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Abstract 
 
This work reports on the position, velocity and acceleration analyses of a four-degrees-of-freedom parallel manipulator, 4-DoF-PM for 

brevity, which generates Three-rotation-one-translation (3R1T) motion. Nearly closed-form solutions to solve the forward displacement 
analysis are easily obtained based on closure equations formulated upon linear combinations of the coordinates of three non-collinear 
points embedded in the moving platform. Then, the input-output equations of velocity and acceleration of the robot manipulator are sys-
tematically established by resorting to the theory of screws. To this end, the Klein form of the Lie algebra se(3) of the Euclidean group 
SE(3) is systematically applied to the velocity and reduced acceleration state in screw form of the moving platform cancelling the passive 
joint rates of the parallel manipulator. Numerical examples, which are confirmed by means of commercially available software, are pro-
vided to show the application of the method.  
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1. Introduction  

Simpler kinematics and control are the main attributes of 
parallel manipulators with fewer than six degrees of freedom, 
commonly known as defective parallel manipulators, when 
these are compared with the classical hexapod introduced by 
Gough and Whitehall [1, 2]; e.g., while closed and nearly 
closed-form solutions to solve the forward displacement 
analysis are available for most defective parallel manipulators, 
the derivation of a closed-form solution concerned with the 
forward displacement analysis of the hexapod is perhaps an 
unrealistic task. Furthermore, it is noticeable the growing ac-
ceptance of defective parallel manipulators in both academia 
and industry due to their simplified designs demanding fewer 
links and actuators. In that trend, four-degrees-of-freedom 
parallel manipulators have found interesting applications such 
as laparoscopic surgery, ship's heave and swing motion simu-
lation, robots for generating Schöenflies motion, hip joint 
simulator, pick-and-place robot, aeronautical devices and so 
forth. Several approaches have been recursively employed to 
elucidate the kinematics and dynamics of four-degrees-of-

freedom parallel manipulators. In that way Altuzarra et al. [3] 
considered the dynamics of a parallel manipulator generator of 
Schöenflies motion based on Lagrangian formulation. Choi 
and Ryu [4] applied reciprocal-screw theory to perform the 
singularity analysis of the H4 robot [5]. Sheng et al. [6] ap-
plied the theory of screws to develop a class of four-degrees-
of-freedom parallel manipulators with large rotational work-
space. Dong et al. [7] introduced a docking equipment device 
for the aircraft industry in which the theory of screws is em-
ployed in order to approach the mobility and kinematic analy-
ses of the parallel manipulator. Song et al. [8] reported the 
optimum performance of a two-legged four-degrees-of-
freedom parallel manipulator by handling the reciprocal screw 
of a wrench on a screw, named the virtual power. 

The four-degrees-of-freedom parallel manipulator generator 
of the 3R1T motion is the motive of the contribution. A pio-
neering version of that robot is credited to Zlatanov and 
Gosselin [9] who in 2001 introduced a 3-RRRRR/RRC paral-
lel manipulator following the trend of the Agile eye [10]: The 
inclusion of revolute joints with concurrent axes demanding 
precise conditions of assembly and manufacture. Li and 
Huang [11] employed the theory of screws in the topology 
synthesis of the 4-DoF-PM equipped with revolute joints, also 
demanding the strict condition of concurrent axes. Lu et al. 
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[12] investigated the singularities of the 4-SPS/PS parallel 
manipulator by analyzing the Jacobians associated with de-
coupled motions. Meanwhile, Zhou and Peng [13] reported 
the singularity analysis of the same manipulator by resorting 
to the theory of screws.  

In this work, the kinematics of the 4-UPS/PS parallel ma-
nipulator generator of the 3R1T motion is approached by 
means of the theory of screws. As an intermediate step, the 
displacement analysis is achieved by applying a novel strategy 
which consists of formulating the closure equations of the 
robot upon simple linear combinations of the coordinates of 
three points embedded in the moving platform. Then, the in-
put-output equations of velocity and acceleration of the paral-
lel manipulator are established by resorting to reciprocal-
screw theory. Note that the acceleration analysis does not re-
quire the computation of the passive joint acceleration rates of 
the robot under study. Numerical examples are provided to 
show the application of the method. 

 
2. Topology of the robot manipulator 

In this section the architecture of the parallel manipulator at 
hand is outlined. With reference to Fig. 1, the parallel manipu-
lator under study comprises a rectangular moving platform p 
of sides b and d and a square fixed platform 0 of side 2aÖ  
connected to each other by means of four active identical 
UPS-type limbs and one passive PS-type central kinematic 
chain labeled as the fifth limb of the manipulator. Meanwhile, 
the circumferential prismatic joints are assumed to be the in-
puts, i.e., the linear actuators or generalized coordinates 
( )1,2,3,4iq i =  of the parallel manipulator.  
Let O-XYZ be a reference frame attached to the fixed plat-

form whose origin O is located at the center of the fixed plat-
form with the X-axis directed from O to point A1 and the Y-
axis normal to the plane of the fixed platform. Similarly, let C-
xyz be a reference frame attached to the moving platform 
whose origin C, located by vector C, is precisely the center of 
the moving platform while the x-axis points from C to point B1 
and the y-axis is normal to the plane of the moving platform. 
Moreover, point Ai, located by vector Ai, is defined as the in-
tersection of the perpendicular axes of two revolute joints 

simulating the universal joint of the ith surrounding limb. 
Meanwhile, the center of the spherical joint in the same limb 
is notated as point Bi located by vector Bi. Note that point C = 
(0,h,0) is the center of the spherical joint connecting the pas-
sive leg to the moving platform, where h stands for the exten-
sion of the passive prismatic joint, i.e., h is the signed distance 
between the origins of the two reference frames. The architec-
ture of the robot is such that three rotational plus one transla-
tional freedoms are available for its moving platform. Evi-
dently, the loss of mobility of the robot manipulator is due to 
the passive central kinematic chain. Although this action di-
minishes in general the performance of the robot, simpler 
kinematics and control are the main assets of the robot under 
study when compared with the general six-degrees-of-
freedom parallel manipulator. 

 
3. Displacement analysis 

In this section the finite kinematics of the robot manipulator 
is presented. The forward displacement analysis comprises the 
computation of the pose of the moving platform as measured 
from the fixed platform given the generalized coordinates qi. 
The strategy to address this problem is based on the generation 
of a 40th-order polynomial equation in the unknown h. To this 
end, let us consider that the fact that the pose of rigid body 
may be fully determined upon the coordinates of three points 
embedded to it has been well explored in order to solve the 
forward displacement analysis of parallel manipulators [14, 
15]. Following that trend, let B1 = (w1,w2,w3), B2 = (w4,w5,w6) 
and B3 = (w7,w8,w9) be the control points of the robot. Then, 
the coordinates of point B4 may be formulated as a linear 
combination of the unknown coordinates of the control points 
accordingly the geometry of the moving platform as B4 = B1-
B2+B3. Furthermore, taking into account that C = (B1+B3)/2 = 
(0,h,0) then it follows that w7 = -w1 whereas w9 = -w3 and w8 
= 2h-w2. With the purpose to express w1 and w2 in terms of the 
unknown h let us consider that two closure equations may be 
written upon the first and third legs as follows 

 
( ) ( ) ( ) ( ) 2 2 ,i i i i i i q e- × - - - × - = -iB A B A B C B C     (1)  
 

where the dot (.) denotes the inner product of usual three-
dimensional vectorial algebra. Meanwhile, evidently 2e =  
( )2 2 / 4.b d+  Solving Eq. (1) one obtains 

 
2 2 2 2 2 2

1 3
1

4 2 2 4 ,
8

a b d q q hw
a

+ + - - +
=          (2) 

 
and 

 
2 2 2
1 3

2

4 .
4

q q hw
h

- +
=                            (3)   

 
It is straightforward to show that the unknowns w5 and w6 

are obtained similarly upon the second and fourth limbs. Once 

 
Fig. 1. 4-UPS/PS parallel manipulator. 
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the coordinates w1, w2, w5, w6, w7, w8 and w9 are expressed in 
terms of the unknown h, three compatibility kinematic con-
straint equations may be written as 

 
( ) ( ) 2

1 2 1 2 ,b- × - =B B B B                          (4) 

( ) ( ) 2
3 2 3 2 ,d- × - =B B B B                          (5) 

( ) ( ) 2 2
1 3 1 3 .b d- × - = +B B B B                      (6) 

 
Expressions Eqs. (4)-(6) yield a non-linear system of three 

equations in the unknowns w3, w4 and h named the character-
istic equations of the parallel manipulator given by 

 
( )

( )
6 4

1 1 1 3 1 4

2 2 2
1 1 3 1 4 1 3 1 4 1 0,

a h b c w d w h

e f w g w i w j w h k

+ + + +

+ + + + + =
        (7) 

( )
( )

6 4
2 2 2 3 2 4

2 2 2
2 2 3 2 4 2 3 2 4 2 0,

a h b c w d w h

e f w g w i w j w h k

+ + + +

+ + + + + =
            (8) 

( )6 4 2 2
3 3 3 3 3 3 0.a h b h c d w h e+ + + + =                (9) 

 
Therein the coefficients affecting the unknown h are com-

puted upon the parameters and generalized coordinates of the 
parallel manipulator. To solve Eqs. (7)-(9), first w3 is directly 
computed upon Eq. (9). After squaring selectively the remain-
ing two equations and suppressing the unknown w4, a 40th-
order polynomial equation in the unknown h is derived. Of 
course there are more elegant methods to solve the character-
istic equations, e.g., the Sylvester dialytic method of elimina-
tion [16, 17] or homotopy continuation [18]. 

Although the forward displacement analysis presented in 
this section is easy to follow, the existence of multiple solu-
tions is still a problem of displacement analysis. A simple 
strategy to determine a closed form solution for the displace-
ment analysis of the robot at hand may be the implementation 
of a sensor that allows one to determine directly the length h 
[13]. Then, the unknowns w1, w2, w5 and w6 are computed 
recursively, while w3 is calculated taking into account that 
from the closure equation ( ) ( ) 2

1 1 e- × - =B C B C  we have 
 

2 2 2
3 1 2( ) .w e w w h= - - -                       (10) 

 
Similarly, taking into account that ( ) ( ) 2

2 2 e- × - =B C B C  
one obtains 

 
2 2 2

4 6 5( ) .w e w w h= - - -                         (11) 
 
Finally, the computation of the unknown coordinates is 

completed provided that w7 = -w1 whereas w9 = -w3 and w8 = 
2h-w2. Once the coordinates of points Bi are determined, the 
rotation matrix between body p as measured from body 0 is 
obtained as 

 
,x y zé ù= ë ûR u u u                                 

where the unit vectors u  are given by 
 

( )1 3 1
2 1, , .x y z x ye bd

- -æ ö= = - ´ = ´ç ÷
è ø

B C B Bu u B B u u u  

 
Naturally, the coordinates of any point P attached to the 

moving platform, expressed in the fixed reference frame, may 
be obtained as  P P C= ¢ +R , where P¢  are the coordinates 
of the point in turn expressed in the moving reference frame. 

Finally, the inverse displacement analysis consists of find-
ing the generalized coordinates of the robot manipulator given 
the pose of the moving platform. This analysis is straightfor-
ward; see for instance Lu et al. [12]. 

 
4. Input-output equations of velocity and acceleration 

In this section the velocity and acceleration analyses of the 
parallel manipulator are addressed by resorting to reciprocal-
screw theory. To this end, the modeled of the screws, which 
are computed taking point C as the reference pole, is illus-
trated in Fig. 2. 

Let ω  be the angular velocity vector of the moving plat-
form as observed from the fixed platform. Furthermore, let 

Cv  be the velocity vector of point C as measured from the 
fixed reference frame. Then, the velocity state of the moving 
platform as measured from the fixed platform, the vector 

( ),C C=V ω v  may be expressed in screw form through any of 
the five limbs of the manipulator as follows 

 
5

1
1

0

 $ 1,2, ,5.j i i
C i i j

i

jw +
+

=

= = ¼åV              (12) 

 
Therein the joint velocity rates ( )2 3 1,2,3,4j

jq jw = =&  of 
the circumferential limbs are selected as the generalized 
speeds of the manipulator while 5

2 3w  denotes the joint veloc-
ity rate associated with the passive prismatic pair of the central 
limb. Furthermore, a pseudo universal joint connecting the 
central limb to the fixed platform is included to satisfy an al-
gebraic requirement of expression Eq. (12): The six-
dimensional nature of the velocity state. With this assumption 

 
 
Fig. 2. Modeling of the screws of the parallel manipulator. 
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in mind it follows that 5 5
0 1 1 2 0w w= = . On the other hand, the 

modeling of the screws representing the kinematic pairs for 
each surrounding limb is explained as follows. The screw 
associated with the revolute joint connecting the jth limb to 
the fixed platform is denoted as 0 1$ j where the primal part of 
it is normal to the plane of the fixed platform, while 1 2$ j is the 
screw representing the revolute joint connecting the cylinder 
to the wrist of the piston. Evidently, the primal part of 1 2$ j  lies 
in the plane of the fixed platform. Dealing with the actuable 
prismatic joint, the dual part of its representative screw is 
along the limb. Finally, the spherical joint of the jth limb may 
be simulated by three revolute joints with associated 
screws 3 4$ j , 4 5$ j  and 5 6$ j whose primal parts intersect at the 
center of the spherical joint. Restrictions like parallelism be-
tween the primal parts of the screws screws 0 1$ j and 3 4$ j  in the 
same limbs as well as parallelism between the primal parts of 
the screws screws 1 2$ j and 4 5$ j are added to the spherical joint. 
Of course, other combinations of screws can be freely selected 
to simulate the motion of the spherical joint. However, the 
combination selected in the contribution allows one to sim-
plify considerably the analysis. 

Taking into account that in the jth surrounding limb of the 
manipulator the screw 5 6$ j  is reciprocal to the remaining 
screws in the same limb, excluding the screw 2 3$ j representing 
the actuable prismatic joint, then the systematic application of 
the Klein form, {;}, of the screw 5 6$ j to both sides of Eq. (12), 
with the reduction of terms one obtains 

 

{ }5 6
 $ ; 1,2,3,4j C jq j= =&V .                      (13) 

 
Similarly, from the central limb it follows that 
 
{ } { }3 4 4 5

5$ ; $ ; 0.C C= =V V                        (14) 

 
Casting into a matrix-vector form Eqs. (13) and (14) the in-

put-output equation of velocity of the robot manipulator re-
sults in 

 
v ,T

C =A QV                                        (15) 
 

where T= DA J  is named the first-order coefficients matrix 
of the manipulator in which  
 

5 6 5 6 5 6 5 6 3 4 4 5
1 2 3 4 5 5$ $ $ $ $ $ ,é ù= ë ûJ              (16) 

 
is the screw-coordinates Jacobian matrix of the robot manipu-
lator and D  is an operator of polarity. Meanwhile 
 

v 1 2 3 4 0 0q q q q= é ùë ûQ & & & &                      (17) 
 

is termed the first-order driver matrix of the parallel manipula-
tor. In what follows, the input-output equation of acceleration 

of the robot manipulator is obtained based on the strategy 
outlined for the velocity analysis.  

Let α  be the angular acceleration vector of the moving 
platform as measured from the fixed platform. Furthermore, 
let Ca  be the acceleration vector of point C as measured from 
the fixed reference frame. Then, the reduced acceleration state 
of the moving platform as measured from the fixed platform, 
the vector ( ),C C C= - ´A α a ω v , may be expressed in screw 
form through any of the five limbs of the manipulator as fol-
lows: 

 
5

1
1

0

 $ 1,2, ,5.j i i
C i i j j

i

ja +
+

=

= + = ¼åA L            (18) 

 
Therein 1

j
i ia +  is the joint acceleration rate between con-

secutive links of the jth limb. Meanwhile jL  is the jth Lie 
screw of acceleration which is computed as 

 
4 5

1 1 1 1
0 1

$ $ ,j j j j
j i i i i k k k k

i k i

w w+ + + +
= = +

é ù
= ê ú

ë û
å åL        (19) 

 
where the brackets, [  ], denote the Lie product of the Lie 
algebra se(3) of the Euclidean group SE(3).  

Following the trend of the velocity analysis, the input-
output equation of acceleration of the parallel manipulator 
results in 

 
a ,T T

C = +A Q HA                                  (20) 
 

where 
 

3a 1 2 4 ,0 0q q q q= é ùë ûQ && && && &&       

 
is the second-order driver matrix of the manipulator. Mean-
while, the complementary matrix of acceleration H is given by 
 

{ }{ }{ }{ }{ }{ }5 6 5 6 5 6 5 6 3 4 4 5
1 1 2 2 3 3 4 4 5 5 5 5$ ; $ ; $ ; $ ; $ ; $ ; .é ù= ë ûH L L L L L L  

 
5. Numerical example 

To show the application of the method, in this section nu-
merical examples covering most of the issues treated in the 
contribution are provided. Using hereafter SI units (m,rad,s), 
the dimensions of the platforms of the parallel manipulator are 
chosen as a = 1.25 m, b = 1.25 m and d = 1.0 m. Meanwhile, 
the case study comprises the computation of the forward dis-
placement analysis of the parallel manipulator and the tempo-
ral behavior of the velocity and acceleration of the center of 
the moving platform. Dealing with the first part of the case 
study, given the generalized coordinates q1 = 1.85 m, q2 = 
2.0 m, q3 = 1.75 m and q4 = 2.1 m it is required to compute all 
the feasible poses that the moving platform can reach as ob-
served from the fixed platform.  

Applying the method introduced in “Displacement analy-
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sis” section, one obtains 
 
.03705625+.32h6-(.9732+.8w4-.8w3)h4-(.748451375-w42-
.8315w4-w32+1.6015w3)h2 = 0,  
.00015625+.32h6-(.9732-.8w4+.8w3)h4-(.185951375-w42-
w32-1.6015w3+.8315w4)h2 = 0,  
.0324+.64h6-1.3304h4-(1.871107750-4w32)h2 = 0.  
 
Squaring selectively the characteristic equations, a 40th-

order polynomial equation in the unknown h is promptly gen-
erated. The solutions of it are provided in Table 1. 

Taking into account that spurious and complex solutions 
must be disregarded from the analysis, the available poses of 
the parallel manipulator are related only with solutions 3, 6, 23 
and 26 of Table 1. The corresponding coordinates of the 
spherical joints are provided in Table 2. 

In what follows the temporal behavior of the angular and 
linear components of the velocity and acceleration of the cen-
ter of the moving platform is carried-out by means of the the-
ory of screws. Conveniently, at the beginning of the motion 
the robot is in a symmetric posture where the coordinates of 
the vertices of the fixed platform are given by A1 = (1.25,0,0), 
A2 = (0,0,-1.25), A3 = (-1.25,0,0) and A4 = (0,0,1.25). Mean-
while, the surrounding limbs of the parallel manipulator as-
sume to have the same length q = 2.0 m. Furthermore, the 
coordinates of points Bi are given by B1 = (0.795,1.945,0.088), 

B2 = (-0.088,1.945,-0.795), B3 = (-0.795,1.945,-0.088) and B4 
= (0.088,1.945,0.795). On the other hand, upon the reference 
configuration of the robot, the generalized coordinates q are 
commanded to follow periodical functions given by q1 = 
0.1sin(t)cos(t),q2 = 0.25sin(t)cos(t),q3 = 0.125sin(t)cos(t) and 
q4 = -0.15sin(t)cos(t) where the time t is in the interval 0 < t < 
2π.  

With the aforementioned data, the temporal behavior of the 
velocity and acceleration of the center of the moving platform 
is provided in Figs. 3 and 4, respectively. Furthermore, the 
numerical results obtained by means of the theory of screws 
are verified with the aid of commercially available software 
like ADAMS©. For a rapid comparison between both meth-
ods, the corresponding plots obtained with ADAMS© are 
placed below the simulations generated via screw theory.  

Note that, as was expected, the linear velocity and accelera-
tion of the center of the moving platform concerned with the X 
and Y axes vanish. Furthermore, the numerical results ob-
tained by means of the theory of screws are in excellent 
agreement with those generated with ADAMS©. 

 
6. Conclusions 

Owing to relevant applications like laparoscopic surgery, 
ship's heave and swing motion simulation, robots for generat-
ing Schöenflies motion, hip joint simulator, pick-and-place 
robot, aeronautical devices and so far of four-degrees-of-

Table 1. The solutions of the forward displacement analysis. 
 
Solution:                       h(m) 

1,2,3:  .1623265480, .8615233449, 1.147295902  
4,5,6:  1.175125966, 1.264795049, 1.314496845 
21,22,23:  -.1623265480, -.8615233449, -1.147295902 
24,25,26: -1.175125966,-1.264795049, -1.314496845 
7,8:  1.746197+.1353975 I, .1453921+0.256352e-1 I 
9,10:  .9361554+.217028 I, 1.696551+1.138341 I 
11,12: .1108026+0.8523178e-1 I, 0.7949386e-1 I 
13,14,15:  .1414294 I, .1733845 I, .9135315 I 
16,17:  -.1108026+0.85231e-1 I, -1.696551+1.1383 I 
18,19: -.9361554+.217028 I,-.1453921+0.256352e-1 I 
20:  -1.746197306+.1353975548 I 
27,28: -1.746197-.1353975 I, -.1453921-0.256352e-1 I 
29,30: -.9361554-.217028 I, -1.696551-1.138341 I 
31,32,33:  -.1108-0.8523e-1 I, -0.794e-1*I,-.14142 I 
34,35,36: -.1733845 I,-.91353 I, .110802-0.8523e-1 I 
37,38: 1.69655-1.13834 I, .9361554234-.2170280014 I 
39,40: .1453921-0.256352e-1 I, 1.74619-.1353975548 I 

 
Table 2. Available coordinates of points Bi. 
 
Solution: B1,B2,B3,B4 

Solution 3: (0.0191,1.225,-0.636), (-0.910,1.057,0.182),         
           (-0.019,1.068,0.636), (0.910,1.236,-0.182)  
Solution 6:  (0.105,1.382,0.447), (-1.027,1.236,-0.060),            
     (-0.105,1.245,-0.447), (1.027,1.392,0.060) 
Solution 23: (0.110,-1.225,-0.788), (0.746,-1.057,0.274),          
      (-0.110,-1.068,0.788), (-0.746,-1.236,-0.274) 
Solution 26: (0.275,-1.382,0.748), (-0.789,-1.236,0.109),         
       (-0.275,-1.246,-0.748), (0.789,-1.392,,-0.109) 

 
 

 
 

 
 
Fig. 3. Time history of the velocity of the center of the moving plat-
form. 
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freedom parallel manipulators, in this contribution a simple 
approach to solve the kinematics of the 4-UPS/PS (3R1T) 
parallel manipulator is presented. Closure equations to solve 
the displacement analysis of the parallel manipulator are easily 
formulated upon linear combinations of the unknown coordi-
nates of three points embedded in the moving platform, 
namely, the control points of the manipulator which allow one 
to obtain nearly closed-form solutions concerned with the 
forward displacement analysis, a challenging task for most 
parallel manipulators. As far as the authors are aware, this idea 
has not been considered in previous works for the robot under 
study, e.g. this method does not require one to resort to stan-
dard mathematical procedures like the Sylvester dialytic 
method of elimination or homotopy continuation. Then, the 
input-output equations of velocity and acceleration of the ro-
bot manipulator are systematically established by taking ad-
vantage of the properties of reciprocal screws. Numerical ex-
amples are provided to show the application of the method.  
Finally, comments like ``Unfortunately, screw theory is usu-
ally explained following descriptive definitions rather than 
short axiomatic lines of reasoning", ``Screw theory allows 
simple geometrical interpretation, but it is restricted to speed 
and infinitesimal displacement analysis", can be found in the 
specialized literature. The contribution shows that the theory 
of screws is a viable and trusted mathematical resource to 
approach not only the velocity analysis but also the accelera-
tion analysis of spatial kinematic chains.  
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