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Selective logging is one of the major drivers of tropical forest degradation, caus-

ing important shifts in species composition. Whether such changes modify

interactions between species and the networks in which they are embedded

remain fundamental questions to assess the ‘health’ and ecosystem functional-

ity of logged forests. We focus on interactions between lianas and their tree

hosts within primary and selectively logged forests in the biodiversity hotspot

of Malaysian Borneo. We found that lianas were more abundant, had higher

species richness, and different species compositions in logged than in primary

forests. Logged forests showed heavier liana loads disparately affecting slow-

growing tree species, which could exacerbate the loss of timber value and

carbon storage already associated with logging. Moreover, simulation scenarios

of host tree local species loss indicated that logging might decrease the robust-

ness of liana–tree interaction networks if heavily infested trees (i.e. the most

connected ones) were more likely to disappear. This effect is partially mitigated

in the short term by the colonization of host trees by a greater diversity of liana

species within logged forests, yet this might not compensate for the loss of

preferred tree hosts in the long term. As a consequence, species interaction net-

works may show a lagged response to disturbance, which may trigger sudden

collapses in species richness and ecosystem function in response to additional

disturbances, representing a new type of ‘extinction debt’.
1. Introduction
Selective logging is one of the major drivers of forest degradation, with 20% of all

tropical forests logged between 2000 and 2005 [1], and more than 400 million hec-

tares of tropical forest in permanent timber concessions [2]. Selective logging

changes local microclimates [3], modifies resource availability [4], and alters

forest structure [5], increasing the amount of edge-affected areas through felling

of canopy trees and the creation of logging roads and skid trails [6]. In turn, selec-

tively logged forests are more vulnerable to fires and drought events, especially

under extreme weather events such as El Niño episodes [7], and are more acces-

sible to hunters that exploit the network of logging roads [6], each of which can

further degrade the remaining habitat and biological communities.

Despite these impacts, logged forests apparently maintain similar species rich-

ness to intact forests [5]. Yet, the identity of the species present does shift [8], with

declines in forest-interior specialists balanced by increases in disturbance-tolerant

taxa (e.g. lianas [9]) or edge-adapted ones (e.g. butterflies [10]). Such shifts
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notwithstanding, logged forests may retain over 75% of species

found in a primary forest, including a suite of The International

Union for Conservation of Nature and Natural Resources

(IUCN) red-listed species [8].

Because selective logging changes the composition and

abundance of species and modifies resource availability, it

directly affects many pairwise interactions between species

(e.g. pollination or seed dispersal [11]) and how these are

organized within larger networks of interactions (network

structure [12]), with important consequences for ecosystem stab-

ility within logged forests. For instance, the trophic organization

of bird and ant communities shifts after logging, with species

tending to feed from higher up the food chain, representing

less frugivory and more insectivory for birds [13], and more

predatory behaviour for ants [14] (see also [15]). In addition,

the conversion of forest to agricultural plantations and pasture-

lands shifts the evenness of interaction frequencies and the rates

of parasitism in host–parasitoid food webs, with cascading

impacts on important ecosystem services, such as pollination

[16]. Studies on plant–animal mutualistic interactions [17],

on commensalistic interactions [18], and on antagonistic inter-

actions [16] highlight that some of the most negative impacts

of ecosystem degradation are only apparent when evaluating

species interactions from a network perspective.

Disturbance of tropical forests generally increases the abun-

dance and diversity of lianas which use trees as support to

reach the canopy [9,19,20], although some recent African and

Asian studies suggest otherwise [21,22]. The increased liana–

host ratio has implications for tree recruitment, survival, and

species composition, among others [23]. However, not all

species of trees are equally sensitive to this effect [24]. For

example, some exhibit traits that make them less prone to

host lianas, such as structural defences including a flexible

trunk or large leaves, or exhibit rapid growth rates, strongly

related to low wood densities [25], which impede lianas from

encircling the trees [26]. An alteration of tree community com-

position following selective logging as a consequence of

different liana-induced mortality rates could have important

consequences for the recovery of canopy cover, and important

ecosystem services, including the rate of carbon sequestration

and above-ground carbon storage (reviewed in [9]).

While previous research has focused on the organization of

interactions between lianas and their natural hosts in primary

forests (e.g. [27]), a basic unanswered question is how logging

impacts the topology of liana–tree interaction networks, and

the consequences of these changes for network robustness to

further disturbance and species losses. Early work suggested

that complexity (generally referring to network connectance,

i.e. the density of realized links) was a key determinant of

robustness [17], while more recent work points towards other

network properties, such as nestedness [17,28] or modularity

[29], as the actual drivers of network stability and robustness

(e.g. to species extinctions [30]). The debate as to which par-

ameter has the dominant role is still ongoing (e.g. nestedness

in [31], connectance in [32]), while other studies criticize

the simplifying assumptions of models used to test stability

(e.g. lack of a dynamic redistribution of interaction frequencies

following the extinction of certain species [33]). However,

recent work suggests that such a debate might be misleading

since most network metrics are strongly interrelated rather

than independent properties [34], and their relationship

varies with network size [29] and partner specialization

(e.g. pollination syndromes [35]). More importantly, whether
the level to which network properties such as nestedness pat-

terns or ‘specialization asymmetry’ are caused by intrinsic

properties of the species’ interactions, rather than being a

simple product of variable species abundances that can be

explained by so-called ‘null models’ (e.g. [36]) is also contro-

versial [37]. Hence, the use of appropriate null models

(e.g. Patefield null models for nestedness [38]) is necessary to

test whether or not observed changes in network topology

can be attributed solely to different abundance patterns, or if

they also reflect changes in interspecific relationships.

Here, we assess the effect of selective logging on liana and

tree species richness, community composition, biomass contri-

bution, and on liana–tree interaction network topology within

the global biodiversity hotspot of Borneo, Malaysia. Specifi-

cally, we test the hypotheses that: (i) species composition, but

not species richness, of trees will change after logging, while

both species composition and richness of lianas will change fol-

lowing logging, (ii) the liana and tree biomass will increase and

decrease, respectively, following logging, (iii) lianas will prefer-

entially colonize trees with slower growth rates, and hence

greater wood densities, (iv) the number of links between

lianas and trees (connectance) will increase after logging, fol-

lowing an increase in the abundance of lianas throughout

disturbed forests, (v) partner specialization will decrease and

network nestedness will increase after logging, following the

increase in liana abundance and species richness, and the pre-

ferential colonization of trees lacking structural defences, and

(vi) network robustness to host tree species loss will be greater

in logged forests, due to its positive relationship with network

nestedness. We further examine whether differences in net-

work topology among the forest types are either a ‘neutral’

consequence of changes in species abundance or reflect

changes in interaction patterns independent of such changes

in abundance (or in addition to them).
2. Material and methods
(a) Tree and liana sampling
The study was carried out within the 1 million hectare Yayasan

Sabah logging concession, Sabah, Malaysian Borneo (figure 1),

where forests dominated by the Dipterocarpaceae family were

selectively logged during the 1980s and 1990s, and again during

the 2000s [39]. We selected six sites in primary forest and six sites

in once-logged forest, with each site more than 2 km apart. Our

protocol applies the frequently used space-for-time substitution

(e.g. [8,40]) as an alternative to following land-use change impacts

over decades [41]. Within each site, we established two 100 m trans-

ects separated by at least 500–800 m (12 sites � 2 transects/site¼

24 transects, figure 1). Within each transect, we located five 20 �
20 m plots at increasing distances from the nearest forest edge (24

transects � 5 plots/transect ¼ 120 plots, figure 1). Within each

plot, we recorded tree diameter at breast height (DBH) and liana

load for all trees above 10 cm DBH and all lianas above 1 cm

DBH. For every individual liana measured, we recorded all trees

used as support. Every liana and tree measured was identified to

species or morphospecies by a botanist (electronic supplementary

material, table S1).

(b) Data analysis
(i) Species richness, composition, and biomass
To test our first hypothesis, we compared species richness patterns

among forest types using individual-based rarefaction curves, at

the plot level (n ¼ 60 plots for primary and n ¼ 60 plots for
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logged forests) with 95% confidence intervals (CIs), constructed in

ESTIMATES v. 8.2 [42]. We then evaluated how logging and

distance to the forest edge (as well as their interaction) affec-

ted liana and tree species richness per sample plot by fitting a

generalized linear-mixed model (GLMM) with a Poisson error dis-

tribution and a log-link function. Transect was included as a

random factor. Using non-metric multidimensional scaling,

species composition of trees and lianas in the forest types was

determined based on Bray–Curtis similarity [42,43]. A two-

dimension ordination was employed. We based our interpretation

on the first two dimensions for simplicity and because stress values

were relatively low (less than 20%) after incorporating two dimen-

sions (electronic supplementary material, figure S1). Actual

differences between forest types were tested using a permutational

multivariate analysis of variance with distance matrices. Our

sampling protocol means that there are potential confounding

effects of (i) spatial autocorrelation of sample transects and

(ii) naturally occurring turnover of species across space (beta-

diversity) rather than land-use change that explain changes in

species richness and composition [44]. To exclude these possibilities,

we performed Mantel tests for tree and liana species composition

comparing compositional similarity as well as tree and liana species

richness to geographical distance between transect pairs within

logged forest, within primary forest, and across the whole dataset.

For our second hypothesis, we calculated liana and tree biomass

(see electronic supplementary material for exact methodology) and

computed average tree and liana biomass per plot as well as the per

cent of the total biomass (tree and liana) contributed by lianas. The

impact of logging on liana and tree abundance, average liana and

tree biomass, average tree wood density, and per cent of total bio-

mass contributed by lianas were then analysed via GLMMs with

a Poisson error distribution and a log link for abundances and a

gamma error distribution with log-link function for the rest.

To test our third hypothesis, we evaluated how host tree

DBH, host tree wood density, and average canopy cover in

the analyses affected liana load using a GLMM with a zero-

inflated negative binomial distribution. As before, transect
was included as a random factor. All analyses were performed

using R v. 3.2.2. [45].
(ii) Structure of liana – tree interaction networks
To evaluate our fourth and fifth hypotheses, we explored the struc-

ture of weighted liana–tree interaction networks by using a

bipartite graph and calculating different metrics for quantitative

networks, which included interaction frequencies between particu-

lar species of lianas and trees using the bipartite 2.05 library in R

v. 3.2.2 [45,46]. Analyses were carried out at the transect level

given low sample sizes at the plot level and the fact that we

found no differences in tree or liana species richness with distance

to the edge (F ¼ 0.78, p ¼ 0.95 and F ¼ 0.63, p ¼ 0.97, respectively).

Each network was characterized by a matrix in which rows rep-

resented host species (trees) and columns represented liana

species with values in matrix cells representing the mean number

of lianas of a given species per individual of a given host tree.

We estimated weighted connectance, measured as the pro-

portion of realized interactions from all potential interactions in

the network divided by the number of species in the network,

and network nestedness, which increases when specialists tend

to interact with a subset of the species that generalists interact

with [17] using the weighted nestedness based on overlap and

decreasing fill (NODF) metric which corrects for matrix fill and

dimensions [47] and takes values of 0 for non-nested networks

and 100 for perfectly nested ones. We also estimated complemen-
tary specialization, H02, a standardized index controlling for

differences in observations and abundances, where generalized

interactions yield a H02 ¼ 0 and H02 increases as interactions

become reciprocally more specialized. Finally, we estimated

specialization at the level of each guild, tree, and liana, which

was estimated as the weighted mean of the specialization index

for each species (d0i), with the value for each species weighted

by the total number of interactions [48].

We tested whether our estimated network metrics are caused

by intrinsic properties of the species’ interactions, rather than
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being a simple product of variable species abundances that can

be explained by so-called ‘null models’ (e.g. [36]) by comparing

the values we obtained from our logged and primary forest net-

works to those of 1 000 networks created based upon a Patefield

null model [46] via GLMMs where site was always included as a

random factor. We then evaluated how logging might affect each

of the descriptive interaction network metrics. Every model

included logging (logged versus primary) as a fixed factor and

tree and liana species richness and abundances as covariates,

to control for differences in sampling effort [49], and was fitted

using a gamma error distribution with a log-link function.

(iii) Simulations of host tree and liana local species loss
Finally, to test our last hypothesis, we evaluated whether the

different metrics of network topology affected the robustness of

liana–tree interaction networks, defined as the area under the

extinction curve, which has a maximum value of 1 (as in [18])

and measures the sensitivity to secondary species loss of lianas fol-

lowing the simulation of host tree species loss [50,51]. In our

simulations, the cause for the disappearance or local extinction

of any given liana species is neither the felling of trees, nor the

loss of one of many tree–host species, rather each given liana

species is only assumed to go locally extinct when all its host

tree species disappear. We simulated three types of species loss

scenarios for host trees: ‘random’, where a randomly chosen

subset of tree species was eliminated each time; ‘rare-species’,

where tree species were removed on the basis of their abundance,

with the least abundant being removed first; and ‘connected-

species’, where the most connected tree species were removed first.

We then fitted GLMMs including the following predictor vari-

ables: five measures of network topology (weighted NODF,

weighted connectance, complementary specialization, and tree

and liana specialization), logging, the extinction scenario fitted,

and all interactions between the two qualitative and the five con-

tinuous variables (as common practice in other similar studies,
e.g. [50]). We also included the combined number of tree and

liana species and transect as a random factor. Prior to analyses,

we evaluated the potential correlation between all independent

variables, which was more than 0.5 (Spearman’s r) only between

weighted connectance and tree specialization, and therefore these

two variables were never included within the same model. In all

cases, we generated all possible subsets of the full model and

selected the most parsimonious one based on their Akaike infor-

mation criteria (AICc) value corrected for small sample sizes, the

AICc score. All analyses were performed using R v. 3.2.2 [45].
3. Results and discussion
(a) Species richness, composition, and biomass
In our 120 sample plots, spanning primary and selectively

logged forest, we found that logging leads to an increase in

liana species richness (figure 2) and abundance (mean+ stan-

dard deviation (s.d.): 45.27+23.10 and 22.28+14.85 in logged

and primary forests, respectively; z-value ¼ 3.77, p , 0.001), as

well as in liana load per tree (3.41+2.83 in logged and 1.65+
1.51 in primary forests, z-value ¼ 3.2, p ¼ 0.001). In turn, we

found changes in the composition of both liana (F ¼ 9.05,

p , 0.001) and tree (F ¼ 5.77, p , 0.001) communities between

forest types but not between plots within the same transect

(F ¼ 0.78, p ¼ 0.95 and F ¼ 0.63, p ¼ 0.97, respectively,

figure 2), with tendril (e.g. Bauhinia sp.) and hook climbing

(e.g. several Strychnos sp.) lianas tending to increase after

logging (electronic supplementary material, table S2).

We found no evidence that spatial autocorrelation or

natural rates of species turnover across sample sites affected

the species richness (electronic supplementary material, figures

S2 and S3) or species composition (electronic supplementary
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material, figures S4 and S5) results. All comparisons for trees

and lianas were not significant ( p . 0.05), except for a single

significant effect ( p ¼ 0.03) of distance on tree species compo-

sition across the entire dataset at large spatial scales. Thus, we

are confident that our results reflect impacts of selective log-

ging on tree and liana communities (see [8,40] for similar

results for an array of taxa), rather than pre-logging

heterogeneity between sites.

The great increase in liana abundance in logged forests (see

also [9]) resulted in an increase in the above-ground biomass of

lianas, whose contribution to total biomass was almost doubled

in logged forest (4.41%+0.07) compared to primary forest

(2.45%+0.04, z ¼ 2.94, p¼ 0.003). Conversely, the decrease in

tree wood density associated with logging (z-value ¼ 24.04,

p , 0.001) leads to considerable decreases in carbon stocking

within logged forests which are probably further exacerbated

by the heavier liana loads that increase tree mortality [52]. Yet

despite their large increase in biomass, this carbon loss is not

compensated by the contribution of greater densities of lianas.

Further disturbances associated with logging (e.g. fire [53])
would probably lead to increased tree mortality, exacerbating

the decrease in carbon sequestration and stocking.
(b) Structure of liana – tree interaction networks
While previous research focused on the organization of inter-

actions between lianas and their hosts in primary forests

(e.g. [27]), a fundamental question that remains unanswered

is how logging impacts the topology of liana–tree interaction

networks. In particular, little is known about the conse-

quences of these changes for network robustness to further

disturbance ([17,28,29], e.g. to species extinctions [30]).

Only a small subset of all possible interactions between

trees and lianas were realized; network connectance was thus

low (significantly lower than expected from the null models,

electronic supplementary material, table S3), particularly in

primary forests. Indeed, lianas tend to preferentially colonize

certain types of trees, such as those lacking morphological

defences (e.g. flexible trunks [24]). In this study, they seem to

colonize trees lacking functional defences exhibited by
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factor level of factor estimate standard error (s.e.) z-value

intercept 0.36 0.09 4.19***

logging logged forest 0.12 0.09 1.23n.s.

extinction scenario random 0.32 0.03 9.25***

rare 0.55 0.03 15.88***

species richness 20.004 0.001 22.96**

tree specialization 0.69 0.25 2.76**

logging � tree specialization logged forest 20.90 0.29 23.15**

extinction scenario � tree specialization rare 20.72 0.21 23.40***

random 21.15 0.21 25.43***

**p , 0.01, ***p , 0.001, n.s. .0.05.
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individuals with greater wood densities, a proxy for slower

growth [25], which makes them available for colonization

over longer periods of time (electronic supplementary material,

figure S6). The increase in liana abundance and the differential

colonization of slow-growing trees can be expected to decrease

the survival and growth rates of these types of trees, exacer-

bating the effects of logging on biomass stocking, timber

value, and ecosystem services described in the previous section

[52,54].

The number of links between trees and lianas (weighted

connectance) increased following logging (figure 3), while

the converse was true for complementary specialization (elec-

tronic supplementary material, table S4), whose decrease

indicates that reciprocal specialization becomes less frequent

(i.e. generalists tend to interact with generalists) in logged

forests [55]. Furthermore, nestedness increased and tree

specialization decreased with increasing liana abundance

(figure 4a)—suggesting that, in logged forests where liana

abundance increases greatly, host trees interact with larger

numbers of liana species and become more generalist.
(c) Simulations of host tree and liana local species loss
Given that a fraction of host tree species could be locally elimi-

nated by selective logging, a key question is how robust or

resilient will liana–tree interaction networks be to such losses
[50]. We evaluated this by simulating three different scenarios

of host tree local species loss (rare, random, and connected)

within our measured quantitative networks. The model with

the lowest AICc score (table 1) shows that the decrease in tree

specialization found in logged forests (0.11+0.03 as compared

to 0.17+0.07 in primary forest) makes lianas less sensitive

to host tree species loss in the short term (i.e. results in higher

network robustness, figure 4b).

Over the longer term, however, higher liana loads can be

expected to lead to an increased mortality of host trees.

In this case, the most plausible extinction scenario will be the

one in which the most connected tree species (i.e. those bearing

larger liana loads) disappear preferentially (as opposed to the

other two cases in which species are expected to disappear at

random or based on their rarity [56]). This is also the scenario

in which liana species show the greatest sensitivity to the local

extinction of trees (i.e. the lowest network robustness, figure 4c,

electronic supplementary material, figure S7). Hence, the

increase in liana abundance in logged forests might have

the paradoxical effect of reducing liana species richness

over the long term—owing to the extinction of lianas that

specialize on slow-growing trees, which are infested by

larger liana loads and become locally extinct earlier.

Overall, network stability is primarily driven by the type of

host tree species most likely to disappear and the functions they

perform [50], which lead to cascading effects on the community
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of lianas. Analysing the effect of network topology on its robust-

ness confirms this interpretation: robustness is mainly driven by

the specialization at both the network and the guild level

(as opposed to [50]). While these variables provide the best-

performing model, an inspection of suboptimal models reveal

other significant effects consistent with this interpretation

(e.g. significant effects of nestedness and connectance). This

should come as no surprise, given that most network metrics

are strongly interrelated rather than independent descriptors

of network properties [34].

(d) Interaction-driven extinction debt
Our results are analogous to a new type of ‘extinction debt’

[57], in which lagged responses of species interactions to dis-

turbance may suddenly trigger accelerated species loss. This

type of extinction debt is of particular importance because

it is likely to cause cascading effects on tree community com-

position and its associated values for humans, including

timber production and carbon storage.

Our findings demonstrate the strong impacts of selective

logging on the provision of ecosystem services, in particular

carbon storage. However, they also suggest that selectively

logged forests maintain relatively large values of species rich-

ness for trees, and thus still have a high conservation value

compared to other possible land uses common throughout

the area (e.g. oil palm [40]). Furthermore, while the increase

in liana abundance has detrimental effects for their host

trees, lianas can benefit a host of wildlife: many lianas bear

fleshy fruits that are consumed by an array of animals,
including many frugivorous birds [58] and mammals [59].

Lianas provide dense microhabitats suitable for the foraging

and nesting of many understorey bird species [58] and are

used as a means of locomotion for species like the orangutan

[60]. Therefore, the increase in lianas could help in retaining

key elements of forest biodiversity and any management

towards their complete removal in favour of host trees, per-

haps to enhance the rate of timber and carbon recovery

[61], should consider the potential side effects on other

species in the network [58]. More studies on forest succession

following logging, specifically targeting liana communities,

are needed to understand the complexity of interactions

between trees, lianas, and other dependent species and

which, if any, management interventions should be

conducted.
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