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ABSTRACT

Concrete is a non-homogenous material with complex microstructure, consisting of
water, cement, aggregates and other suitable materials. During concreting of
concrete structures, heat will be released due to the hydration process between
cement and water. At this stage, curing process is crucial and it needs to be
monitored so that the concrete will be able to achieve the desired strength and
becomes durable. Due to the complexity of concrete microstructure, the evaluations
for concrete curing and strength monitoring are difficult and have moved at a slower
pace. However, in recent years the advancements of piezoelectric materials such as
Lead Zirconate Titanate (PZT) have attracted interest among researchers to develop
new non-destructive evaluation methods to investigate the performance of concrete.
The key advantage of using PZT is that it can be placed anywhere even in remote
and inaccessible locations as both actuator and sensor to monitor concrete
structures. The electromechanical impedance (EMI) and surface wave propagation
techniques employing PZT transducer have been developed by researchers as a non-
destructive approaches for evaluating concrete. The main objective of this thesis is
to evaluate the strength characteristics of mortar and concrete during curing using
the EMI and surface wave propagation techniques. In order to achieve this, the
research begins with conducting parametric study on free vibration of PZT transducer
in the application of EMI technique. The work continues with experimental
investigation to study the feasibility of using the EMI and surface wave propagation
techniques employing PZT transducer for evaluation of strength characteristics of
mortar and concrete during curing. The PZT transducers were attached to the mortar
and concrete specimens through surface bonding and embedded methods. The
results showed that by using the EMI and surface wave propagation techniques
employing the PZT transducer, the duration of concrete setting and curing can be
determined. Also, a good correlation between the concrete dynamic modulus of
elasticity with compressive strength has been achieved by using the surface wave
propagation method. For these reasons, the EMI and surface wave propagation

techniques can be a useful tools to ensure the safety and quality of concrete
structures during construction and service.




ABSTRAK

PENILAIAN CIRI-CIRI KEKUATAN MORTAR DAN KONKRIT SEMASA
PENGAWETAN MENGGUNAKAN TEKNIK EMI DAN PERAMBATAN
GELOMBANG PERMUKAAN

Konkrit merupakan bahan yang tidak homogen dengan mikrostruktur yang kompleks
dan yang terdiri daripada air, simen, agregat dan bahan-bahan lain yang sesuai.
Semasa kerja menuang konkrit dalam pembinaan struktur konkrit, haba akan
dibebaskan melalui proses penghidratan di antara simen dan air. Pada peringkat i,
proses pengawetan adalah penting dan ia perlu dipantau supaya konkrit akan dapat
mencapai kekuatan yang dikehendaki dan menjadi tahan lama. Oleh kerana konkrit
mempunyai mikrostruktur yang kompleks, penilaian untuk pengawetan konkrit dan
pemantauan kekuatan adalah sukar dan bergerak dengan kadar perlahan. Walau
bagaimanapun, beberapa tahun kebelakangan ini, kemajuan bahan-bahan
piezoelektrik seperti Lead Zirconate Titanate’ (PZT) telah menarik minat kalangan
penyelidik untuk membina teknik-teknik penilaian ujian tanpa musnah yang baru bagi
mengkaji prestasi konkrit. Kelebihan utama menggunakan PZT ialah ia boleh
diletakkan dimana-mana walaupun di tempat yang jauh dan lokasi yang tidak dapat
diakses sebagai aktuator (penggerak) dan sensor (pengesan) untuk mengawasi
struktur konkrit. Teknik elektromekanikal impedans (EMI) dan perambatan
gelombang permukaan menggunakan transduser PZT telah dibangunkan oleh para
penyelidik sebagai pendekatan tanpa musnah untuk penilaian konkrit. Objektif utama
tesis ini adalah untuk membuat penilaian terhadap ciri-ciri kekuatan mortar dan
konkrit semasa pengawetan menggunakan teknik-teknik EMI dan perambatan
gelombang permukaan. Bagi mencapai objektif ini, penyelidikan ini bermula dengan
menjalankan kajian parametrik terhadap getaran bebas transduser PZT dalam
penggunaan teknik EMI. Penyelidikan diteruskan dengan kajian eksperimen untuk
mengkaji kemungkinan menggunakan teknik EMI dan perambatan gelombang
permukaan menggunakan PZT transduser untuk penilaian ciri-ciri kekuatan mortar
dan konkrit semasa pengawetan. Transduser PZT diletakkan ke atas spesimen mortar
dan konkrit melalui ikatan permukaan dan kaedah terbenam. Hasil kajian ini
menunjukkan bahawa dengan menggunakan teknik EMI dan perambatan gelombang
permukaan menggunakan transduser PZT, tempoh penetapan konkrit dan
pengawetan boleh ditentukan. Selain itu, korelasi yang baik antara modulus dinamik
keanjalan konkrit dengan kekuatan mampatan telah dicapai menggunakan kaedah
perambatan gelombang permukaan. Oleh sebab itu, teknik EMI dan perambatan
gelombang permukaan boleh menjadi kaedah yang berguna untuk memastikan
keselamatan dan kualiti struktur konkrit semasa pembinaan dan perkhidmatan.
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direction
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