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ABSTRACT 

The major drawbacks of photocatalytic degradation of organic pollutants by Ti02 are 

the wide band gap energy of Ti02 and the rapid recombination between the charge 

carriers (e-/h+ pairs). These limit the photocatalytic activity of Ti02 as large amount of 

solar is still unable to excite the photocatalyst. The MOF-S/Ti02 thin film was fabricated 

by dip-coating a TiOrcoated pyrex tube into a MOF-S mother solution. XRD analysis 

of the MOF-S/Ti02 thin film confirmed the crystalline structures of anatase Ti02 and 

MOF-S respectively. This study utilised MOF-S/TiOu'UV-A system in the photocatalytic 

degradation of methyl orange. The MOF-S/TiOu'UV-A system was capable of degrading 

34.3 % of 5 ppm of aqueous methyl orange solution after 2 hours compared to 32.2 % 

by the TiOu'UV-A system under the same reaction conditions. This shows that the 

presence of MOF-S is able to increase the photocatalytic activity of Ti02. However, the 

photodegradation efficiency starts to decrease after irradiation time of 3 hours. This 

could be due to the competition between methyl orange and its intermediate species 

during the photodegradation process. 
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SINTESIS DAN PENCIRIAN FILEM NIPIS MOF-5/TI02 

ABSTRAK 

Kelemahan utama degradasi pemangkinanfoto bahan pencemar organik oleh TiOl 

adalah jurang jalur tenaga TiOl yang luas dan penggabungan semula yang cepat 

antara pembawa cas (e-j h+ pasangan). Ini menghadkan aktiviti pemangkinanfoto TiOl 

kerana jumlah cahaya yang besar masih tidak dapat merangsangkan fotomangkin 

tersebut. Filem nipis MOF-S/TiOl telah difabrikasi dengan mencelup tiub pyrex lapisan 

TiOl ke dalam larutan MOF-S. Analisis XRD saput nipis MOF-S/TiOl telah mengesahkan 

struktur hablur ''anatase H TiOl dan MOF-S masing-masing. Kajian ini telah 

menggunakan sistem MOF-S/TiO;jUV-A dalam degradasi pemangkinanfoto metil 

jingga. Sistem MOF-S/TiO;jUV-A didapati boleh menyingkirkan 34.3 % daripada S ppm 

akueus metil jingga selepas 2 jam berbanding dengan 32.2 % oleh sistem TiO;jUV-A 

di bawah keadaan tindak balas yang sama. Ini menunjukkan bahawa kehadiran MOF

S dapat meningkatkan aktiviti pemangkinanfoto TiOl. Walau bagaimanapun, 

kecekapan fotodegradasi tersebut mula berkurangan selepas 3 jam masa penyinaran. 

Ini mungkin disebabkan oleh persaingan antara metil jingga dengan spesies 

perantaraannya dalam proses fotodegradasi tersebut. 
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CHAPTER 1 

INTRODUCTION 

1.1 Photocatalytic degradation of organic pollutants by Ti02 

Photocatalytic degradation technique with titanium dioxide (Ti02) is generally applied 

for treating wastewater containing organic contaminants due to its ability to achieve 

complete mineralization of the organic contaminants under mild conditions such as 

ambient temperature and ambient pressure. Photocatalysis studies using titanium 

dioxide have been conducted for the degradation of persistent organic pollutants and 

other organic chemicals which are known to be endocrine disruptors 

(Thiruvenkatachari et al., 2008). TiOrbased photocatalysis has been demonstrated to 

effectively decompose endocrine disrupting chemicals (EDCs) within a short reaction 

period (Chang et aI., 2009). Ti02 photocatalytic process is receiving more attention 

because of its low cost when using sunlight as the source of irradiation (Konstantinou 

& Albanis, 2004). 

This semiconductor photocatalysis relies on the use of metal chalcogenides to 

create oxidized holes, which directly react with adsorbed molecules (Hathway, 2009). 

Semiconducting oxide photocatalysts have been more focused in recent years due to 

their potential applications in solar energy conversion and environmental purification. 

A number of solids can be referred to as photocatalysts and metal oxide 

semiconductors are considered to be the most suitable photocatalysts due to their 

photocorrosion resistance and wide band gap energies (Umar & Aziz, 2013). Several 

semiconductors (Ti02, ZnO, Fe203, CdS, ZnS) can act as photocatalysts but titanium 

dioxide (Ti02) has been the most commonly studied. This is not only due to its ability 

to break down organic pollutants and achieve complete mineralization under ultraviolet 



exposure, (Umar & Aziz, 2013) but also because Ti02 has a high degradation efficiency 

with almost any organic molecules making it an excellent and effective photocatalyst 

for the photocatalytic degradation of various organic pollutants (Hathway, 2009; Uddin 

et aI., 2013). 

Ti02 photocatalyst is also largely available, inexpensive and non-toxic. It does 

not involve mass transfer and can be carried out under ambient conditions 

(atmospheric oxygen is used as oxidant) (Konstantinou & Albanis, 2004). 

Photocatalytic and hydrophilic properties of Ti02 makes it close to an ideal catalyst due 

its high reactivity and relatively high chemical stability (Umar & Aziz, 2013). Ti02 plays 

an important role as a photocatalyst in many applications, such as fog proof and self

cleaning textiles, antibacterial textiles, antiviral textiles, self-cleaning glass, and water 

treatment, including dye removal from industrial wastewater (Uddin et aI., 2013). The 

semiconducting property of TiOz is responsible for the removal of different organic 

pollutants through excitation of TiOz semiconduct~r with a light energy greater than 

its band gap, which could generate electron hole pairs (Mansoori et aI., 2008). 

However, there are a few problems that have arisen which hampered the full 

potential of the photocatalytic Ti02 material (Wang & caruso, 2011) and thus, limiting 

the application of the photocatalysis process. The main issues that restrict the 

photoactivity of TiOz materials are the rapid recombination between the photo-induced 

electron and hole pairs (e-/h+ pairs) which results in low quantum yield (- 10%~ 

(Mansoori et aI., 2008) and the wide band gap energy of Ti02 (3.2 eV for anatase and 

3.0 eV for rutile) that requires high energy UV light (achievable from only S% of 

sunlight) to induce the excitation (Wang & Caruso, 2011). The other problems 

aSSOCiated with the TiOz materials include non-selectivity of the systems (Mansoori et 

aI., 2008), the low mass transport rates between the active centres of Ti02 

photocatalyst and the organic pollutant and lastly the associated issues of nanoparticle 

separation (generally nanoparticle samples are required to achieve high surface areas) 

(Wang & caruso, 2011). 

To enchance the photocatalyst effiCiency, much effort has been devoted to the 

modification of the Ti02 materials by both physical and chemical means. The addition 

of porosity in TiOz based photocatalysts is an important means of enhancing the 
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photocatalytic activity by improving mass transfer within the system, as compared to 

a bulk material. Incorporating porosity within the titania material affords large surface 

areas without associated nanoparticulate separation issues, and increased accessibility 

for the organic pollutant to the active sites on the titania. The increased surface 

accessibility leads to increased photocatalytic reaction centres within the porous 

materials, thereby enhancing the photocatalytic activity and resulting in higher 

adsorption of the organic pollutants (Wang & Caruso, 2011). 

Porous materials, ranging from zeolites to metal-organic frameworks (MOFs), 

offer considerable internal surface areas for the separation, manipulation and catalytiC 

transformation of guest molecules. A porous structure can provide more single sites 

and special passages for charge transport. Thus, the introduction of a porous structure 

into a photocatalyst may result in markedly enhanced photocatalytic reactivity, 

providing a promising strategy for the design and fabrication of novel photocatalysts 

with high performances (Wei et al., 2012). 

1.2 Metal-Organic Frameworks (MOFs) 

MOFs are hybrid organic-inorganic microporous crystalline materials in which a metal

containing inorganic cluster is linked throughout space by a poly-dentate organic ligand 

to form a three-dimensional framework (Civalleri et aI., 2006). MOFs have a structure 

composing of metal-oxide units or transition metal ions (or clusters) joined by organic 

linkers through strong covalent bonds (Yaghi, 2007; Britt et al, 2008). They are self

assemblies of metal ions which act as coordination centers and organic ligands which 

act as linkers between metal centers. Metal-organic frameworks (MOFs) can be 

considered as a relatively new member in the vast field of crystalline nanoporous 

materials (Britt et aI., 2008). Nevertheless, MOFs are the fastest growing class of the 

novel organic-inorganic materials. (Gustafsson, 2012) resulting in the increasing 

number of publications related with MOFs in the past decade (Seda, 2011). 

3 
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Figure 1.1. Number of publications featuring the term "metal organic frameworks" 

in their topics (Seda, 2011). 

These microporous metal-organic frameworks (MOFs) that display permanent 

porosity have attracted a great deal of attention because of their high adsorption 

affinity, diverse structures and pore topologies and accessible functionalization of 

tunnels (Lu et aI., 2012). Their ordered porous constructions with high surface areas 

and porosities, together with the possibility to functionalize the hybrid frameworks are 

the main reasons why MOFs have gained a tremendous interest during the last decade. 

The research area of MOFs have merged the two often separated disciplines; organic 

chemistry and inorganic chemistry (Gustafsson, 2012). These remarkable properties of 

porous MOFs make them attractive for an extremely wide range of potential 

applications such as luminescence, magnetism, catalYSiS, chemical sensing and gas 

(hydrogen, methane and carbon dioxide) storage, adsorption and separation (Yaghi, 

2007; Sang et aI., 2009; Tong et aI., 2013). 

MOF-S which is also known as isoreticular metal-organic framework-1 (IRMOF-

1), is the simplest and most well studied MOF. The structure of MOF-S consists of 

clusters or units of Zn40(C02)6 that are joined together by benzene links. Each 

individual unit is composed of four Zn04 tetrahedra with a common vertex and six 

carboxylate C atoms that form the octahedral unit (Yaghi, 2007). This forms a three 

dimensional cubic framework with the octahedral units at its vertices and the benzene 
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links as the edges. This open framework leads to some exceptional properties that 

have increased the interest in studying this new material for potential applications on 

adsorption, separation and storage. As one of the most stable MOFs, MOF-S also has 

the ability to tune its structure and functionality directly during synthesis making it 

possible to tune the organic linker as well as incorporate reactive groups within a MOF. 

Hence, it is now possible to develop new type of composite materials with improved 

properties (U et a/., 1999; Seda, 2011). In this study, MOF-S/Ti02 composite thin film 

was synthesised and its photocatalytic activity was studied. 

1.3 Objectives of the study 

The objectives of this study are: 

i. to synthesize MOF-S/Ti02 thin film, 

ii. to characterize MOF-S/Ti02 thin film using XRD and SEM, and 

iii. to determine the photocatalytic activity of MOF-5/Ti02 thin film towards the 

degradation of methyl orange using UV-VIS spectrometer. 

1.4 Scope of the study 

Titanium dioxide, Ti02 thin film was synthesized using the sol-gel method as suggested 

by Lee et a/. (2001). It involves dip-coating the pyrex tube in Ti02 sol gel followed by 

calcination at 500°C to obtain Ti02 in anatase phase. MOF-5 was synthesized at room 

temperature based on the method suggested by Tranchemontagne et al. (2008). It 

involves the deprotonation of the organic linker, 1,4-benzyldicarboxylic Acid (BDC) by 

triethylamine (TEA) followed by addition of base, zinc nitrate hexahydrate, 

Zn(N03)2·6H20. The MOF-5/Ti02 thin film was then prepared by dipping the Ti02 

coated pyrex tube into the MOF-5 mother solution at room temperature. The 

crystallinity and surface morphology of the nanomaterials were characterized using 

PXRD and SEM respectively. The photocatalytiC activity of the MOF-S/Ti02 thin film 

towards the degradation of methyl orange was studied using UV-VIS spectrometer. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Advanced Oxidation Process (AOP) 

Advanced oxidation processes (AOPs) have emerged as an important class of 

technology for accelerating the oxidation and destruction of a wide range of organic 

contaminants in polluted water (Goi, 2005). Thus, AOPs are used for application in 

many wastewater treatment areas such as groundwater remediation pump-and-treat 

systems, manufacturing facilities, and domestic wastewater treatment plants due to 

their efficiency in mineralizing a great variety of recalcitrant compounds, through the 

oxidation of generated hydroxyl radicals. Recently, AOPs using UV irradiation and 

photocatalyst titanium dioxide (Ti02) have been gaining growing acceptance as a more 

effective wastewater treatment method (Thiruvenkatachari et al., 2008). 

AOPs have been broadly defined as near ambient temperature and pressure 

treatment processes based on the in situ generation of highly reactive radicals, 

especially the hydroxyl radical (.OH) as the primary chemical oxidant (Goi, 2005). The 

aim of AOP is to destroy even the recalcitrant organic pollutants by the generation of 

free hydroxyl radicals (.OH). It utilize the very strong oxidizing power of hydroxyl 

radicals to oxidize organic compounds to the preferred end products of carbon dioxide 

and water. The hydroxyl radicals in the AOPs are very reactive but short-lived. They 

are non-selective chemical oxidants which act very rapidly with most organic 

compounds. The radicals need to be produced on site, in a reactor where they can be 

in contact with the organiCS in the wastewater (Munter, 2001). 



The generation of .OH radicals can be accelerated by combining ozone (03), 

hydrogen peroxide (H202), titanium dioxide (Ti02), UV radiation, ultrasound and (or) 

high electron beam irradiation. Hence, the various systems of AOPs, in which the 

hydroxyl radicals may be produced, are ultraviolet radiation/hydrogen peroxide 

(UV/H202), ozone/hydrogen peroxide (Ozone/H202), ultraviolet radiation/ozone 

(UV/Ozone), Fenton's reagent (ferrous iron and hydrogen peroxide) (H202/Fe2+), and 

titanium dioxide/ultraviolet radiation (Ti02/UV) (Zhou & Smith, 2002). Once generated, 

the hydroxyl radicals aggressively attack virtually all organic compounds. Depending 

upon the nature of the organiC species, two types of initial attack are possible: the 

hydroxyl radical can abstract a hydrogen atom from water, as with alkanes or alcohols, 

or it can add itself to the contaminant, as in the case of olefins or aromatic compounds 

(Munter, 2001). 

AOPs involve the two stages of oxidation which are the formation of strong 

oxidants such as hydroxyl radicals, and reaction of these oxidants with organic 

contaminants in water. However, the term advanced oxidation processes refers 

speCifically to processes in which oxidation of organic contaminants occurs primarily 

through reactions with hydroxyl radicals. Unlike air stripping and adsorption, which are 

phase-transfer processes, AOPs are destructive processes. AOPs destroy organic 

contaminants directly in the water through chemical transformation, as opposed to 

simply transferring them from the liquid phase into a gas phase (in the case of air 

stripping) or solid phase (in the case of GAC and resins). AOPs are divided into 

homogenous and heterogenous systems in which hydroxyl radicals are generated with 

or without UV irradiation (Goi, 2005; Thiruvenkatachari et al., 2008). 

2.1.1 Heterogeneous photocatalysis 

Among AOPs, heterogeneous photocatalysis have been proven to be of interest due to 

its effiCiency in degrading recalcitrant organic compounds (Umar & Aziz, 2013). 

Heterogeneous photocatalYSiS can be defined as a "catalytiC reaction involving the 

production of a catalyst by absorption of light." (Lazar & Varghese, 2012). Developed 

in the 1970s, the interest in heterogeneous photocatalysis started with the discovery 

of photochemical splitting of water into hydrogen and oxygen with Ti02 and has since 

been given considerable attention for the past two decades in studies of the 

7 



applications of heterogeneous photocatalytic oxidation process with a view to 

decompose and mineralize recalcitrant organic compounds (Ibhadon & Fitzpatrick, 

2013; Umar & Aziz, 2013). 

In recent years, interest has been focused on the use of semiconductor 

materials as photocatalysts for the removal of organic and inorganic species from 

aqueous or gas phase. This method has become an important environmental 

decontamination method suitable for treatment of water, aqueous wastes and 

wastewater due to its ability to oxidise the organic and inorganic substrates (Laoufi et 

al, 2013). Heterogeneous photocatalysis is a .favorable combination of charge 

transport features, electronic structures, excited-state life spans, and light absorption 

effects (Tan et al., 2011). Heterogeneous photocatalytic processes use certain metal 

oxides that can readily generate hydroxyl radicals on the surface of particles when 

absorbing UV light but the most common heterogeneous photocatalytic processes are 

Ti02/UV and Ti02/Hz02/UV. 

The TiOz-based photocatalysis process is initiated through photo-activation of 

the TiOz semiconductor. When TiOz is irradiated with ultraviolet (UV) light, (Tan et al, 

2011) the semiconductor is activated by the absorption of photons with energy equal 

to, or greater than that of the band gap, which induces electron transitions from the 

valence band to the conduction band, generating a hole at the valence band and 

forming electron-hole pairs (e-/h+ pair) (a super reductant and oxidant, respectively) 

(Chang et al., 2009; Wang & Caruso, 2011). 

(2.1) 

where cb is conduction band and vb is valence band. 

Consequently, following irradiation, the TiOz particle can act as either an 

electron donor or acceptor for molecules in the surrounding medium (Ibhadon & 

Fitzpatrick, 2013). In the absence of an electron acceptor or donor in the medium, 

recombination of electron/hole pair occurs, hindering the photodegradation process. 

The electron and hole can recombine, releasing the absorbed light energy as heat, with 

no chemical effect. Otherwise, the charges can move to "trap" sites at slightly lower 
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