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Graphical abstract 
 

 

Abstract 
 

The aim of this research is to develop a real-time Square-ROI marker identification and 

verification techniques by integrating the enhanced contour-corner approach. To 

enhance the  conventional contour and corner approach, we proposed a smoothing and 

adaptive thresholding to the input stream captured via a webcam and then apply 

subpixel corner detection in order to obtain better and accurate corner points. For testing 

purposes, two sets of experiment have been set up to evaluate the proposed technique. 

The first experiment conducted by drawing a series of square-ROI on a paper. The 

subsequent experiment conducted with the use of a mannequin. İnitially, during the 

experiment, the visual sensor (webcam) was positioned at 60 cm from the hand-drawn 

square-ROI in order to find the optimal distance needed by the proposed technique to 

define a marker. From the experiments, it reveals that the recognition technique in both 

testing setup was able to capture the real scene and convert the captured frame into a 

grey-scale image. Our evaluations on the series of square-ROI dataset shows that the 

proposed methods are robust to illumination changes and ROI’s size, low in computation 

time, and greater in accuracy.   

 

Keywords: Contour, Corner, Integrated, Marker, ROI 

 

Abstrak 
 

Tujuan kajian ini adalah untuk membangunkan teknik pengecaman dan pengesahan 

penanda segiempat-rantau sasaran (RS) masa nyata dengan mengintegrasikan 

pendekatan kontur-sudut yang telah dipertingkatkan. Untuk meningkatkan pendekatan 

kontur-sudut konvensional, pelicinan dan pengambangan penyesuaian diaplikasi ke atas 

aliran input yang diperolehi melalui kamera web dan kemudian subpiksel pengesanan 

sudut dilaksanakan untuk mendapatkan titik sudut yang lebih baik dan tepat. Dua set 

eksperimen telah direka untuk menilai teknik yang dicadangkan. Pertama, eksperimen 

dijalankan dengan melukis beberapa siri saiz segiempat-RS di atas kertas. Eksperimen 

seterusnya dijalankan dengan menggunakan model patung. Dalam setiap eksperimen, 

sensor visual (kamera web) diletakkan pada kedudukan 60 cm dari segiempat-RS untuk 

mencari jarak optimum yang diperlukan oleh teknik segiempat-RS dalam menentukan 

penanda. Daripada eksperimen yang dijalankan, teknik pengecaman segiempat-RS yang 

dibangunkan didapati lebih fleksibel dengan perubahan illuminasi dan saiz segiempat, 

masa pelaksanaan lebih rendah, dan lebih tepat.   

 

Kata kunci: Kontur, Sudut, Integrasi, Penanda, Rantau sasaran 
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1.0  INTRODUCTION 
 

Comport [1] and Mellor [2] found that the use of 

computers in medicine has increased dramatically. 

This is due to the rapid development in computer 

processing power, display technology and needs 

among medical practitioner to properly plan a safe 

and friendly surgical operation [3]. Behringer [4], 

mentioned that Augmented Reality (AR) not only 

useful to visualize 3D medical data, but can be taken 

up as a tool to support surgical procedure. This will 

allow the surgeon to simultaneously examine the data 

and the patient.  

In today medicine practices, there are two types of 

marker used by surgeons [5, 6, 7] either by using 

anatomical landmarks (non-invasive) or fiducial 

marker (invasive). Common fiducial markers used in 

surgeries are gold seeds or stainless steel screws that 

are implanted in and/or around a soft tissue tumor, or 

within the bony spine, to act as a landmark with 

millimeter precision. However, this method will require 

an additional surgery to attach or to insert the fiducial 

marker (see Figure 1) to the patient. It is not only time-

consuming, but also invasive and might cause trauma 

to the patient. Patel [8] added, creation of a new foci 

of disease might be rare, but is a serious complication 

of fiducial marker placement. Due to its invasive 

implantation procedure [9] and the price of gold 

seeds are significantly higher [10], it is our aim to 

develop an alternative form of marker for cheaper, 

but efficient, robust and more patient-friendly through 

AR. Hence, innovations in the current insertion 

techniques of fiducial marker may reduce its risks, and 

at the same time enhancing comfort for the patient.  

There are several situations where surgeons need to 

define Region-of-Interest (ROI). It can be drawn 

manually by hand or digitally by using a specific 

image processing technique. ROI is most commonly 

used for medical imaging as a subset of an image or 

as a contour defining a physical object that is of 

concern during a diagnosis. The ROI drawings can be 

used as two major functions [11]: (i) to examine the 

morphological properties of anatomic structure, and 

(ii) to extract data for a specific structure. And, it also 

defines a specific shape (square or circle) which can 

be integrated with the AR technology as the fiducial 

marker. Owen [12] conclude that, an ideal fiducial 

marker should produce at least four points which are 

approximate a square. The straight edges of a square, 

allowing corners to be computed with sub-pixel 

accuracy. Four points not in the form of a square will 

decrease tracking accuracy due to poor resolution 

and orientation. Based on these findings, we believe 

that, ROI in the shape of a square will be an ideal 

marker for a surgeon in medical application. 

Idris [13] considered the use of Computer Vision (CV) 

techniques as a starting point in detecting a fiducial 

marker or natural marker in order to solve the 

registration and tracking issues in an AR application. 

Edge detection, corner detection, blob detection, 

and optical flow are the current available technique 

that detects features.  

Therefore, this paper aims to present a real-time pre-

placed marker-less identification (RPMS) technique by 

integrating edge and corner approach to detect a 

square-ROI as the fundamental component in 

registering the virtual imagery with its real object 

without the needs to use the conventional fiducial 

marker. The main contributions of this paper can be 

summarized as follows: 

 

•Algorithms. We propose robust, low computation 

time, and greater accuracy for both square and 

corner detection, respectively; 

 

•Experimental Evaluation. Our evaluations on the 

series of square-ROI dataset shows that the 

proposed methods are robust, low in computation 

time, and greater in accuracy. 

 

The rest of the paper is organized as follows; we 

outline the proposed marker recognition technique’s 

framework in Section II. We investigate and evaluate 

the proposed algorithms in Section III. We conclude in 

Section IV.  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 1 Example of breast marker use in medicine 
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2.0  LITERATURE 
 

Several researchers, have made an effort to 

integrate the corner - contour approach with the 

perspective to define an edges as a square. But, until 

recently, the results showed that, some integrated 

technique are able to detect the square’s corner, 

but fail to detect an edge point around the corners 

of the square. 

For this reason, practical and feasible marker 

recognition technique using the advantages of both 

corner-contour approach with the manually hand-

drawn ROI as an input which are efficient, accurate 

and robust is presented and shown in Figure 2. As 

can be seen, the proposed technique is the 

integration of two other techniques; i.e. square-ROI 

Contour and square-ROI corner.  

 

 

 

 

 

 

 

 

 

Figure 2 Integrated RPMS technique 

 

 

To be a viable marker recognition technique, this 

algorithm is designed to have a minimal 

computational requirement and operates in two 

stages; i.e. square-ROI contour detection followed by 

square-ROI corner detection and tracking. Chapter 

four demonstrates how the improved square-ROI 

contour able to find the edges (in 0.16 ms) and 

define the detected edges as a square in order to 

extract the number of vertices. This is sufficient to be 

used as an initializer for the subsequent corner 

tracking technique described in chapter five. It is 

worth noting here that the success of the RPMS 

technique depends entirely on the success of the 

other two components. Thus, the ability of the 

proposed technique to efficiently and accurately 

define a marker at a minimal computation time rely 

on how fast the information (vertices and corners) 

can be produced at the early stage. 

 

A. Improved Square-ROI Contour 

 

To add the ability to detect and to define the 

square-ROI as a square, the traditional Canny’s [14] 

operator is improved with adaptive thresholding and 

smoothing approach, then combine with the square 

contour detection method. Briefly, the improvement 

steps begins with smoothing in order to reduce the 

video stream noise followed by adaptive 

thresholding to create binary format and later the 

Canny’s operator is used to find and extract the line 

edges from the binary format. 

 

B.  Enhanced square-ROI Corner 

 

To enhance the ability of Shi-Tomasi [15] in detecting 

a desired corner point, our proposed technique 

combines Shi-Tomasi with subpixel and smoothing 

operation. As discussed in [15], the Shi-Tomasi directly 

determines the corners based on whether the 

minimum of two eigenvalues (λ1, λ2) is larger than a 

certain pre-defined threshold value and the subpixel 

operator is used to find an accurate location of a 

corner, based on the mathematical fact that the dot 

product of every vector from the centre to a point 

located within a neighborhood of an orthogonal 

vector is zero [16]. 

 

 

3.0  TESTING METHODOLOGY 
 
The experiments are conducted according to the 

bottom-up testing approach as shown in Figure 3. 

The procedure begins with unit testing A and B, 

followed by the performance testing. These 

experiments are designed to investigate three main 

factors: (in terms of computation time, corner 

localization accuracy and its robustness) 

 

 

1. The performance of square-ROI contour 

algorithm compared to the traditional Canny 

approach. 

2. The performance of square-ROI corner 

algorithm compared to the traditional Shi-

Tomasi approach. 

3. The performance of the integrated RPMS 

technique compared to the ARToolkit. 

 

These experiments use the Logitect web camera 

as the visual sensor to capture a real-time video from 

the real scene, a series of square-ROI’s sizes ranging 

from 3x3 cm to 10x10 cm with 1.0 mm border line 

thickness, and a mannequin. The series of size were 

chosen based on the recommended marker size 

discussed in [12], and [17].  

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3 Experiments procedure 

 

 

In the experiments, the visual sensor is initially 

positioned at 60 cm from the input (see Figure 4). This 
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will be the initial viewing distance for all the 

conducted test cases. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4 Camera viewing distance 

 

 

3.0  RESULTS AND DISCUSSION 
 

3.1  Unit Testing A–Square-ROI Contour Evaluation 

 

Unit testing A consists of two experiments that were 

carried out to analyze the performance of square-

ROI contour detection. First, the focus of these 

experiments lies on the testing of the Improved 

square-ROI contour compared to the Canny 

operator [14] and Sobel detector [18]. As shown in 

Figure 5, the improved operator has a better 

detection effect, compared with the image in (a) 

and (c). In (b), it is obviously has been improved. 

From the visual inspection of the images obtained, it 

can be seen that the Improved square-ROI contour is 

more efficient in identifying the edges clearly. The 

edge smoothly detected and almost no noise pixels 

detect on the input frame, hence, produces smooth 

and thin edges. Using traditional Canny and Sobel 

method, the edges detected are too messy and the 

data almost lost its important structure. The pixel is 

noisy and the edges are not smooth and thin. 

 

 

 

 

 

 

 

 

 

Figure 5 Experimental results–Edge detection 

 

 

From Table 1, the proposed technique has gained 

94.8% in speed (in ms) when compared with Canny 

operator and 98.4% when compared with Sobel 

detector. This indicates that the improved operator is 

more efficient and can enhance the hand-drawn 

square-ROI edges better than the other two tested 

approaches on edge detection. These results also 

solved the issues stated by [19], [20] and support the 

suggestion in [18], [21, 22, 23], where the use of 

adaptive edge-detection algorithm has improves the 

edge detection performance efficiency and speed.

  

Table 1 Average Time for edge detection 

 

Operator Canny 

detector 

Sobel 

detector 

Improved 

square-ROI 

contour 

Average 

Time (ms) 
6.08 20.9 0.16 

 

 

In the second experiment, the testings are 

performed to determine the proposed technique’s 

performance in identifying the detected edges as a 

square when the improved edge operator combined 

with the square contour. For each different ROI, the 

optimal viewing distance and the time required to 

identify a square, are recorded. At the same time, 

the robustness of the square-ROI contour will be 

assessed based on its consistency and accuracy in 

detecting the square in the given datasets. 

Table 2 shows the results of Square-ROI contour’s 

consistency and performance accuracy with eight 

different square-ROI’s size. It is shown that the 

improved algorithm accurately identified the 

detected edges as a square, consistently from 7 to 

10 cm for all given size. It should be noted that, the 

time-to-detect recoded from this experiment are the 

combination of edge detection and square contour 

identification. We have calculated that, for each 

ROI, an additional 13.45 to 18.89 ms are required to 

identify the detected edges as a square. Referring to 

Table 2, the best viewing distance and time-to-

detect are obtained when the algorithm applies on 3 

x 3 square-ROI size. It is the longest viewing distance 

recorded, and 13.76 to 16.39 ms required to define 

the square. Finally, Table 2 also shows that, by 

constructing different size of ROI the square-ROI 

contour technique is not only robust to illumination 

changes, but also to the variation of sizes. 

 

Table 2 Square-ROI contour performance on series of ROI’s 

sizes 

 

Square-ROI 

size 

Optimal Viewing 

Distance (cm) 

Time to detect 

(ms) 

3 x 3 7 - 29 13.76 – 16.39 

4 x 4 7 – 24 13.7 – 16.52 

5 x 5 7 – 14 13.62 – 18.31 

6 x 6 7 - 17 14.05 – 16.32 

7 x 7 7.5 - 15 13.46 – 19.05 

8 x 8 7.5 – 15 13.51 – 16.8 

9 x 9 8 – 14 13.61 – 16.86 

10 x 10 10 - 17 13.74 – 14.07 

 

 

Experimental results show that, the proposed 

technique efficiently detects and defines the desired 

hand-drawn square-ROI as a square within an 

acceptable execution time. It is also robust to 

illumination changes and accurately detects only the 

square-ROI. 
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3.2  Unit Testing B–Square-ROI Corner Evaluation 

 

In this experiment, the testings are performed to 

determine the corner localization accuracy and 

computation efficiency of Enhanced square-ROI 

corner in extracting the four corner points from the 

detected edges. The experiments are repeated for 

eight different square-ROI’s size, ranging from 3 x 3 

cm to 10 x 10 cm with 1.0 mm border thickness, which 

is manually drawn by user. For each different square-

ROI size, the experiments are tested for 49 cycles 

within the predefined visual distance in order to find 

the optimal viewing distance, execution time, and 

the average time required to find the four corners. 

Figure 6 shows the results, in which eight different 

sizes for the algorithms are compared. The best 

viewing distance is obtained when the visual sensor is 

set at 23 cm from the square-ROI. This indication 

shows that the differences in size and visual distance 

have direct effects on the result. Significant 

improvements in corner detection for the proposed 

technique is recorded for both execution time and 

average time over the Shi-Tomasi [15] and Harris [24] 

method.  

In short, the difference from the time construction 

show that, the Enhanced square-ROI has reduced 

the execution time by 0.17 ms (0.88%) and the 

average computation time by 0.14 ms (0.69%) when 

compared to Shi-Tomasi. However, when compared 

with Harris, the proposed technique produces no 

improvement in the execution time, but in overall the 

average execution time has reduced by 3.14 ms 

(12.9 %). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6 Execution Time and Average Time of Enhanced 

square-ROI corner, Shi-Tomasi, and Harris 

 

 

These results solved the issues stated by [15] and 

support the suggestion in [25], [26], where the use of 

subpixel corner-detection algorithm has improved 

the corner detection performance efficiency and 

accuracy. Even though, the used of subpixel as 

discussed in [27] is said to be time consuming, in the 

experiments, our improved technique has shown 

that, when it is applied at a smaller scale of target 

corner points, it effectively helps in improving the 

speed and the accuracy of the corner localization. 

In Figure 7, it is clearly shown that from the visual 

inspection, the best precision results in corner 

localization are obtained when the algorithm applies 

subpixel accuracy (in (b)). Pay attention to the 

corner (red dot) found at the edge intersection. The 

corner detector in (b) has good localization 

compared to corner detector in (a). 

 

 
 

Figure 7 Corner localization 

 

 

In the experiments, the performance of the square-

ROI corner technique has improved even though the 

visual sensor need to be adjusted accordingly to get 

the four corners. Besides, with the proposed 

technique, the corner points are well localized. 

 

3.3  Performance Testing –RPMS Evaluation 

 

Performance testing consists of three experiments 

that were carried out to analyze the performance of 

RPMS technique. First, the focus lies in the RPMS 

performance accuracy in identifying the hand-

drawn ROI on an A4 paper as a marker, followed by 

the used of a mannequin in the second experiment. 

In addition to that, our experiments also have the 

goal of determining how robust the RPMS approach 

is to variations in square-ROI sizes, in two different 

settings; i.e. an A4 paper and a mannequin. 

Table 3 and Figure 8 show the results of the RPMS’s 

consistency and accuracy performance with eight 

different square-ROI’s size on A4 paper. It is shown 

that, the RPMS technique consistently identified all 

the given square-ROI as a marker in an average of 

1.38 ms between 9 – 21 cm, with 0.9 ms for each 

execution. This indicates that the RPMS is more 

efficient than that of [28]. The best execution times 

are obtained when the RPMS technique applies on 6 

x 6 cm square-ROI size, with 0.39 ms, followed by 5 x 5 

cm (0.72 ms) and 10 x 10 cm (0.82 ms).  

However, for the optimal viewing distance, mixed 

results have been recorded. It is found that for the 

size of 6 x 6 cm, the optimal viewing distance is from 

7 – 23 cm, followed by 8 – 25 cm (7 x 7 cm) and 8 -22 

cm (8 x 8 cm). From here, the ROI setting with the 

best execution time and optimal viewing distance 

will be 6 x 6 cm and 10 x 10 cm. 
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Table 3 RPMS’s experimental results on A4 paper 

 

Square-ROI Size 
Average Time 

(ms) 

Viewing 

Distance (cm) 

3 x 3 2.20 8 – 20 

4 x 4 1.21 8 – 16 

5 x 5 0.72 9 – 18 

6 x 6 0.39 7 - 23 

7 x 7 1.35 8 - 25 

8 x 8 1.73 8 – 22 

9 x 9 2.60 10 – 20 

10 x 10 0.82 11 – 23 

 

 

Figure 8 Average Time over Square-ROI’s size 

 

 

In most cases, the RPMS consistently identified a 

marker when used with the A4 paper. However, with 

the mannequin, there are situations where the RPMS 

fail to define a marker, even though it shows 

reasonable high percentage of true detection over 

false detection. There are two factors contributing to 

the 12.6% false detection percentage depicted in 

Figure 9, the size of the square-ROI and its visibility or 

occlusion problem. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9 Marker detection rate - Mannequin 

 

 

In the third experiment, the testings are performed 

to evaluate the performance of RPMS technique 

when compared with the ARToolkit in identifying a 

marker on A4 paper size. The testings are repeated 

26 times independently with eight different sizes of 

ROI. There are two parameters tested in this 

experiment, i.e. execution time and detection 

accuracy. The recorded results are shown in Table 4. 

It is not surprising for the ARToolkit to be low in 

accuracy (11.5%), since it is specifically designed for 

pattern marker with ID. It is obvious that, when the 

detection accuracy is low, the time needed to 

define a marker is high. In other word, the lack of 

accuracy has a direct impact on the execution time. 

 

Table 4 Experimental results – RPMS vs ARToolkit 

 

Technique 
Average  

Time (ms) 
Accuracy (%) 

RPMS 1.73 100 

ARToolkit 9.73 11.5 

 

 

It is shown in the experimental results that when the 

detection of square-ROI contour and square-ROI 

corner is improved, the RPMS technique is also 

improved. In other words, when the enhanced 

feature detection method minimizes the execution 

time and accurately extract the features needed at 

a consistent rate, expensive post-processing is thus 

avoided.  

 

 

4.0  CONCLUSION 
 
RPMS technique is a combination of the first two 

contributions mentioned above. The square-ROI 

contour edge detector is required to define the 

detected hand-drawn ROI as a square, whereas the 

square-ROI corner detector is needed to detect the 

four corners from the defined square-ROI. Both 
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components are equally important in order to 

recognize the hand-drawn square-ROI as a marker. 

In conclusion, based on the obtained results, some 

of the findings can be concluded as follows: 

 

• The integrated contour-corner approach is 

feasible and reliable in identifying the 

square-ROI as a marker. 

• The proposed technique is more reliable and 

high in accuracy when compared with the 

ARToolkit in identifying the hand-drawn ROI 

as a marker. 

• Viewing distance, visibility and the size of the 

hand-drawn square-ROI have a direct effect 

on the overall performance of the RPMS 

technique. 

• With the advantages of both feature 

detectors, the RPMS is robust to ROI’s size 

and illumination changes.  
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