.5 5.5 5.5 6.5 8.0 8.5 7.5 5.5 7.5
2010 8.0 9.0 8.0 6.5 5.5 5.0 5.0 6.0 5.0 6.0 5.0 5.0

Table 4
The average difference of each month (m s�1).

Month Jan Feb Mac Apr May Jun Jul Aug Sep Oct Nov Dec

�1.7 0.1 1.6 0.6 0.4 0 �0.6 �0.4 0.1 0 1.1 �1.1

Table 5
The predicted wind speed for 2010 (m s�1).

Month Jan Feb Mac Apr May Jun Jul Aug Sep Oct Nov Dec

2010 4 6.5 7.0 6.0 5.5 7.5 5.0 5.5 6.5 9.0 7.0 5.0

Fig. 6. The scree diagram of wind speed data in Kudat over eight years.

Table 6
The initial and final clusters' centre for the wind speed in Kudat.

Cluster

1 2 3 4 5
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states before proceeding to the Mycielski-3 prediction. The
rounding process is based on Eq. (1). For the prediction require-
ment of the prediction, there are 16 wind states, as shown in
Table 2. The purpose of the rounding process is to ensure the
validity of the data during the prediction state. Too many wind
states might cause recursion of the predicted data. The rounded
modified mean wind speeds of Kudat from Year 2002 to Year 2009
are tabulated in Table 3 and will be used as the prediction data-
base. The wind data for 2010 will be used as the verification
dataset of the prediction efficiency. For easier assessment, the
wind speed data are assigned to a sequence number.

To avoid the looping error, an average difference for each
month is computed. By subtracting the earlier month from the
later month, a value of either a positive or negative integer will
be obtained. The average difference of each month can be cal-
culated by averaging each month's summation for 8 years. The
average difference is tabulated in Table 4 and will add to the
predicted wind speed to create a random result.

By adding the average difference for January to the predicted
value, the prediction result for January 2010 was obtained suc-
cessfully. For data consistency, the predicted result will go through
the rounding process using Eq. (1). The same prediction procedure
applies to other months. The prediction result for 2010 is tabulated
in Table 5.
Initial 10.9 8.8 6.7 4.7 2.9
Final 10.7 7.9 6.4 5.2 3.5
5. K-means clustering wind prediction result

A brief explanation of the K-means method was presented in
Section 3.2. K-means implementation in wind speed prediction
will be fully described in this section. To standardise the analysis,
the wind speed database from the Mycielski-3 algorithm predic-
tion was adapted in the K-means clustering.

According to calculation steps as presented in Section 3.2, the
wind speed data in Table 3 were tabulated in SPSS. The agglom-
eration schedule for the data was obtained. These data are pur-
posely used to plot the scree diagram to determine the number of
clusters involved in the wind speed prediction analysis. By using a
graph plotter function in Microsoft Excel, the scree diagram, with
respect to the stage number is plotted in Fig. 6. The orange-
coloured circle in Fig. 6 indicates the numbers of the stages that
started to become a steeper graph because a larger number of
cases are joined together into significant clusters. Therefore, the
ideal number of clusters for the analysis is five. There are 96 cases
in total. By subtracting 91 from the total cases, there are five
clusters.

The K-means clustering analysis for the wind speed in Kudat
was then executed. The number of clusters was set to five. The
initial cluster and final cluster of the wind speed in Kudat were
obtained and shown in Table 6. From observation, there are minor
changes in the clusters' centre in between the initial process and
final result. This was because the K-means clustering algorithm
was finding the best mean value that could represent the entire
cluster. For the prediction of wind speed in Kudat, the result for
the final clusters' centre will be used as the best mean values for
those five clusters. For 8 years of data, there will be a total of 96
numbers of wind speed data recorded.

To obtain the probability occurrence for a particular cluster, the
number of cases in each cluster should be obtained. As in Table 7,
the total number of cases is n¼96. The probability of occurrence, P
(E1), can be easily computed. The number of total cases is divided
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by the number of cases for each cluster and results in the prob-
ability of occurrence in Table 8.

The K-means step in finding the Euclidean distance is a com-
plicated calculation step. It needs to compute 96 data cases to sort
out the distance between the corresponding wind speeds to the
cluster centre. Because of this, the programming in Microsoft Excel
was utilised to handle the bulk calculation. Relevant data were
entered into the programme’s user interface.

The probability of the significant cluster, P(E2), can be calcu-
lated using the aforementioned data. This probability indicates the
frequency with which the same wind speed occurred in the
respective cluster, in particular, in a month throughout 8 years.
The most probable wind speed is obtained by multiplying both P
(E1) and P(E2) as tabulated in Table 9. The highest value of prob-
ability will be treated as the predicted value by adding the random
number that was obtained from the average difference. The pre-
dicted wind speed for Kudat in 2010 by using K-means clustering
is tabulated in Table 10.
6. Weibull distribution assessment

The estimation of wind speed for 2010 in Kudat using a Weibull
distribution will be conducted in this section. The estimation for
wind speed data in 2010 required observed wind speed data to
compute the Weibull parameters. The wind speed data in Kudat
from 2002 to 2009 are categorised into a few stages. The classifi-
cation of the categories is shown in Tables 11 and 12. To obtain the
shape parameter k, Eq. (9) is used. Because the shape parameters
are obtained in range, the scale parameters for Kudat are also in
range. The scale parameters are computed corresponding to the
wind speed of the particular month with respect to the shape
parameters of the month. The data for both parameters are tabu-
lated in Table 13.
Table 7
Number of cases for cluster 1 to cluster 5.

Cluster Number of cases, xi Range (m s�1)

1 x1¼3 10.4–10.9
2 x2¼14 7.3–9.1
3 x3¼32 6.0–7.0
4 x4¼37 4.7–5.7
5 x5¼10 2.9–4.1

Table 8
The probability of occurrence for five clusters.

Cluster P(E1)

1 0.0313
2 0.1458
3 0.3333
4 0.3854
5 0.1042

Table 9
The percentage of the probability for predicted wind speed cluster 2010.

Cluster Jan Feb Mac Apr May Jun

1 0.78 0.39 0 0 0 0
2 1.82 7.29 1.82 0 0 1.82
3 16.67 12.50 12.50 12.50 4.17 0
4 4.82 0 19.27 24.09 28.91 24.0
5 0 0 0 0 1.30 2.61
The wind speed data are rearranged to extract useful infor-
mation and plot the Weibull probability density function graph. By
using Eq. (7), the Weibull probability density function can be
obtained. The wind speed data are computed to achieve statistical
requirements and are tabulated in Table 14. The graph of the
observed and Weibull wind speed frequencies of Kudat in 2010 are
plotted in Fig. 7. As in the figure, the low percentile of the Weibull
parameters (purple-coloured line) represents the wind speed fre-
quency in Kudat better than the average Weibull (green-coloured
line) and high percentile Weibull (red-coloured line).
7. Discussion

The aforementioned algorithms were using spreadsheet to
generate the result. The preset formula will interlink to each other
when the data is keyed in the data insertion area. The computation
time is highly depending on the insertion time by user. However,
K-means clustering algorithm required extra step to sort the scree
diagram. Currently, the average computation time for Mycielski
algorithm is about 20 s inclusive of data insertion; meanwhile,
average computation time for K-means clustering is about 1 min
due to extra step involved. The comparison is visualised in
Table 15. Nevertheless, a one-stop-computation software is cur-
rently developing by the authors. By using Visual Basic Advance
(VBA) language, all related functions can be incorporated into only
one software and the computation time can reduce to 1 s or even
lesser.

The results from both the Mycielski-3 and K-means clustering
are shown in Table 16. In terms of graphical analysis, the results for
prediction are interpreted as shown in Fig. 8. From the figure, the
plot of the line graph for K-means clustering describes quite well
the wind speed for Kudat in 2010. The red line shows the highest
frequency at 6 m s�1. However, it over-predicted the majority of
the site's wind speed. Meanwhile, the graph of the Mycielski-3
prediction was over-predicted at 8 m s�1. Conversely, Weibull
estimation by using the low percentile tended to be lower fre-
quencies of the majority wind speed. The frequency in the analysis
indicated the number of times that the wind blew at such a speed.

For this research, Weibull analysis is used as the comparison
method for the proposed methodologies. Weibull can represent
the wind profile but not the exact wind speed. Therefore, the
prediction is based on the method that obtained higher accuracy
from either Mycielski-3 or K-means clustering.

In the context of wind energy that could be harnessed as
electrical energy, the power of the observed and predicted wind
speeds is analysed and compared. The differences in wind speed
are computed using RMSE. The RMSE formula is defined in
Eq. (13). The xi in the equation denotes the observed wind speed,
whereas x̂i denotes the predicted wind speed. The total number of
data is expressed in N. The results of the comparison are shown in
Jul Aug Sep Oct Nov Dec

0 0 0 0 0 0
0 1.82 3.65 1.82 1.82 3.65
12.50 16.67 16.67 16.67 4.17 8.33

9 24.09 14.45 0 9.64 14.45 14.45
0 0 2.61 1.30 3.91 1.30



Table 10
Result of K-means clustering wind speed prediction for Kudat in 2010.

Cluster Jan Feb Mac Apr May Jun Jul Aug Sep Oct Nov Dec

Centroid 6.4 6.4 5.2 5.2 5.2 5.2 5.2 6.4 6.4 6.4 5.2 5.2
Random �1.7 0.1 1.7 0.5 0.6 0 0.6 0.5 2 0 1.0 1.1
Numbers
Prediction 4.7 6.5 6.9 5.7 5.8 5.2 4.6 5.9 6.6 6.4 6.2 4.1

Table 11
Classification of the wind speed categories.

i 1 2 3 4 5 6 7 8 9
Interval 2–3 3–4 4–5 5–6 6–7 7–8 8–9 9–10 10–11

Table 12
Statistical summary of the wind speed categories.

i Frequency Percent Cumulative percent

1 1 1.0 1.0
2 7 7.3 8.3
3 15 15.6 24.0
4 24 25.0 49.0
5 30 31.2 80.2
6 10 10.4 90.6
7 5 5.2 95.8
8 1 1.0 96.9
9 3 3.1 100.0
Total 96 100.0

Table 13
The Weibull two parameters for Kudat from 2002 to 2010.

Year Shape parameter, k (Dimensionless) Scale parameter, c (ms�1)

Low
percentile

Average High
percentile

Low
percentile

Average High
percentile

2002 2.43 2.17 1.92 6.36 6.33 6.29
2003 2.61 2.33 2.06 7.26 7.23 7.19
2004 2.50 2.24 1.98 6.71 6.68 6.64
2005 2.51 2.25 1.99 6.57 6.55 6.52
2006 2.61 2.34 2.07 7.12 7.10 7.07
2007 2.62 2.34 2.07 7.15 7.12 7.10
2008 2.47 2.21 1.96 6.37 6.35 6.32
2009 2.69 2.41 2.13 7.58 7.55 7.52
2010 2.61 2.33 2.06 7.13 7.10 7.07

Table 14
The time series data with respect to Weibull probability density function for Kudat
in 2010.

i Frequency Percent Cumulative
percent

Weibull
pdf (low)

Weibull
pdf (avg)

Weibull
pdf (high)

1 0 0 0 0 0 0
2 0 0 0 0 0 0
3 2 16.7 16.7 0.138 0.132 0.124
4 4 33.3 50.0 0.143 0.134 0.124
5 3 25.0 75.0 0.145 0.131 0.117
6 1 8.3 83.3 0.120 0.108 0.095
7 2 16.7 100.0 0.102 0.093 0.084
8 0 0 100.0 0 0 0
9 0 0 100.0 0 0 0
Total 12 100.0

Fig. 7. Lines plot for Weibull frequencies in Kudat for year 2010.

Table 15
Computation time of algorithm.

Mycielski K-means Clustering

Computation time, s 20 60

Table 16
Results of predicted wind speed for Kudat 2010.

Month Jan Feb Mac Apr May Jun Jul Aug Sep Oct Nov Dec

Mycielski 4 6.5 7.0 6.0 5.5 7.5 5.0 5.5 6.5 9.0 7.0 5.0
K-means 4.7 6.5 6.9 5.7 5.8 5.2 4.6 5.9 6.6 6.4 6.2 4.1
Observed 8.0 8.8 7.8 6.5 5.7 5.2 4.9 6.2 5.2 6.2 4.9 5.2

Fig. 8. The frequencies distribution of observed wind speed and predicted wind
speed for Kudat in 2010.

Table 17
The comparison of the observed data and prediction.

Methods Average Wind Speed (m s�1) RMSE Power (kWh m�2 year�1)

Observed 6.2 NA 1481.13
Mycielski 6.2 1.875 1479.54
K-means 5.7 1.391 1075.79
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Fig. 9. The combine graph analysis for observed and prediction wind speed.
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From Table 17, the average wind speed for the observed and
Mycielski-3 algorithm matched perfectly. However, the line graph
shown in Fig. 9 indicates that the Mycielski-3 prediction over
predicted the wind speed in June and October. The larger gap in
the prediction of the Mycielski-3 of these 2 months compensated
for the under-predicted wind speed in January. Meanwhile,
K-means clustering does not consist of any over-predictions that
could compensate for the error in the first month. Although K-
means clustering does not match the average wind speed, the
RMSE value is significantly smaller than the Mycielski-3 predic-
tion. Hence, K-means clustering prediction is preferable for this
research as the RMSE of the method is the smallest. Additionally,
the wind profile of K-means clustering is more similar to the
observed wind speed when compared with the Mycielski-3
algorithm.

The predicted wind speed data using K-means clustering can be
used as the data input for wind power system analysis. In such
circumstances, a wind power system that includes overall system
analysis should be performed beforehand. In this research, the
Weibull distribution is not as suitable as the K-means clustering
because the data sampling obtained lacked some statistical data.
Therefore, the K-means clustering approach is more suitable when
compared with others.
8. Conclusion

To summarise, the prediction of wind speed is necessary to
initiate a new wind power plant in a new potential area. For this
study, Kudat is a potential area that can be fully utilised in con-
structing a new wind power plant in Malaysia. To build a wind
power plant, there might be some crucial criteria that need to be
determined before commencement of the project. The criteria to
be considered in a project included potential electricity that could
be generated, selection of a wind turbine, cash flow analysis of the
project and project management. Each criterion is highly related
with the others.

The wind speed prediction performed in this research can be
used as a decision maker's preliminary planning to convince
investors to provide funding for relevant assessment at a potential
site. There were two innovative approaches introduced: Mycielski-
3 and K-means clustering. On the one hand, the random number
approach in the Mycielski-3 developed successfully and increased
the reliability of creating randomness of wind behaviour. On the
other hand, K-means clustering that categorised wind speed into a
few clusters gave a better prediction result compared with
Mycielski-3 in terms of RMSE analysis.
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