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Background
The use of electroencephalogram (EEG) signals for measurements has become a growing 
interest in research for various applications such as brain-computer interface (Nicolas-
Alonso and Gomez-Gil 2012), human–machine interface (Ramli et al. 2015), diagnosing 
and monitoring epilepsy (Acir 2005), and tracking eye gaze (Adam et al. 2014). Nowa-
days, the utilization of an advanced processing method makes the EEG signals has effi-
ciently been used in a wide range of applications.

In general, a peak point is defined by a point that holds the highest value located at 
a specific time and location on EEG signals. A peak point can be observed in EEG sig-
nals because of the response of brain on human activities. Such responses of the brain 
on human activities that triggers a peak in EEG signals are eye movements, epilepsy, 
and event-related potentials. However, EEG signals are also very sensitive to noises that 
come from heart bit, EEG electrodes and some movements of the body. The presence of 
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various noises in EEG signals generates a large number of false peaks in the signals and 
makes the classification of desired peak points difficult. Moreover, this problem could 
be worse because the amplitude of peaks of the signals is different from one subject to 
another, which can vary from 600 to 1100 µV (Iwasaki et al. 2005), resulting a high vari-
ance value of peak features in data collection.

At present, researchers have used several combinations of peak features based on a 
time-domain characteristic of the peak in EEG signals (Dumpala et al. 1982; Acir et al. 
2005; Acir and Guzelis 2004; Liu et al. 2002; Dingle et al. 1993). Those peak features were 
obtained from different amplitudes, widths, and slopes. For instance, the peak-to-peak 
amplitude of the first and second half waves, peak width, ascending peak slopes at the 
first half wave, and descending peak slope at the second half wave, can be used as the 
peak features. The peak features are selected to make sure that only relevant features are 
used for classification. The combinations of the selected features, however, are problem 
dependent and only efficiently used for a specific application. Furthermore, to properly 
determine the best and generalized combination of peak features in EEG signals are still 
open problems for further research.

To avoid the slow learning speed and iteratively learning problems of conventional 
neural networks learning algorithm (i.e., gradient descent and Levenberg-Marquart), a 
neural network with random weights (NNRW) is employed as a classifier. The NNRW is 
a fast, simple, and non-iterative learning algorithm of a single layer feedforward neural 
network (SLFN). The NNRW was firstly introduced by Schmidt (1992). The network of 
NNRW consists of three layers that are input, hidden, and output layers. The learning 
concept of NNRW is that the input weights and the biases at the hidden layer in the 
network are chosen randomly with a specific interval, whereas the output weights are 
estimated by the Moore–Penrose generalized inverse method (Rao and Mit 1971). The 
input weights are assigned randomly between −1 and 1. Also, the biases in the hidden 
layer are assigned randomly between 0 and 1. Both parameters follow the setup param-
eters that have been suggested by Cao et al. (2015). A similar concept of NNRW was fur-
ther developed by Pao and Takefuji (1992), knowingly as random vector functional-link 
(RVFL) nets. Variations of extended RVFL were introduced to establish the theoretical 
results of the RVFL concept (Pao et al. 1994; Igelnik and Pao 1995).

Population-based metaheuristic optimization algorithms provide a satisfactory solu-
tion in a relatively shorter time. These algorithms are also efficient and effective to solve 
large and complex real-world problems and can be applied to solve almost any optimiza-
tion problems (Xiong et al. 2015). A variety population-based metaheuristic optimiza-
tion algorithms have been invented, such as genetic algorithm (Hooker 1995), simulated 
annealing (Johnson et  al. 1989), particle swarm optimization (Kennedy and Eberhart 
1995), ant colony optimization (Dorigo et  al. 1996), big bang-big crunch optimization 
(Erol and Eksin 2006), intelligent water drops algorithm (Shah-Hosseini 2007), honey 
bee mating optimization (Marinakis et al. 2011), firefly algorithm (Yang 2010b), gravi-
tational search algorithm (Rashedi et  al. 2009), harmonic search optimization (Yang 
2009), bat algorithm (Yang 2010a), and black hole algorithm (Hatamlou 2013). So far, 
those optimization algorithms have been already applied as an effective technique for 
feature selection in various real-world applications such as power system (Ahila et  al. 



Page 3 of 24Adam et al. SpringerPlus  (2016) 5:1580 

2015), manufacturing (Zhang et al. 2015), and medical (Bababdani and Mousavi 2013; 
Adam et al. 2014).

Recently, a new metaheuristic optimization algorithm has been introduced by Ibra-
him et  al. (2015) that is inspired by the state estimation process of Kalman filter. The 
new optimizer is namely as a simulated Kalman filter (SKF) algorithm. The princi-
ple of Kalman filter consists of the following main processes: states prediction, state 
measurement, and state estimation. In the SKF algorithm, each agent acts as an indi-
vidual Kalman filter and holds a vector state. Through the prediction, measurement, 
and estimation state processes, new states are estimated and new locations of agents 
are updated. The processes are iteratively looped until it reaches the maximum itera-
tion. Regarding the final experimental results by Ibrahim et al. (2015), the SKF algorithm 
has the capability to find efficiently the most optimal solution and the performance are 
comparable to gravitational search algorithm and black hole algorithm for unimodal 
optimization problems. The original SKF algorithm, however, cannot be used for solv-
ing discrete optimization problems. To solve this problem, Md Yusof et al. (2016) have 
introduced an angle modulated SKF (AMSKF) algorithm. Based on the capability of the 
AMSKF algorithm for solving discrete problems, AMSKF is employed as a feature selec-
tion method in this study.

The key contributions of this study are expressed as follows: (1) to employ a recently 
introduced population-based metaheuristic optimization algorithm for feature selection 
in EEG signals peak classification using AMSKF, (2) to firstly employ the NNRW into 
peak detection algorithm for classification and feature selection, (3) to propose a new 
generalized peak model for EEG signals peak classification based on the features selected 
by AMSKF, and (4) to apply the proposed method of AMSKF model on epileptic EEG 
signals. For the benchmarking purpose, four existing peak models are considered. The 
experimental results show the new combination of peak features that are produced by 
the proposed AMSKF technique performs better accuracy compared to the NNRW with 
conventional peak models.

Data descriptions
Eye event‑related EEG data

The peak candidate data of eye event-related were collected from three different event-
related EEG signals that producing peaks. The first peak event-related is labelled as 
single eye blink signals. The second peak event-related is labelled as double eye blink sig-
nals. The third peak event-related is labelled as eye movement signals. The first and sec-
ond peaks event-related of EEG signals recording were conducted using the g.USBamp 
biological signals acquisition system. While, the third peak event-related of EEG signals 
recording were conducted using the g.MOBIlab portable biological signals acquisition 
system. The scalp electrodes arrangement of the three different signals is placed using 
the 10–20 international electrode placement system. The sampling frequency for those 
signals was set to 256 Hz.

The single blink and double blink signals were recorded from F9 channel. The refer-
ence electrode was located on the ear. The ground electrode was located on channel 
AFz. In total, only three electrodes were used. The electrodes from the F9 channels are 
positioned for detecting EEG peaks associated with the brain response of commanded 
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single and double eye blink. Single means the eye are blinking once while double means 
the eye are blinking twice. The eyes blink that produces some peaks in the signals on 
channel F9 is archived as raw data for analysis.

The eye movement signals were recorded from C3 and C4 channels. The channel CZ 
was used as a reference. The ground electrode was located on FPz channel. In total, only 
four electrodes were used. The electrodes from the C3 and C4 channels are positioned 
for detecting EEG peaks associated with the brain response of commanded horizontal 
eye gaze direction. The eye gaze directions that produce some peaks in the signals on 
channels C3 and C4 are archived as raw data for analysis.

Figure 1a–c shows three different EEG signals that were named as a single eye blink, 
double eye blink, and eye movement signals. The dotted red vertical lines show the 
actual peak point location, as manually assigned by a researcher. The descriptions of 
those EEG signals are tabulated in Table 1.  

The single eye blink signals have 30 signals, 10-s length per signal, 2560 sampling 
points per signal, and each signal containing two known peak points and various addi-
tional signal patterns. The additional signal patterns are the edge transitions which 
represent the eye movements. The known peak pattern in this signal represents a sin-
gle eye blink. The peak pattern of a single eye blink is useful as an additional feature 
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Fig. 1  The example of recorded EEG signals: a single eye blink (tow peak points per signal), b double eye 
blink (eight peak points per signal), and c eye movement (one peak point per signal)
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for controlling an electric wheelchair (Lin and Yang 2012). The total training and test-
ing sampling points are 38,400 and 38,400, respectively. From the total sampling points, 
3238 sampling point locations are identified as the locations of peak candidates, 60 sam-
pling point locations are identified as the locations of true peaks, and 3178 sampling 
point locations are identified as the locations of false peaks.

The double eye blink signals have five signals, 80-s length per signal, 20,480 sampling 
points per signal, and each signal containing eight known peak points and some addi-
tional signal patterns. The additional signal patterns are the edge transitions that repre-
sent the horizontal eye movements. The signals occasionally contain a peak of the single 
eye blink. The total training and testing sampling points are 51,200 and 51,200, respec-
tively. From the total sampling points, 4662 sampling point locations are identified as the 
locations of peak candidates, 40 sampling point locations are identified as the locations 
of true peaks, and 4622 sampling point locations are identified as the locations of false 
peaks.

Figure  1c shows the eye movement signals. The eye movement signals have 40 sig-
nals of C3 and C4 channels, 10-s length per signal, 2560 sampling points per signal, and 
each signal containing one known actual peak point location. The known peak pattern 
in this signal represents the horizontal eye gaze direction, either to the left or the right. 
In total, the data collection of this signal has 40-s length and 102,400 sampling points. 
From 102,400 sampling points, 3881 candidate peak locations were recognized where 
the known actual peak point locations are 40 and the remaining sampling points are the 
known actual non-peak point location.

From the collected raw data of the three EEG signals, 11,781 peak candidate samples 
with their associated features were archived as EEG data for experiments. From 11,781 
peak candidate samples, 140 were assigned as true peaks and the other 11,461 were 
assigned as false peaks.

Epileptic EEG data

The second data used in this study is available and published in Bonn University EEG 
database (Andrzejak et al. 2001). The EEG recording was prepared using standard 10–20 
electrode placement system. The datasets have five different sets, which are named 
as set A, set B, set C, set D, and set E. Each set contains 100 EEG segments that were 

Table 1  Description of the eye event-related EEG signals

Type of sig‑
nal

No. of sig‑
nals

No. of sam‑
pling points 
per signal

Length 
per signal 
(second)

No. of peaks 
per signal

Class 
distribution 
per signal 
(peak point/
non-peak 
point)

Total number 
of (candidate 
peaks/true peaks/
false peaks)

Single eye 
blink

30 2560 10 2 2/2558 3238/60/3178

Double eye 
blink

5 20,480 80 8 8/20472 4662/40/4622

Eye move-
ment

40 2560 10 1 1/2559 3881/40/3841

Total EEG 
data

11,781/140/11,461
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selected from continuous multi-channel EEG recordings after removing muscle activity 
or eye movement artifacts. Each EEG segment consists of 4097 sampling points and the 
duration is about 23.6 s. Sets A and B consist of EEG segments taken from surface EEG 
recording collected from five healthy subjects. Subjects were relaxed in an awaken state 
with eyes open (A) and eyes closed (B), respectively. Sets C, D, and E were taken from 
EEG archive of presurgical diagnosis. Segments in set D were recorded from the epilep-
togenic zone. Set C is recorded from hippocampal formation of opposite hemisphere of 
brain. Sets C and D contain only activity measured during epileptic-free intervals. Set E 
contains only epileptic events. Data is recorded within 128-channel amplifier system and 
digitized at 173.61 Hz sampling rate and 12 bit A/D resolution. To select the EEG signal 
of desired band a band-pass filter having a pass band of 0.53–40 Hz (12 dB/oct) was used. 
In this study, only set A and set E were used. Set A represents as non-epileptic peak 
events while set E denotes as epileptic peak events.

From the collected EEG raw data of the two sets EEG signals (set A and set E), 20,000 
peak candidate samples with their associated features were archived as EEG data for 
experiments. From 20,000 peak candidate samples, 10,000 were assigned as epileptic 
peaks event from set E. The other 10,000 were assigned as non-epileptic peaks event 
from set A. 100 peak candidate samples were randomly selected from each segment of 
both set. The four-fold cross-validation process is used to produce four groups of EEG 
data. The class distribution of the peak candidate sample and event is summarized in 
Table 2.

Methods
The methods for peak detection consist of three main processes: (1) feature extraction, 
(2) feature selection, and (3) classification. In feature extraction stage, three-points slid-
ing window method (Dumpala et  al. 1982; Billauer 2012) is employed to identify all 
possible peak candidates. The AMSKF feature selector is used to select the best com-
bination of features for all possible peak candidates. All identified peak candidates with 
the selected associated features are then classified by the NNRW classifier. The choice of 
classification method was supported by two reasons: (1) the NNRW provides fast learn-
ing speed. (2) The fast learning speed capability in the proposed AMSKF technique can 
minimize the computational complexity.

Feature extraction

So far, to the best of our knowledge, only four models in the time domain analysis have 
typically been used in various event-related signals for peak classification (e.g., Dump-
ala et al. 1982; Acir and Guzelis 2004; Liu et al. 2002; Dingle et al. 1993). In general, all 
existing peak models (i.e., Dumpala, Acir, Liu, and Dingle models) have their associated 

Table 2  Class distribution of the peak candidate sample and event

Class No. of peak candidate samples No. of events Partition of EEG data

Epileptic 10,000 100 Fourfold cross validation

Non-epileptic 10,000 100

Total 20,000 100
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features. All 16 peak features of the existing models can be calculated using the defined 
eight parameter points as shown in Fig. 2.

After the ith candidate peak point, PPi, and the two associated valley points, VP1i and 
VP2i, are identified using three-points sliding window method (Dumpala et  al. 1982; 
Billauer 2012), the other five parameter points {i.e., the half point at first half wave 
(HP1i), the half point at second half wave (HP2i), the turning point at first half wave 
(TP1i), the turning point at second half wave (TP2i), and the moving average curve 
point [MAC(PPi)]} can be identified. For example, the half point at first half wave can be 
defined as the point located in the middle between the PPi and VP1i while the half point 
at the second half wave as the point based in the midst between the PPi and VP2i. The 
turning point can be recognized when the slope decreases more than 50 % as compared 
to the slope of the preceding point. The MAC(PPi) point is located at the intersection 
between the PPi and MAC(PPi) points.

After all eights parameter points are identified, 16 peak features are then calculated 
based on the listed equation in Table 3. All peak features can be categorized into three 
groups, namely amplitude, width, and slope, resulting in five different amplitudes (i.e., 
f1, f2, f3, f4, f5), seven different widths (i.e., f6, f7, f8, f9, f10, f11, f12), and four different slopes 
(i.e., f13, f14, f15, f16). The descriptions of all the 16 features are also explained in Table 3.

Table 4 presents the list of different peak models with their associated features. The 
Dingle model is produced by four features: f5, f6, f13, and f14. The associated features of 
Dumpala model are denoted as f1, f6, f13, and f14. Acir model consists of six features: f1, 
f2, f7, f8, f13, and f14. The considerably more complex model of Liu et al. (2002) entails 11 
features: f1, f2, f3, f4, f6, f9, f12, f12, f14, f15, and f16.

Neural network with random weights (NNRW) classifier

The NNRW classifier has recently gained attention as a fast learning and generalized 
technique for classification (Cao et al. 2016; Lang et al. 2015). The fundamental aspect 
of this method is that the NNRW can be represented as a linear system (Schmidt 1992). 
The linear system of NNRW is mathematically modeled as Hβ = T  where β is the L × m 
matrix of output weights and T is the N × m matrix of target outputs. m is the number 
of output neurons. The β and T matrixes are denoted as

(1)β =







βT
1
...

βT
L







L×m

iPP

iVP1
iVP2

iTP1
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iTP2

iHP2

)( iPPMAC

Fig. 2  Eight point locations of a peak candidate
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Table 3  Equations and descriptions of peak features

Peak feature Feature name Equation Description

Amplitudes Peak-to-peak amplitude of the 
first half wave

f1 = |x(PPi)− x(VP1i)| Amplitude between the magni-
tude of peak and the magnitude 
of valley at the first half wave

Peak-to-peak amplitude of the 
second half wave

f2 = |x(PPi)− x(VP2i)| Amplitude between the magni-
tude of peak and the magnitude 
of valley of the second half wave

Turning point amplitude of the 
first half wave

f3 = |x(PPi)− x(TP1i)| Amplitude between the magni-
tude of peak and the magnitude 
of turning point at the first half 
wave

Turning point amplitude at the 
second half wave

f4 = |x(PPi)− x(TP2i)| Amplitude between the magni-
tude of peak and the magnitude 
of turning point at the second 
half wave

Moving average amplitude f5 = |x(PPi)−MAC(PPi)| Amplitude between the magni-
tude of peak and the magnitude 
of moving average

Widths Peak width f6 = |VP1i − VP2i | Width between valley point of first 
half point and valley point at 
second half wave

First half wave width f7 = |PPi − VP1i | Width between peak point and 
valley point at first half wave

Second half wave width f8 = |PPi − VP2i | Width between peak point and 
valley point of second half wave

Turning point width f9 = |TP1i − TP2i | Width between turning point at 
first half wave and turning point 
at the second half wave

First half wave turning point 
width

f10 = |PPi − TP1i | Width between turning point at 
first half wave and peak point

Second half wave Turning point 
width

f11 = |PPi − TP2i | Width between turning point at 
second half wave and peak point

FWHM f12 = |HP1i − HP2i | Width between half point of first 
half wave and half point of 
second half wave

Slopes Peak slope at the first half wave
f13 =

∣

∣

∣

x(PPi)−x(VP1i )
PPi−VP1i

∣

∣

∣

Slope between a peak point and 
valley point at the first half wave

Peak slope at the second half 
wave

f14 =
∣

∣

∣

x(PPi)−x(VP2i )
PPi−VP2i

∣

∣

∣

Slope between a peak point and 
valley point at the second half 
wave

Turning point slope at the first 
half wave

f15 =
∣

∣

∣

x(PPi)−x(TP1i )
PPi−TP1i

∣

∣

∣

The slope between peak point 
and turning point at the first 
half wave

Turning point slope at the sec-
ond half wave

f16 =
∣

∣

∣

x(PPi)−x(TP2i )
PPi−TP2i

∣

∣

∣

The slope between peak point 
and turning point at the second 
half wave

Table 4  List of different peak models with their associated features

Peak models Set of features Number of features

Dingle f5, f6, f13, f14 4

Dumpala f1, f6, f13, f14 4

Acir f1, f2, f7, f8, f13, f14 6

Liu f1, f2, f3, f4, f6, f9, f12, f13, f14, f15, f16 11
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and

respectively. The output function of NNRW classifier of a given unknown sample, x can 
be mathematically described as fc(x) = h(x)β. The output matrix of the hidden layer, H, 
is calculated as follows:

where g is an activation function of the hidden neuron, x is the N × L matrix of inputs, 
a is the d × L matrix of random input weights, b is the 1 × L matrix of random biases 
in the hidden layer, N is an arbitrary distinct sample, L is the number of hidden neurons 
(L = 1000 in this study), and d is the number of inputs (where d depends on the number 
of the selected features in this study). The ith column of H is the output of the ith hidden 
neuron with respect to inputs x1, x2, until xd. The sigmoidal function g(x) = 1

/

(1+ e−x) 
was used in this study as an activation function in the hidden layer for normalization 
while a linear function is located inside the neuron in the output layer.

To find the least square solution, β of the linear system, Hβ = T , the minimum-norm 
least-squares solution is computed as follows:

It is well known that the smallest norm least-squares solution of Eq. (4) is

where H+ is the Moore–Penrose pseudo-inverse of H. The summary of the training 
stages of the NNRW classifier is listed as follows:

Stage 1 Assign randomly the input weights, ai and biases in the hidden neurons, bi.
Stage 2 Calculate the output matrix of the hidden layer, H.
Stage 3 Calculate the output weights, β = H+T .

In the output layer, two neurons are used in the network to classify the output into two 
classes (output): class 1 and class 0. For two classes (m > 1), the predicted class label is 
the ith number of the output neurons which the maximum value of output neuron. The 
predicted class label of a given unknown sample x is defined as follows.

(2)T =







tT1
...

tTN







N×m

,

(3)H =







h(x1)
...

h(xN )






=











g
�

�d
i=1 ai1x1i + b1

�

· · · g
�

�d
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�

...
. . .

...

g
�

�d
i=1 ai1xNi + b1

�

· · · g
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�d
i=1 aiLxNi + bL

�











N×L

(4)
∥

∥H(a1, . . . , aL, b1, . . . , bL)β − T
∥

∥ = min
β

∥

∥H(a1, . . . , aL, b1, . . . , bL)β − T
∥

∥

(5)β = (HTH)−1HTT = H+T

(6)
label(x) = arg maxfci(x)

i∈{1,...,m}
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The performance of the classifier is evaluated using a four-fold cross-validation pro-
cess. The four-fold cross-validation accuracy of the classifier is computed using Gmean 
(Guo et al. 2008). The Gmean is calculated as follows:

where any true peak (TP) is the correctly detected apex point of a peak candidate, a true 
non-peak (TN) is any correctly detected non-peak point of a peak candidate, a false peak 
(FP) is an incorrectly designated non-peak point of a peak candidate, a false non-peak 
(FN) is any incorrectly detected true peak point of peak candidate, TPR is the true peak 
rate, and TNR is the true non-peak rate.

Simulated Kalman filter (SKF) for continuous optimization problems

The SKF algorithm (Ibrahim et al. 2015) was originally invented for solving continuous 
optimization problems. The algorithm follows several steps as shown in Fig. 3: (1) gener-
ate an initial population, (2) calculation of the fitness evaluation function for each agent, 
(3) update the best fitness value among agents at every iteration (Xbest) and the best solu-
tion compared to the current Xbest (Xtrue), (4) perform state prediction, measurement, 
and estimation, and (5) perform termination based on a stopping criterion.

In the initialization step, several initial SKF parameters such as the initial value of 
error covariance estimate, P(0), the process noise value, Q, and the measurement noise 
value, R, are initialized. Further settings, such as, the number of n agents and a maxi-
mum number of iterations, tmax, are also determined. The states values of each agent 
are given randomly within a specific interval.

Next, the fitness evaluation function is computed to obtain initial solutions for 
every agent. The best fitness value among each agent at every iteration t, Xbest(t) can 
be either in the maximization problem, maxi∈ 1,...,n fit((X(t)) or minimization problem 
mini∈ 1,...,n fit((X(t)).

The Xbest(t) value at every iteration t is compared and the best among the Xbest(t) 
value, which is Xtrue is updated. For a maximization problem, Xtrue is only updated when 
Xbest(t) at current iteration is greater than Xtrue. Whereas, for a minimization problem, 
Xtrue is only updated when Xbest(t) at current iteration is lower than Xtrue.

Referring to Fig. 4, the next following steps including the state prediction, measure-
ment, and estimation. The state prediction follows the following equations:

where, Xi(t − 1) and Xi(t|t − 1) are the previous state and transition state, respectively. 
P(t|t − 1) and P(t − 1) are previous error covariant estimate and transition error covari-
ant estimate, respectively.

(7)TPR =
TP

TP + FN

(8)TNR =
TN

TN + FP

(9)Gmean =
√
TPR× TNR

(10)Xi(t|t − 1) = Xi(t − 1)

(11)P(t|t − 1) = P(t − 1)+ Q
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In the state measurement step, the following equation, Zi(t), is used, which gives some 
feedbacks to the estimation process.

In Eq.  (12), the sin (rand × 2π) term offers the stochastic element of SKF algorithm 
which having a random probability distribution to the measurement value and rand is a 
uniformly distributed random number in the range of [0 1].

Next, the Kalman gain, K(t), is computed based on the calculated value of the transi-
tion error covariant estimate, P(t|t − 1) and the measurement noise value, R. The equa-
tion of K(t) is given as follows.

Here, the equation for estimating the next state, Xi(t), is given in Eq. (14) and the error 
covariant is updated based on Eq. (15). Finally, the processes are iteratively looped until 
the maximum number of iteration is reached.

(12)Zt(t) = Xi(t|t − 1)+ sin (rand × 2π)× |Xi(t|t − 1)− Xtrue|

(13)K (t) =
P(t|t − 1)

P(t|t − 1)+ R

(14)Xi(t) = Xi(t|t − 1)+ K (t)× (Zi(t)− Xi(t|t − 1))

Fig. 3  The simulated Kalman filter (SKF) algorithm
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Angle modulated simulated Kalman filter (AMSKF) for discrete optimization problems

For solving discrete optimization problems, the angle modulated concept is embedded 
into SKF algorithm (Md Yusof et al. 2016). Referring to Fig. 4, additional two steps of 
the angle modulated into SKF are described as follows. After the initialization step, the 
continuous signals, g(x) with four coefficient parameters (a, b, c, and d) are generated 
for each agent. So, the state of the ith agent in a population at iteration t is denoted as 
Xi(t) =

{

ai, bi, ci, di
}

. As mentioned before, the state values which are a, b, c, and d are 
given randomly in an initial stage. The function g(x) with the four coefficient parameters 
is defined as follows,

An example plot of function, g(x) for the case of a =  0, b =  1, c =  1, and d =  0 is 
given in Fig. 5. From the signals, the sampling time, T, is chosen to generate a bit string 
of length n in the next step. The bit 1 is generated when g(x) value is greater than 0 
while, the bit 0 is generated when g(x) value is lower than 0. The length of the bit string 

(15)P(t) = (1− K (t))× P(t|t − 1)

(16)g(x) = sin (2π(x − a)× b× cos (2π(x − a)× c))+ d

Fig. 4  The angle modulated simulated Kalman filter (AMSKF) algorithm
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depends on the given problem. For example, if the length of the full feature set is 100, 
so the length of the bit string is 100. The generated bit string of each agent is employed 
to calculate the fitness value for each agent. Then, AMSKF follows similar steps as SKF 
until it returns the final solution. Using the angle modulated approach, the AMSKF algo-
rithm only tunes the four coefficient parameters for getting the best solution.

The proposed AMSKF feature selection algorithm
The proposed feature selection algorithm for EEG signals peak detection is based on 
AMSKF algorithm. Also, the NNRW classifier is employed for peak classification. The 
combination of both methods is illustrated in the flowchart as shown in Fig. 6.

From Fig.  6, the proposed AMSKF technique begins with initialization of a popula-
tion and then calculation of a g(x) function. The maximum number of iteration was set 
to 500 and the number of agents was set to 10. The initial value of the error covariance 
estimate, P, process noise value, Q, and measurement noise value, R, are 10,000, 0.5, and 
0.5, respectively. To employ AMSKF algorithm for feature selection in EEG peak clas-
sification, a total of 16-bit string is generated since the selection of one feature is deter-
mined by one-bit value. If AMSKF assigns bit value 1 to an ith feature, the ith feature is 
selected. Otherwise, the ith feature is not selected.

In the calculation process of the fitness evaluation function, the selected features are 
used to prepare the training and validation sets, as shown in Fig. 6. To calculate the fit-
ness evaluation function, at first, the classifier has to be trained by the given training 
data. Then, the trained classifier is tested using the validation set. The detection per-
formance of the training and validation sets are computed based on Gmean (Guo et al. 
2008). The Gmean of validation set is set as fitness value for AMSKF algorithm.

In Fig. 6, after fitness value is calculated, the process continues to the next following 
processes; update Xbest (t) and Xtrue, state measurement, state prediction, and state esti-
mation. Next, new 16 bits solutions are determined and those processes are looped until 
maximum iteration is reached. Finally, the best peak model associated with the NNRW 
was obtained.

Fig. 5  An example of g(x) function with a = 0, b = 1, c = 1, and d = 0
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Experimental results and discussions
In this section, three main experiments were conducted. The first experiment aimed 
to investigate the classification performance of the individual NNRW under various 
number of hidden neurons. This experiment was also evaluated the performance of the 
individual NNRW over the four existing peak models. The optimum number of hidden 
neurons was selected to perform the experiment of the proposed AMSKF technique. 
The second experiment was assigned to study the search capability of the proposed 
AMSKF technique to find the best combination of peak features. The first and second 
experiments were conducted on eye event-related EEG data. The third experiment was 

Fig. 6  Flowchart of the proposed AMSKF feature selection algorithm
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conducted to apply the best combination of peak features on epileptic EEG classification 
events application.

Performance of NNRW under various number of hidden neurons

One advantage of the NNRW classifier is that the learning algorithm is less difficult than 
other conventional neural network classifier (i.e., gradient descent, Levenberg-Marquart, 
and particle swarm optimization-based learning algorithms). So that, with an enormous 
number of hidden neurons is possible to perform using the NNRW classifier. However, 
the optimal number of neurons of the NNRW classifier is required to be firstly identi-
fied for offering better generalization ability of the NNRW classifier. To find the optimal 
number of hidden neuron, an experiment is executed by varying the number of hidden 
neuron from 100 to 1200 in steps of 100.

To prepare the experiment data of the individual NNRW classifier, the EEG dataset 
are randomly divided into four groups, equally distributes the two-class ratio, by four-
fold cross-validation process. Every group alternately assigned as the testing set and the 
other three groups are combined to be a training set. The mean value of testing results 
from the four groups is calculated. This experiment is repeated 30 times, so that the 
mean of the training and testing results can be measured as shown in Table 5.

The variation of testing accuracy with respect to a different number of hidden neurons 
is graphically illustrated in Fig. 7. Referring to Fig. 3, the testing accuracy of all four peak 
models increased up to 1200 neurons. Three peak models (e.g., Dumpala, Acir, and Liu 
models) except Dingle model offer the optimal accuracy when the numbers of hidden 
neurons are between 900 and 1200. Hence, the number of hidden neurons for our exper-
iment was set to 1000. The final results in Fig. 7 indicate that the selection of the best 
combination features is necessary for providing the best and generalizes performance in 
EEG signals peak classification.

Experimental results for AMSKF feature selection algorithm

To prepare the experiment data of the proposed AMSKF feature selection algorithm, 
the four-fold cross-validation process is used to produce four groups of EEG data: each 
group consists of training and testing sets. Next, the training set is randomly divided into 
two: training and validation sets. Both datasets are equally distributed to the two-class 

Table 5  Classification accuracy results for NNRW classifier under different number of hid-
den neurons on eye event-related EEG data

Peak model Result No. of hidden neurons

100 200 300 400 500 600 700 800 900 1000 1100 1200

Dumpala Train 5.15 30.1 43.61 53.39 60.26 66.51 71.27 75.55 78.63 80.86 82.96 84.54

Test 1.09 15.77 24.83 31.75 38.09 42.12 45.31 48.17 49.37 51.46 52.9 53.87

Acir Train 37.69 48.95 53.37 56.87 59.82 63.27 66.41 70.06 73.69 76.3 79.38 81.73

Test 34.46 44.05 45.11 46.67 47.74 48.55 49.3 50.2 51.86 52.16 51.67 52.91

Liu Train 35.61 48.54 54.83 60.38 65.41 69.09 71.94 73.99 75.52 77.18 78.62 80.16

Test 29.18 38.76 41.4 42.97 45.25 46.34 48.07 47.94 48.85 48.19 48.57 48.91

Dingle Train 0 6.19 19 31.13 41.89 49.91 57.07 61.96 68.14 71.39 75.12 77.22

Test 0 1.55 6.48 15.97 21.97 25.81 32.34 34.78 38.31 40.13 43.65 45.26
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ratio. The ratio size of training and validation was set to 0.5:0.5. The testing set is utilized 
as unseen EEG data. After all four groups are evaluated by the algorithm, the maximum 
value of testing results from the four groups is measured and the best peak model is 
recorded. This entire four-fold cross validation process is repeated 30 times to obtain the 
final statistical results (e.g., average, maximum, minimum, and standard deviation) for 
this experiment.

Table 6 shows the 30 independent runs experimental results of the proposed AMSKF 
feature selection algorithm using the EEG data that is collected from the three recorded 
EEG signals (i.e., single eye blink, double eye blink, and eye movement signals). Table 6 
gives the best peak model with the highest training, validation, and testing accuracies for 
the NNRW classifier at every run. In this experiment, the best-generalized peak model is 
chosen based on the maximum accuracy of testing data over 30 runs.

In Table 6, it is found that the feature set of the best peak model is f1, f2, f7, f8, f9, f10, f11, 
f12, f13, f14, and f15, with 72.7 % of testing accuracy. From those associated features, two of 
features are peak amplitudes (e.g., f1 and f2), six of features are peak widths (e.g., f7, f8, f9, 
f10, f11, and f12), and three of features are peak slopes (e.g., f13, f14, and f15). For overall of 
testing accuracy, the average, maximum, minimum, and STDEV over 30 runs are 61.7, 
72.7, 53, and 4.1 %, respectively.

Fig. 7  Variation of testing accuracy of NNRW classifier with respect to number of hidden neurons on eye 
event-related EEG data
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Fig. 8  Example of a convergence curve of AMSKF on eye event-related EEG data
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The results in Table 6 show that the higher value of fitness of validation set cannot pro-
duce the best classification accuracy of testing set as expected. Also, the feature set that 
contain lower feature subset length cannot give better performance. These results have 
exhibited that the peak event-related EEG signals are very problem dependant.

In this experiment, the proposed AMSKF algorithm was iteratively executed with 
maximum 500 iterations. To observe the result of convergence of the proposed AMSKF, 
one example is taken from this experiment, as illustrated in Fig. 8. From Fig. 8, it can be 
seen that the AMSKF algorithm can reach convergence within 20 iterations.

To evaluate the effectiveness of the proposed algorithm and the selected best combi-
nation of features, some comparisons are performed regarding percentage of the testing 
classification accuracy between the results of the existing four peak detection models 
and with the proposed AMSKF model. The comparison results are comparatively pre-
sented in Table  7. For a fair performance evaluation, the four existing peak models 
with their associated features are performed using the similar parameters setting of the 
NNRW of the proposed AMSKF technique.

The experimental results in Table 6 are obtained from the experiment in “Performance 
of NNRW under various number of hidden neurons” section, with the hidden neuron of 
the NNRW is 1000. The performance of the best combination of features is taken from 
the maximum testing accuracy in Table 6. As seen from Table 7, the performance of the 
best combination of features that are produced by AMSKF algorithm exceeds the per-
formance of the other existing four models.

In Table 7, it can be seen that there is a large different value between training and test-
ing accuracies. The proposed method of the AMSKF model has only achieved 73 % of 
testing accuracy. In this study, the ratio between true peak and false peak is 140:11,461. 
This means the dataset has extremely imbalanced dataset ratio. In this case, the conven-
tional NNRW classifier may fail to offer high accuracy of performance for imbalanced 
dataset problem. Other contributing factor is the collected EEG data is affected by vari-
ous noises and the peak features have a large different value from one subject to another 
subject. This factor is the cause to the high variation of peak features. The consequent 
of this factor is that the NNRW classifier may fail to correctly classify the true peak and 
false peak.

The results of the peak models are further analyzed by using nonparametric Fried-
man statistical analysis. The statistical analysis is required to demonstrate the significant 

Table 7  Comparison of  the classification accuracy between  the existing models and  the 
best combination of features that produced by AMSKF technique on eye event-related EEG 
data

Peak model Feature subset 
length

Selected features Training accuracy 
(%)

Testing accuracy (%)

Dumpala 4 f1, f6, f13, f14 80.9 51.5

Acir 6 f1, f2, f7, f8, f13, f14 76.3 52.2

Liu 11 f1, f2, f3, f4, f6, f9, f12, 
f13, f14, f15, f16

77.2 48.2

Dingle 4 f5, f6, f13, f14 71.4 40.1

AMSKF (proposed 
work)

11 f1, f2, f7, f8, f9, f10, f11, 
f12, f13, f14, f15

91.8 72.7
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difference in testing accuracy in terms of average value for the five models. The experi-
ments are conducted based on statistical procedures designed especially for multiple 
N × N comparisons with five models executed in the KEEL data mining system (Alcala-
Fdez et al. 2009).

Table 8 shows the average ranking of Friedman’s test of the Dumpala, Acir, Liu, Din-
gle, and AMSKF models. The statistical results show that the lowest average ranking is 
obtained by AMSKF model that represents ranking first among the five models for EEG 
data. While, the NNRW with Acir model ranking second, the NNRW with Dumpala 
model ranking third, the NNRW with Liu model ranking fourth, and the NNRW with 
Dingle model ranking fifth.

Next, p values for unadjusted values and adjusted p values for Nemenyi, Holm’s, Shaf-
fer, and Bergmann-Hommel test for N × N comparisons for all possible ten pairs of 
model with the peak models are presented in Table 9. The p values below 0.05 represent 
that the particular peak model differ significantly in testing accuracy. The p values below 
0.05 were marked with the italic font.

From Table 9, it can be observed that p values for unadjusted values and adjusted p 
values for Holm’s, Shaffer and Bergmann-Hommel offer for eliminating nine hypotheses. 
However, Nemenyi lets for eliminating only seven hypotheses. Based on unadjusted p 
values and adjusted p values for Nemenyi, Holm’s, Shaffer, and Bergmann-Hommel test, 
the AMSKF model revealed significantly better performance than other models.

Application of the proposed AMSKF model to epileptic and non‑epileptic EEG event 

classification

Two EEG events have been assigned which are epileptic and non-epileptic events. 100 
non-epileptic events are collected from set A while 100 epileptic peak events from set 
E. Each EEG event is a segment that consists of 4097 sampling points and the duration 
is about 23.6 s. The best combination of peak feature and the trained NNRW classifier 
with 500 hidden neurons are used to perform the classification. To distinguish between 
epileptic and non-epileptic events, the voting method is used. The epileptic event is rec-
ognized when more than 50 peaks are identified in within an event. Whereas, the non-
epileptic event is recognized when lower than 50 peaks are identified.

Table 10 demonstrates the confusion matrix of epileptic and non-epileptic event clas-
sification using the proposed AMSKF model. It can be observed that the AMSKF model 

Table 8  The average ranking of  the Dumpala, Acir, Liu, Dingle, and  AMSKF, achieved 
by Friedman

Peak model Average ranking Rank

AMSKF (this work) 1.1 1

NNRW (Acir) 2.533 2

NNRW (Dumpala) 2.733 3

NNRW (Liu) 3.767 4

NNRW (Dingle) 4.867 5

Statistic 95.6533

p value 6.693E−11
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obtains 98 % of total accuracy, with 100 % of the non-epileptic event rate, and 96 % of the 
epileptic event rate. There are four misclassifications of epileptic event.

 The performance comparisons have been done to observe the efficiency of the pro-
posed method. Table 11 gives the classification accuracy of this study and the existing 
methods on Bonn University EEG database. Referring to Table  11, the classification 
accuracy of this study using the NNRW method is lower than AIRS-PCA-FFT and 
Wavelet-ANFIS methods. However, the classification accuracy of the NNRW using 
AMSKF model is higher than other methods.

An example of epileptic and non-epileptic events classification is illustrated in Fig. 9. 
As can be seen that, there are more than 50 peaks (red dotted) have been identified in 
epileptic segment (the right side) within the region from 4000 to 8000 sampling points. 
Figure 10 shows an example of misclassification of epileptic event in record S083. The 
number of detected peaks obviously can be seen is lower than 50. Consequently, the 
actual epileptic event is classified as non-epileptic event.

Conclusions and future works
In this study, a new generalized peak model for EEG signals peak classification has 
been identified using a novel AMSKF feature selection approach. The proposed algo-
rithm considered 11,781 peak candidate samples of real EEG data, which were collected 
from 30 healthy subjects instructed to direct their single eye blink, double eye blink, and 
horizontal eye gaze. The detection performance of the NNRW with four different peak 
detection models and new AMSKF model are compared. In general, the experimen-
tal results showed that the accuracy of the NNRW with new AMSKF model is better 
than the NNRW with other models. The statistical analysis showed that the detection 

Table 9  Adjusted p value for N × N comparisons of peak models over 30runs

The p values below 0.05 were marked with the italic font

Peak model versus peak model pUnadj pNeme pHolm pShaf pBerg

Dingle versus AMSKF 0 0 0 0 0

Liu versus AMSKF 0 0 0 0 0

Acir versus Dingle 0 0 0 0 0

Dumpala versus Dingle 0 0.000002 0.000001 0.000001 0.000001

Dumpala versus AMSKF 0.000063 0.000631 0.000379 0.000379 0.000252

Acir versus AMSKF 0.000447 0.004465 0.002233 0.001786 0.000893

Acir versus Liu 0.002519 0.025191 0.010076 0.010076 0.007557

Liu versus Dingle 0.007051 0.070507 0.021152 0.021152 0.014101

Dumpala versus Liu 0.011369 0.113693 0.022739 0.022739 0.014101

Dumpala versus Acir 0.624206 6.242061 0.624206 0.624206 0.624206

Table 10  Confusion matrix of epileptic and non-epileptic event classification

Peak model Output/desired Result (non-epileptic 
event)

Result (epileptic 
event)

Total accuracy (%)

AMSKF Result (non-epileptic 
event)

100 4 98

Result (epileptic event) 0 96
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performance of the NNRW with the new AMSKF model is significantly better in terms 
of testing accuracy compared to other models.

A published EEG database from Bonn University was selected to evaluate the pro-
posed method and at the same time applied the relevant combination of peak features 

Table 11  Performance comparison of other methods

Author (year) Method Accuracy (%)

Proposed work (2016) AMSKF-NNRW 98

Polat and Gunes (2008) AIRS-PCA-FFT 100

Guler and Ubeyli (2005) Wavelet-ANFIS 98.7

Subasi (2007) Wavelet-MLPNN 93.6

Subasi (2007) Wavelet-ME 95

Kannathal et al. (2005) ANFIS 95

Guler et al. (2005) Recurrent neural networks 96.8
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Fig. 9  Example of epileptic event classification using record Z001 and S001

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
−500

−400

−300

−200

−100

0

100

200

300

S
ig

na
l I

nt
en

si
ty

Sampling Point

Epileptic EEG Signals

Fig. 10  Example of misclassification of epileptic event in record Z083 and S083



Page 22 of 24Adam et al. SpringerPlus  (2016) 5:1580 

for epileptic EEG signals application. From set A and set E of the published EEG data-
base, 20,000 peak candidate samples consist of epileptic peak and non-epileptic peak 
points were archived as EEG data for analysis. The major finding of this chapter is that 
the proposed generalized AMSKF model and NNRW classifier perform at par than the 
existing methods.

This study may provide a significant contribution to medical diagnostic, human–
machine interface (HMI), brain-computer interface (BCI), and harmonic detection in 
digital and audio signal processing as these applications share a common peak detec-
tion problem. For example, an EEG peak in response to a change of horizontal eye gaze 
direction might be useful for patients with locked-in syndrome or other disabilities for 
controlling the direction of computer cursor in BCI applications. (Belkacem et al. 2014). 
This approach might also be translatable for EEG-based command of the movement of a 
robotic arm or wheelchair in HMI applications (Postelnicu et al. 2011; Ramli et al. 2015; 
Aziz et al. 2014).
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