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a b s t r a c t

Ecological communities are structured by competitive, predatory, mutualistic and parasitic in-
teractions combined with chance events. Separating deterministic from stochastic processes is
possible, but finding statistical evidence for specific biological interactions is challenging. We
attempt to solve this problem for ant communities nesting in epiphytic bird’s nest ferns (Asplenium
nidus) in Borneo’s lowland rainforest. By recording the frequencies with which each and every single
ant species occurred together, we were able to test statistically for patterns associated with inter-
specific competition. We found evidence for competition, but the resulting co-occurrence pattern
was the opposite of what we expected. Rather than detecting species segregationdthe classical
hallmark of competitiondwe found species aggregation. Moreover, our approach of testing indi-
vidual pairwise interactions mostly revealed spatially positive rather than negative associations.
Significant negative interactions were only detected among large ants, and among species of the
subfamily Ponerinae. Remarkably, the results from this study, and from a corroborating analysis of
ant communities known to be structured by competition, suggest that competition within the ants
leads to species aggregation rather than segregation. We believe this unexpected result is linked with
the displacement of species following asymmetric competition. We conclude that analysing co-
occurrence frequencies across complete species assemblages, separately for each species, and for
each unique pairwise combination of species, represents a subtle yet powerful way of detecting
structure and compartmentalisation in ecological communities.
© 2016 The Authors. Published by Elsevier Masson SAS. This is an open access article under the CC BY

license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The question of whether rules do or do not govern the coexis-
tence of species has interested ecologists for decades (Bell, 2001;
Chesson, 2000; Connor and Simberloff, 1979; Diamond, 1975;
.F. Ellwood), bluethgen@bio.
T.M. Fayle), waf1@cam.ac.uk

r Masson SAS. This is an open acce
Hubbell, 2001; Leibold, 1995; Matthews and Whittaker, 2014). All
species interact, both with their environment, and with each other.
These interactions can be negative, as in the case of interspecific
competition or predation, or the interactions can be positive, as in
the case of mutualism or facilitation. The importance of positive
interactions to the composition and stability of ecological com-
munities is becoming increasingly acknowledged. Indeed, the
overall balance between positive and negative interactions may be
fundamental to the maintenance of biodiversity (Mougi and
Kondoh, 2012; Wang et al., 2012). For example, parasitic species
can only establish if their hosts are present (we define this as a
positive interaction, since parasite and host usually occur together),
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and mutualists can face extinction if the partner species dies out
(Koh et al., 2004). Interspecific interactions, whether positive or
negative, cause shifts in the abundance of species, and generate
communities with predictable composition (Hejda et al., 2009; Parr
and Gibb, 2010).

Species segregation, the result of negative interspecific in-
teractions, is traditionally associated with competition. However,
species segregation in ecological communities may also result from
environmental filtering (Kraft et al., 2015) and dispersal limitation
(Hubbell, 2001). By controlling for these effects, a previous study
revealed the importance of interspecific competition relative to
stochastic processes in structuring arthropod decomposer com-
munities (Ellwood et al., 2009). However, given that the physical
tolerances and dispersal abilities of species are difficult to quantify,
it is challenging to define the contributions of particular species,
and of particular pairs of species, to the overall levels of competi-
tion within a community.

Here we suggest a way around such problems, using ants in a
tropical rainforest to demonstrate our technique of analysing each
potential interaction between species. Our analysis gradually drills
down from overall co-occurrence patterns across an entire com-
munity to the analysis of co-occurrence in specific species pairs.
Unlike previous studies, we can detect segregation (or the opposite,
species aggregation) not only at the level of the entire community,
but we can also identify specific species that co-occur with others
less (or more) often than expected e for example, species that
competitively exclude each other. Finally, we analyse co-occurrence
between specific pairs of species, thus identifying pairs that often
co-occur (e.g. if they are mutualists, or host and parasite), or ones
that do not co-occur (e.g. through competitive exclusion).

The ant communities inhabiting litter-trapping epiphytic bird’s
nest ferns (Asplenium nidus) are an ideal study system to analyse
interspecific competition and community assembly: ants are
diverse, and often aggressively displace other species through
direct behavioural interactions. Thus, competition is often thought
to be a major factor in structuring ant communities, strongly
affecting patterns of co-occurrence (Blüthgen and Stork, 2007;
Cerd�a et al., 2013). Ants compete for food or for nest sites
(Blüthgen and Feldhaar, 2010), and should display direct competi-
tion for nest space within the fern’s root mass. Thus the limiting
resourcedspacedis both clearly defined and quantifiable,
depending on the size of the fern (Ellwood and Foster, 2004;
Ellwood et al., 2002; Fayle et al., 2012). In this view, the in-
habitants of epiphytic ferns are analogous to communities on
oceanic islands (Collins et al., 2011; Gotelli et al., 2010).

Explanations for large-scale patterns of ant co-occurrence
sometimes refer to ‘ant mosaics’. The rationale behind ant mo-
saics is that a small number of species exclude or selectively
tolerate each other, while the remaining species are unaffected
(Blüthgen et al., 2004). Previous attempts to establish the existence
of ant mosaics in tropical rainforest may have been thwarted by
insufficient spatial resolution and poor statistical power (Blüthgen
and Stork, 2007; Floren and Linsenmair, 2000; Ribas and
Schoereder, 2002). Similarly, while it is known that nest sites in
tropical rainforests are limited (Blüthgen and Feldhaar, 2010),
previous studies (Fayle et al., 2013) of ant co-occurrence in bird’s
nest ferns have not examined pairwise species interactions, so the
absolute strength of interspecific competition remains unclear.
While our study of ant communities in epiphytic ferns is one of co-
occurrence patterns in well-defined patches rather than ant mo-
saics (i.e. territories) in a contiguous habitat, we believe that
studying the occupancy of patches that are competed for will help
to shed light on questions surrounding the existence of antmosaics.
Performing analyses at small spatial scales may reveal patterns of
aggregation or segregation that would otherwise be overlooked.
In the present study, we searched for evidence of competition
for nest sites among fern-dwelling ants. Although our focus was on
competition rather than environmental filtering, we wanted to
include species interactions throughout the entire rainforest, rather
than from an artificially delineated subset of the habitat. However,
physical conditions differ between strata e e.g. the canopy expe-
riences harsher abiotic conditions with stronger climatic fluctua-
tions than the understorey (Nadkarni, 1994; Parker, 1995). Such
environmental gradients affect levels of competition in the fern’s
decomposer communities (Ellwood et al., 2009), and in the struc-
ture of intertidal seagrass communities (Barnes and Ellwood,
2011a, b; 2012a). With this in mind, we studied ant meta-
communities in ferns from the canopy and the understorey. By
removing the entire fauna fromwithin the ferns and then allowing
them to be recolonized, we were able to observe communities at
different successional stages, where competition might differ e.g.
due to dispersal limitation. We firstly analysed negative and posi-
tive interactions for the entire set of experimental ferns. Subse-
quently, we analysed whether competitive exclusion was
detectable in specific subsets of ferns. Compared to the under-
storey, we expected that the harsher conditions of the canopy act as
an environmental filter, thus reducing competition and leading to a
less structured community. Furthermore, community structure
should be lowest during early recolonisation, when dispersal-
limited competitors may have yet to reach the ferns. Finally, we
searched for patterns of competition depending on the ant’s body
size, and on their subfamily membership.

2. Materials and methods

2.1. Experimental design

We compared the structure of ant communities in 180 bird’s
nest ferns (Asplenium nidus) sampled from five emergent Para-
shorea tomentella (Dipterocarpaceae) trees in undisturbed lowland
dipterocarp forest in Danum Valley, Sabah, Borneo (4�580N,
117�480E). We chose P. tomentellawhich, being of similar height and
appearance provided standard microhabitats for epiphytic ferns.
Along with other ferns, A. nidus is one of the most common epi-
phytes large enough to provide nesting space for ants in Southeast
Asian rainforests (Tanaka et al., 2010). We distinguished 90 ferns
from each of two heights: understorey (3e4 m) and canopy
(45e50 m). Within each height, mature ant communities were
sampled from pristine sets of 30 ferns that we ensured were as
homogeneous as possible, by controlling for fern size, for season
and for microhabitat. The entire fauna was removed from the ferns,
which were then standardised to the same size and reintroduced
onto the five P. tomentella trees (n ¼ 12 ferns per tree each for
canopy and understorey). Half of the defaunated ferns were
sampled after one month (early successional communities) and
after eight months (more established communities), respectively.
All ferns were of a similar size (range 2.2e3.4 kg fresh weight). See
Appendix A1 for more details.

2.2. Statistical design

Our statistical approach measures whether the co-occurrence
pattern for each species deviates significantly from what would
be expected if species co-occurred at random. For each possible pair
of species it calculates how many times those species co-occurred
in the same fern (‘number of associations’). The dataset is then
shuffled, and species occurrences are randomly assigned to ferns.
Like the C-score (Gotelli, 2000; Stone and Roberts, 1990), our al-
gorithm is based on a site (i.e. fern) by species matrix, and uses
presence/absence data. We present results from the C-score for



M.D.F. Ellwood et al. / Acta Oecologica 75 (2016) 24e3426
comparison, using the fixed-equiprobable algorithm, inwhich each
species is assigned the same number of occurrences as in the actual
dataset (i.e. species abundances are maintained), but each fern is
equally likely to be assigned an occurrence (Appendix A2.3). This
was the correct algorithm to use, since the numbers of species per
fern fitted a Poisson distribution significantly better than a negative
binomial distribution (AIC: 711.4 vs. 713.4). For each of 1000
random simulations, we calculated the numbers of associations for
each species pair. This distribution of numbers of associations was
then compared to the observed value. Deviations were considered
significant if the observed value fell into the lower or the upper 2.5%
of random simulations, and additionally at the species and species
pair level (see below) if the difference between the observed and
expected values of the respective metric was at least 1. The latter
criterion was applied to avoid erratic results in rare species, whose
numbers of occurrences were too low for reliable conclusions. The P
value (as shown in Table 1) is the proportion of simulated values
that were more extreme than the observed value in the direction of
the relevant tail. Each simulation thus yielded an upper and a lower
P value (each one-tailed, with a ¼ 0.025). Since these P values
reflect either segregation or aggregation, we termed them Pseg and
Pagg, respectively.

First, we analysed co-occurrences at the ‘community’ level
(yielding two P values: Pnw-agg for a test of aggregation and Pnw-seg
for a test of segregation). This metric is analogous to the C-score.
However, unlike the C-score, ourmethod can simultaneously detect
aggregation and segregation. Secondly, we analysed the ‘species
level’, where we calculated whether every single species i co-
occurred with any of the other species more (Psp(tot)(i)-agg) or less
(Psp(tot)(i)-seg) frequently than expected, and whether it was the
solitary inhabitant of a fern more or less often than expected
(Psp(lone)(i)-agg and Psp(lone)(i)-seg). Finally, we analysed the ‘species
pair level’ to see whether specific pairs of species occurred together
more or less often than expected (Pspp-agg and Pspp-seg).

The proportion of species and the proportion of species pairs
deviating from random were used here as community-level mea-
sures of compartmentalisation. At the species and species pair level,
multiple P values were generated simultaneously. While we were
able to analyse the proportions of non-random species, potential
Table 1
Evidence for segregation (Pseg, Pnw-seg) or aggregation (Pagg, Pnw-agg) at the community le
expectations. For the C-score and the community level indices, the table shows one-side
significant (P < 0.025). For the percentages of deviant species or species pairs (those that s
among the communities of the same block, i.e. with the same footnote number. All data
5 mm; small ants: < 5 mm.

No. of species No. of sites No. of occur-rences

C-score

Pseg Pagg

Whole community 118 177 379 0.941 0.05
Australian community 34 53 286 1.000 <0.00
Canopy ferns 68 81 272 0.557 0.44
Understory ferns 86 96 312 0.973 0.02
1-month ferns 46 32 86 0.15 0.85
8-month ferns 59 61 206 0.982 0.01
Pristine ferns 74 76 292 0.047 0.95
Large ants 39 114 173 <0.001 1.00
Small ants 79 157 411 0.160 0.84

a c2 ¼ 39.1,df ¼ 1,P < 0.0001.
b c2 ¼ 146.5,df ¼ 1,P < 0.0001.
c c2 ¼ 0.4,df ¼ 1, P ¼ 0.52.
d c2 ¼ 3.0,df ¼ 1,P ¼ 0.08.
e c2 ¼ 15.6,df ¼ 2,P¼ 0.0004.
f c2 ¼ 2.6,df ¼ 2,P ¼ 0.28.
inflation of type I errors due to multiple testing could invalidate
conclusions regarding the identity of the non-random species. In
the results, we therefore report uncorrected P values, but also give
results corrected for false discovery rate (FDR, see Appendix A2.1).

2.3. Comparison to a competitively structured community

To calibrate our results with data from a community known to
be structured by competition, we applied the same analyses to an
existing dataset of ants attending baits in a Northern Australian
rainforest. In contrast to our fern dataset, which was based on nest
sites, the Australian ants were surveyed at artificial baits made up of
sugar and amino acid solutions, and thus competed for food instead
of nest space. This dataset consisted of ant occurrence data from 53
trees at Cape Tribulation, Queensland, Australia. In this study,
multiple baits were placed at each tree, and ant occupancy was
recorded four to five times after placing them. Data from different
baits were pooled for each tree. The ant community at these baits
reflects a genuine ant mosaic, and aggressive displacement was
confirmed by behavioural observations. Different analyses based on
this dataset have been published elsewhere (Blüthgen and Fiedler,
2004; Blüthgen et al., 2004).

2.4. Testing for non-random co-occurrence in species subsets

Species that are more ecologically similar are expected to
compete more strongly. We tested this hypothesis in two ways.
First, the theory of limiting similarity (Hutchinson, 1959;
MacArthur and Levins, 1967) predicts that species of similar body
size should compete more intensely. While many different traits
should influence interspecific competition, we hypothesized that
similar body size should lead to similar nest site requirements, such
that species with different body sizes are more likely to co-occur
than species of similar size. We partitioned our dataset into spe-
cies greater than or less than 5 mm and tested for competitive
exclusion within these subsets of similar size. Second, by pooling
species according to subfamily (see below), wewere able to test for
competitive exclusion between closely related species (see
Appendix A2.1). Closely related species should inhabit similar
vel, and proportions of species or species pairs deviating significantly from random
d P-values for a test of the ’fixed-equiprobable’ hypothesis. Proportions in bold are
ignificantly deviate from random expectation), values in bold indicate that they differ
, except for ‘Australian community’, refer to the dataset from Borneo. Large ants: �

Association index

Community
level

Species level Species pair level

Pnw-seg Pnw-agg Proportion of deviant species Proportion of deviant spp. pairs

9 0.994 0.006 5.9%a 0.49%b

1 1.000 <0.001 53.0%a 5.53%b

3 0.909 0.098 1.5%c 0.79%d

7 0.995 0.009 4.7%c 0.41%d

9 0.916 0.100 4.35%e 0.39%f

8 0.998 0.003 16.95%e 0.70%f

3 0.315 0.697 0.00%e 0.37%f

0 <0.001 1.000 7.7% 0.7%
0 0.450 0.560 5.1% 0.5%
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niches and therefore compete more strongly. Having subsumed
species into subfamilies, we were able to use the same algorithm to
analyse co-occurrences at the ‘subfamily’ or ‘subfamily pair’ level.
Subfamily co-occurrence was analysed using (1) a binary approach,
i.e. presence or absence of a subfamily in a fern (P values with index
’bin’), and (2) a quantitative approach, which accounted for the
number of species per subfamily present in a fern (P values with
index ’quant’; see Appendix A2.1).

3. Results

3.1. Ant community composition in epiphytic ferns

Our experiment yielded 162,019 ants from six subfamilies, 47
genera and 118 species, and a total of 379 occurrences. Only 29
species occurred in more than five ferns. Species richness was
highest in the mature ant communities of pristine ferns (74 species,
3.8 ± 0.2 SE spp. per fern), followed by recolonized ferns after eight
months (59 species, 3.4 ± 0.3 spp. per fern) and one month (46
species, 2.2 ± 0.3 spp. per fern) (Fig. 1). Species numbers per fern
differed between the three recolonisation stages but not between
height levels (GLM: stage: c2

2 ¼ 25.3, p < 0.0001, height: c2
1 ¼ 0.6,

p ¼ 0.45; interaction: c2
2 ¼ 2.8, p ¼ 0.25). All categories of ferns in

the study had species in common. The number, and proportion, of
shared species between the understorey and the canopy increased
markedly from one month (4 spp./9%) to eight months (12 spp./
20%) to mature communities in pristine ferns (23 spp./31%; Fig. 1).
The composition of the ant communities differed between suc-
cessional stages and heights (PERMANOVA: both pseudo-F > 1.3,
p < 0.0001), but were not affected by the tree individuals bearing
the ferns (PERMANOVA: pseudo-F ¼ 1.1, p ¼ 0.17).

3.2. Species co-occurrence at the community level

In communities structured by competition the Stone and
Roberts (1990) observed C-score should be significantly higher
than a C-score simulated at random (Gotelli, 2000). However, the
simulated and observed C-scores for the fern ant communities
were not significantly different (Table 1). To corroborate this
seemingly anomalous result, we repeated our analysis on co-
occurrence data from a genuine ant mosaic published in Blüthgen
and Fiedler (2004). In this paper, ant communities from Australia
were shown to be structured by competition, with behavioural
observations confirming overt aggression between participating
ant species (Blüthgen and Fiedler, 2004; Blüthgen et al., 2004). The
simulated and observed C-scores for the Australian ants were
significantly different, but not in the directionwe expected. Among
the Australian ants, the observed C-score was significantly lower
Fig. 1. Venn diagrams showing numbers of species unique to a particular time and height, a
(1a) in the canopy had a total of 16 þ 23 ¼ 39 species. Of these 39 species, 23 also occurre
canopy ferns one month after defaunation (and 31 did not).
than the simulated C-score, suggesting aggregation rather than
segregation. Similarly, our pairwise analysis at the community level
found significantlymore positive associations than expected, rather
than fewer (Table 1). Our analysis also revealed significantly more
positive associations (i.e. aggregation) among the fern ants, even
though this was not detected by the C-score (Table 1; Fig. 2).

3.3. Species co-occurrence at the species level

We found more positive than negative associations in our fern
dataset, making it qualitatively similar to the Australian dataset, but
the quantitative results from the two studies contrast sharply. In
the Australian ant mosaic 18 out of 34 species (53%) were positively
(16 spp.) or negatively (2 spp.) associated (Blüthgen and Fiedler,
2004) (Table 1; Fig. 3b). In contrast, of the 118 species found in
the ferns, surprisingly few (5.9%) showed non-random associations
with any other species: four showed more associations than ex-
pected (each Psp(tot)agg < 0.025) (Table 1; Fig. 3a), and three showed
fewer associations than expected (each Psp(tot)seg or Psp(lone)
seg < 0.025). After FDR correction, Anonychomyrma gilberti retained
its negative association, and 15 species pairs retained their positive
associations. In the fern dataset, no species remained significant
after FDR correction.

3.4. Species co-occurrence at the species pair level

Among the fern ants, 33 unique pairs of species were positively
associated with each other, and one pair was negatively associated.
As in the previous species-level analysis, these are very few (0.5%)
compared with the 6903 pairs possible (Table 1; Fig. 4a). Again, we
see a sharp contrast with the strongly structured ant mosaic in
Australia (Blüthgen and Fiedler, 2004; Blüthgen et al., 2004), which
had 31 out of 561 non-random species pairs (5.5%) (Table 1; Fig. 4b).
Remarkably, three of the 33 species pairs which showed positive
associations in the fern dataset involved the same Diacamma spe-
cies (each Pspp-agg� 0.025): three ant species (a Polyrhachis and two
Pheidole species) were only found together with this Diacamma
species but not without it. In particular, the Polyrhachis species
occurred 11 times with, but never without it (Pspp-agg < 0.00001 in
an analysis with 100,000 randomisations). After FDR correction,
only this pair remained significant in the fern dataset. In the
Australian dataset, three negatively (each involving Anonycho-
myrma gilbertii) and three positively associated species pairs
remained significant after FDR correction.

3.5. Evidence for limiting similarity: body size

A specific prediction from the principle of limiting similarity is
nd numbers of species shared between times and heights. For example, pristine ferns
d in pristine understory ferns (and 16 did not), whereas eight species also occurred in



Fig. 2. Total number of pairwise associations on the community level in (A) the epiphytic ferns (Borneo) and (B) at food baits (Australia). The histograms show the values expected
from null model simulations (grey bars) and the observed value in the dataset (red line). For both datasets, the number of associations is significantly higher than expected from the
null models (Pnw-agg; Table 1), indicating overall species aggregation.(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of
this article.)
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that similar body size increases competition between species, and
therefore decreases the probability of co-occurrence between those
species. Overall, occurrence of smaller ants (<5 mm) was unaf-
fected by the presence of larger ones (�5 mm) (Appendix A3).
However, the size ratios between the 33 positively associated
species pairs was 0.53 ± 0.045 SE, i.e. one species was roughly half
the size of the other. In contrast, the single pair of negatively
associated (mutually exclusive) species was of similar size (size
ratio 0.92). This difference is significant (t-test: t ¼ 8.7, df ¼ 32,
P < 0.0001).

Large species rarely co-occurred with other large species: sig-
nificant segregation was detected in a dataset containing only
large species (N ¼ 39 species, including 24 formicine and 9
ponerine species, 173 occurrences on 114 ferns; Pnw-seg < 0.001).
The C-score was significantly higher than random, similarly sug-
gesting structuring by interspecific competition (P < 0.001,
Table 1). In contrast, the communities of smaller species (N ¼ 79
species, 411 occurrences on 157 ferns), did not deviate from
randommodels using either index, despite larger sample sizes (all
Pnw-seg � 0.16).
3.6. Evidence for limiting similarity: subfamily membership

Another assembly rule based on the competitive exclusion
principle is that competition between closely related species
should be stronger than between distant relatives. We therefore
analysed co-occurrence between and within subfamilies, assuming
that mutual exclusion should be greater in ecologically more ho-
mogeneous subfamilies. Members of the Ponerinae, many of which
are large and predatory, were more likely than expected by chance
to be the only ant species in a fern (Psp(lone)-bin-seg ¼ 0.014, Psp(lone)-
quant-seg ¼ 0.005; N ¼ 13 species; average size 7.8 ± 1.1 SE mm). This
was not found for any other subfamily (all other Psp(lone)-bin-seg,
Psp(lone)-quant-seg > 0.15). In contrast, levels of co-occurrence were
greater than expected among the Myrmicinae (2.5 ± 0.1 SE mm,
N ¼ 50), which are mostly small, and among the Formicinae, which
include small and large species (5.8 ± 0.5 SE mm, N ¼ 37) (Myr-
micinae: Psp(tot)-bin-agg ¼ 0.014, Psp(tot)-quant-agg ¼ 0.001; Formicinae:
Psp(tot)-bin-agg ¼ 0.005, Psp(ltot)-quant-agg ¼ 0.018).

By accounting for the number of co-occurrences between spe-
cies within each subfamily, instead of just noting whether a sub-
family was present in a fern, we tested whether members of the
same subfamily excluded each other. However, despite a trend of
competitive exclusion among the Ponerinae (Pspp-quant-seg ¼ 0.062;
N ¼ 13 species), none of the subfamilies significantly excluded each
other (all other Pspp-quant-seg > 0.13).

3.7. Competition under harsh vs. more equable conditions: canopy
versus understorey ferns

We expected competition to be weaker in the canopy, where
daily fluctuations in temperature and humidity are greater than in
the understorey. Indeed, neither the C-score, nor the overall
number of associations in our index, differed significantly from
random expectations. Only one out of 68 species (1.5%), and 18 out
of 2278 species pairs (0.8%), differed positively or negatively from
random (Table 1). In the understorey, where physical conditions
were more moderate (e.g. reduced fluctuations in temperature and
humidity) we found stronger evidence for competition, but again
this evidence took the form of aggregation rather than segregation.
The C-score was significantly lower in the understorey than ex-
pected, and our index found significantly more positive associa-
tions (Table 1).

3.8. Evidence for dispersal limitation: early, middle and late
succession ferns

In new communities, dispersal/competition trade-offs favour
dispersers. Dispersal limitation under these circumstances will
engender randomness in community structure (Bell, 2001; Hubbell,
2001). Indeed, after one month, neither the C-score nor the total
number of associations in our index differed from random expec-
tations (Table 1). However, after eight months, the C-score was
significantly smaller than expected, again suggesting aggregation,
and our index revealed significantly more positive associations
(Table 1). The proportion of significantly associated species (i.e.
Psp(tot)seg, Psp(tot)agg, Psp(lone)seg or Psp(lone)agg < 0.025) was also
highest after eight months (Table 1). As with the communities after
one month, co-occurrence was random in the pristine, mature
communities, suggesting that the strength of interspecific compe-
tition between early and late successional species peaked at in-
termediate stages of recolonisation.

Given the significant differences in competition between the
canopy and the understorey, we wanted to be sure that patterns of
recolonisation in the different habitats were not affected by
canopy-understorey differences. We therefore repeated separate
analyses for each time period in the two strata. Our results were
unchanged. Pristine communities, and those after one month in
both the canopy and in the understorey, remained random (Pnw-

agg � 0.46). Ant communities in canopy ferns after eight months



Fig. 3. Total number of pairwise associations at the ant species level in communities (A) in epiphytic ferns and (B) at food baits, shown only for the 15 most common species. For each
species, boxplots indicate the simulated numbers of co-occurrences, while the red dots denote observed numbers of co-occurrences (with any other species) relative to the boxplot for
that particular species. If the observed number of co-occurrences (red dot) is higher than the null expectation, then the species shows aggregatory behaviour (‘tolerant’), while if the
observed number of co-occurrences is lower than the null expectation, then the species shows segregatory behaviour (‘intolerant’). Significant deviation from the null model is
indicated with asterisks. The numbers give the number of occurrences for each species. The extent and vertical position of each boxplot was standardised to fit the graph.



Fig. 4. Numbers of associations between pairs of the most common species in (A) communities in which ants compete for nesting space in epiphytic ferns and (B) communities in
which ants compete for food resources. Numbers refer to the number of co-occurrences between each pair of species. Species pairs with significantly more co-occurrences than
expected (positive interactions) are denoted in green, those with significantly fewer ones (negative interactions) in red.(For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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were weakly aggregated (Pnw-agg ¼ 0.029), although this effect was
not strong enough to affect the overall canopy result. However,
understorey ferns after eight months remained strongly aggregated
(Pnw-agg ¼ 0.005).
4. Discussion

We used a novel statistical approach to test for effects of
competition during patch occupancy as ants colonized epiphytic
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bird’s nest ferns in Borneo. Our statistical approach, in combination
with the experimental setup of standardised ferns at different
heights and different stages of recolonisation, was designed to
dissect the ant community at multiple levels of environmental
stress and ecological succession. We analysed the whole commu-
nity, as well as single species, species pairs, and subfamilies.

4.1. Effects of asymmetric competition

Remarkably, the observed C-scores from our eight month ferns
and the Australian ant mosaic were lower than C-scores simulated
at random, although competition is thought to yield the opposite
effect (Gotelli, 2000). The C-score essentially measures how often
two species fail to occur together in a community; the underlying
reasoning being that interspecific competition creates species
segregation, which in turn leads to a ‘checkerboard’ distribution of
species (Gotelli, 2000). But what if species aggregate rather than
segregate? Competition between ant species is often asymmetric,
with species differing in their competitiveness (Menzel et al.,
2010a, 2010b; Savolainen and Veps€al€ainen, 1988). For example, a
typical ant mosaic is formed by dominant ant species, some of
which (like Oecophylla) tolerate many subordinate species, while
others (like Anonychomyrma) do not. In such a case, the overall
species distribution will be clumped rather than uniform: some
sites are occupied by Anonychomyrma, while Oecophylla and most
subordinate ant species crowd into the remaining sites. For
example, in the Australian ant metacommunity we analysed for
comparison, Anonychomyrma was significantly intolerant (Psp(tot)-
seg < 0.001; 1.5 ± 0.6 co-occurring species), whereas Oecophyllawas
significantly tolerant (Psp(tot)-agg < 0.001; 5.7 ± 0.5 co-occurring
species) (Fig. 3b). Thus, all subordinate species and Oecophylla
each co-occurred with more species than they would if all species
were randomly distributed across the sites. Under such a scenario,
the C-score will be lower than random, and our index will give a
higher number of associations (Fig. 2b). This result, while surpris-
ing, is plausible given previous studies of ant mosaics in which the
number of positive associations reached or even exceeded the
number of negative associations between abundant species
(Blüthgen and Stork, 2007; Leston, 1975; Room, 1971). Such
asymmetries may lead to species aggregation rather than species
segregation.

4.2. Evidence for competition from analysing co-occurrence
patterns

Deciphering the signature of interspecific competition from co-
occurrence patterns is difficult and controversial. For example, the
presence of highly dominant species alone may result in deter-
ministic patterns (Barnes and Ellwood, 2012b). The current study is
no exception in that we challenge current knowledge of species
coexistence among ants. Our results suggest a shift in the relative
importance of equalizing and stabilizing mechanisms, which
essentially govern how rare species increase, and common species
decrease in abundance (Chesson, 2000).

Based on our results, we suggest that a re-analysis of species co-
occurrence for a wide range of taxa might be worthwhile. There
may be structure in a community even if, at the community level,
there is no difference from random expectations. To use ant mo-
saics as an example, let two mutually exclusive dominant ant
species each tolerate a non-overlapping set of subordinate species.
Overall, this community may show neither a clumped nor a uni-
form distribution, but one whichdat the community levelddoes
not differ from random. This will be the case if neutral interactions
between dominants and their subordinates are balanced by the
competitive interactions between pairs of dominants (Blüthgen
and Stork, 2007; Menzel et al., 2010a). Such a community is
clearly structured: dominant species exclude each other, and sub-
ordinate ones never co-occur if they are associated with different
dominant species. Although both the C-score and our community-
level association index may fail to detect such a pattern, it is
detectable using the proportion of non-random species or species
pairs. These two measures will be higher in a structured commu-
nity compared with a random one, and are therefore useful as
measures of compartmentalisation or modularity, analogous to
those used in bipartite communities (Dicks et al., 2002; Olesen
et al., 2007).

4.3. Unexpectedly high stochasticity in community structure

It is striking that we found little evidence of species segregation
and relatively little community structure in the ant communities of
bird’s nest ferns. This suggests that competition for nest sites is not
as strong as assumed (Blüthgen and Feldhaar, 2010; Cerd�a et al.,
2013). One reason for the apparent lack of the ‘traditional’ hall-
mark of species segregation may be that some dominant canopy
ants weave or excavate their own nests and therefore do not
compete for nest sites. These species were outside the scope of the
present study. However, our dataset included other dominants such
as Crematogaster difformis, which nests in ferns (Tanaka et al., 2012),
and several Dolichoderus and Pheidole species; competitive exclu-
sion between these dominants at nest sites would have been
detected. It is important to stress that the omission of some dom-
inants from our dataset is not a sampling artefact; it is simply due to
the fact that these species do not participate in competition for
ferns as nest sites. Since species differ in their respective intensities
of competition for different resources, it is probable that, depend-
ing on the resource under investigation, studies on interspecific
competition may yield different results, even within the same
community.

4.4. Is there limiting similarity?

Despite an overall lack of species segregation, large species
showed strong competitive exclusion. We suggest that body size
affects the degree of competition for nest sites between species,
such that competition is highest for species with similar body sizes.
The smaller species might have nesting habits diverse enough to
co-exist in the same fern. Interestingly, the positively associated
species pairs all were of different sizes, whereas the one pair of
mutually exclusive species was of similar size. This corroborates the
suggestion that co-existence in the same nest site is more likely
among species of different body sizes (Kaufmann et al., 2003).
However, body size is but one trait that affects interspecific in-
teractions; and limiting similarity may apply for a wide variety of
further ecological traits.

Among subfamilies, ponerine species excluded other ants,
whereas members of other subfamilies did not. Competitive
exclusion has repeatedly been shown to be highest among mem-
bers of the same guild (Both et al., 2011; Collins et al., 2011), and
should be more pronounced among related species since they are
likely to be ecologically more similar (but see Beaudrot et al. (2013).
It is possible that ponerines are ecologically more homogeneous e
most species are predatory e while members of other subfamilies
have more diverse foraging niches, diminishing interspecific
competition and consequently species segregation. Unfortunately,
the feeding niches of most ants are not sufficiently studied to allow
further division into feeding guilds (Collins et al., 2011). Additional
knowledge, such as guild membership of species, has revealed
structure in communities that had seemed random before
(Sanderson, 2004). However, even among ants, niche
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differentiation is not always sufficient to explain the coexistence of
similar species (Andersen et al., 2013; Houadria et al., 2015).

4.5. Do levels of competition differ at different stages of
recolonisation and at different heights?

Species diversity should be maximised at intermediate levels of
succession, because under these conditions both competitive (K-
selected) and opportunistic (r-selected) species can coexist
(Connell, 1978). Our results are consistent with this hypothesis. At
early stages of succession, interspecific competition is thought to be
relatively unimportant. Accordingly, our community-level index,
the ratio of significant species, and the C-score, all found compe-
tition to be lowest in ferns after just one month of recolonisation.
After eight months, which represents an intermediate successional
stage, we observed the greatest levels of community structure, in
terms of significant aggregation and the highest number of non-
random species interactions. However, pristine communities
were randomly structured. In our tentative interpretation,
competition (which leads to non-random structures) is highest at
intermediate successional stages, where colonising species
compete for nest space, while pristine ferns aremainly inhabited by
species that show little competitive exclusion.

In a parallel manner, the understorey communities showed non-
random structure, while those in the canopy were stochastic. This
may be due to habitat filtering, where higher solar radiation,
stronger winds, and stronger fluctuations in humidity (Nadkarni,
1994; Parker, 1995) should result in a stronger desiccation stress
in the canopy. Here, physical conditions winnow certain species,
thus reducing overall levels of interspecific competition and the
impact of biotic interactions (Lepori and Malmqvist, 2009; Luiselli,
2006). Note that despite the lower community structure in the
canopy, species numbers per fern did not differ between canopy
and understorey ferns.

4.6. Implications for the analysis of co-occurrence patterns in
community ecology

We have outlined a statistical approach for the analysis of
ecological communities which allows a detailed analysis of species
co-occurrence patterns. By analysing the associations between each
and every species, we can detect positive associations and mutual
exclusion, and obtain a more detailed picture than metrics such as
the C-score (Stone and Roberts, 1990, 1992) or checkerboard units
(Diamond, 1975; Gotelli and McCabe, 2002), although there are
other powerful approaches (Gotelli and Ulrich, 2010). Our approach
may be particularly useful to search for specialised, pair-wise as-
sociations that warrant further study. Such pair-wise associations
can indicate mutual tolerance, with a dominant and a submissive
species (Dejean and Corbara, 2003; Majer, 1976, 1993; Majer et al.,
1994), or parasitic or mutualistic association (Menzel and Blüthgen,
2010; Menzel et al., 2010a, 2010b; Orivel et al., 1997). In our dataset,
one Polyrhachis and two Pheidole species always co-occurred with
the same Diacamma species, suggesting a close relationship be-
tween them and Diacamma. Such intriguing associations have been
shown before for other members of these genera (Polyrhachis: so-
cial parasitism; Pheidole: cleptobiosis; (Kaufmann et al., 2003;
Maschwitz et al., 2000), which underpins the biological relevance
of our results.

Generating large numbers of P values with regard to species or
species pair levels inevitably increases type I error. This does not
affect our statements about proportions of deviant species, but it
may affect statements regarding the significance of specific asso-
ciations. In our study, the Diacamma-Polyrhachis association
remained significant after correction for multiple testing, but the
others did not. Correction over such a high number of P values may
inflate type II errors, making it more difficult to identify interesting
associations: when strictly applying these corrections, few
ecological datasets would be large enough to provide the statistical
power to detect associations between less common species. For
example, the positive association of the Diacamma and a Pheidole
species (Pspp-seg ¼ 0.00029) did not withstand correction, and even
higher statistical power is required to detect negative associations
e.g. between competing species. Such problems of statistical power
are typical for multispecies ant mosaics and increase with the
number, and rarity, of species considered (Blüthgen and Stork,
2007) (Appendix A2.1). We therefore recommend that uncorrec-
ted results on the species and on the species-pair levels should be
viewed as a filter to detect potentially interesting associations,
rather than as strict hypothesis testing.

In conclusion, our analysis revealed patterns that would
remain undetected by standard co-occurrence metrics, which
usually use average levels of co-occurrence across pairs of spe-
cies. This approach may illuminate interesting and unexpected
patterns when applied to other ecological datasets. The strength
of our method is that it allows to test for non-randomness in co-
occurrence for each species pair, and for the co-occurrence of
each species with any other one. Moreover, one can analyse data
subsets to detect compartments where biotic interactions are
particularly intense e be they certain microhabitats, or subsets of
species. For example, species segregation was found for larger
species, although this pattern was concealed in the analysis of
the total dataset. In our opinion, two more features of our
method are useful and go beyond previous, valuable approaches
to measure species-co-occurrence (Collins et al., 2011; Gotelli
and Ulrich, 2010). First, the ‘dilution’ and, thus, masking, of
patterns caused by strongly interacting species in a community
with few interacting species is not a problem for our index since
more weakly interacting species can still be detected via the
proportion of non-random species or species pairs. Second, the
species level analysis of our approach enables the assessment of
rarer species that interact sparsely, but with many different
species, and thus would not reach sufficient statistical power at
species pair level.

Recently, the importance of functional traits for community
assembly and species co-occurrence has been increasingly
acknowledged (McGill et al., 2006). Although our method cannot
specifically detect the importance of such traits, or habitat
filtering according to traits, it can be used to analyse the role of
trait similarity for species interactions. Firstly, trait differences can
be calculated separately and then related to pair-wise co-occur-
rencemeasures (Kraft and Ackerly, 2010; Kraft et al., 2008), testing
predictions about specific species pairs. Secondly, species can be
grouped according to functional traits, and quantitative co-
occurrence (i.e. co-occurrence of species with similar traits) can
be analysed. This approach is analogous to our quantitative anal-
ysis of co-occurrence within subfamilies. It enables detection of
whether species with certain traits are overdispersed or clumped.
This way, niche overlap can be related directly to co-occurrence
(Fowler et al., 2014); and trait clumping can be interpreted as
evidence of habitat filtering (Kraft et al., 2015). Ultimately, our
new statistical method could help to explain the way in which
interspecific, pairwise interactions structure ecological
communities.
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