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ABSTRACT 

This study considers U the class of functions which are analytic in the open unit 

disk D = {z: Izl < 1} given by w(z) = r~=l bnzn and satisfying the conditions 

w(O) = 0, Iw(z)1 < 1,z E D. The subclass of U consisting of univalent functions and 

normalized by the conditions f(O) = {'CO) -1 = 0 is denoted by S. This study also 

considers A(p) the class of functions defined by fez) = zP + r~=l Qp+nzP+", where 

Q p+n is complex number and pEN, which are analytic in the open unit disc D. The 

subclass of A(p) denoted by T(p), consisting of functions f of the form fez) = zP -

r~=l ap+nzp+n, where Qp+n ;::: 0 and pEN. By considering functions f E T(p), a 

new subclass is proposed and coefficient estimates, growth and distortion theorem, 

closure theorem and extreme points are obtained for this class. In a meanwhile, 

the upper bounds for the Fekete-Szego and second Hankel functional are obtained 

for certain subclasses of A(p). 
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A BSTRAK 

BATASAN PEKALI BAGI SUATU KELAS FUNGSI p-VALEN 

Kajian ini mempertimbangkan U sebagai kelas fungsi yang analisis dalam cakera 

unit terbuka D = {z: Izl < 1} dengan w(z) = L~=l bnzn dan memenuhi syarat 

w(O) = 0, \w(z)\ < 1, zED. Subkelas bagi U yang terdiri daripada fungsi univalen 

dan ternormal dengan syarat f(O) = f' (0) - 1 = 0 dilambangkan sebagai S. Kajian 

ini juga mempertimbangkan A(p) sebagai kelas fungsi fez) = zP + L~=l Qp+nzp+n, 

dengan Qp+n adalah nombor kompleks dan pEN, yang analisis dalam cakera unit 

terbuka D. Subkelas A(p) dilambangkan dengan T(p), terdiri daripada fungsi f 

berbentuk fez) = zP - L~=l Qp+nZp+n , dengan Qp+n ~ 0 dan pEN. Dengan 

mempertimbangkan fungsi f E T(P), suatu subkelas diperkenalkan dan anggaran 

pekali, pertumbuhan dan teorem herotan, teorem tutupan serta titik ekstrim 

diperoleh bagi fungsi di dalam kelas ini. Di samping itu, batasan atas bagi fungsian 

Fekete-Szeg6 dan penentu Hankel ke-2juga diperoleh bagi subkelas A(p). 
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CHAPTER 1 

PRELIMINARIES 

1.1 Introduction. 

This thesis is about geometric function theory. According to (Bulboaca, (ho and 

Kanas, 2012), geometric function theory is the branch of complex analysis which 

deals with the geometric properties of analytic functions, founded around the turn 

of 20th century. In spite of the famous coefficient problem, the Bieberbach 

conjecture that was solved by Louis de Branges in 1984 suggest various 

approaches and directions of studied in geometry function theory. According to 

(Ahuja, 1986), the study of geometric function theory is one of the most faScinating 

aspects of the theory of analytic functions of a complex variable. Furthermore, 

according to (Crowdy, 2008), geometric function theory is an area of mathematics 

characterized by an intriguing marriage between geometry and analysis. 

1.2 Analytic and Univalent Functions 

This section begins with the well-known definition about analytic functions. 

According to (Duren, 1983), a complex-valued function I of a complex variable is 

differentiable at a point Zo E IC if it has a derivative 

I
' ( ) - 1· I(z) - I(zo) 

Zo - Im----
Z-+Zo Z - Zo 

at zoo Such a functions f is analytic at Zo if it is differentiable at every point in some 

neighbourhood of Zoo In (Sharma and Sharma, 2000), a function I is analytic at a 

point zo, if it is defined and possesses a derivative at every point in some 

neighbourhood of Zo. 

In this thesis, let U be the class of functions which are analytic in the open 

unit disk D = {z: \z\ < 1} given by 
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00 

w(z) = L bnzn (1.1) 
n=l 

and satisfying the conditions w(O) = 0, \w(z)\ < 1, bn is a complex number and 

zED. 

Next, we give the definition of univalent functions. According to 

(Goodman ,1975), a functions fez) is said to be univalent in a domain E if it 

provides a one-to-one mapping onto its image, f(E). The following gives the 

definition of univalent functions. 

Definition 1.1 (Goodman, 1975) A function fez) is said to be univalent in a 

domain E if the condition f(zl) = f(zz), implies that Zl = zz, with Z1l Zz E E. 

In (Duren, 1983) , a single-valued function f is said to be univalent (or 

schlicht) in a domain E c (: if it never takes the same value twice that is , if 

f(zl) * f(z2) for all points Zl and Z2 in E with Zl * Z2. 

This thesis also considers the subclass of U consisting of univalent functions 

and normalized by the conditions f(O) = 0 and f' (0) = 1 which is denoted by s. 
Thus, each f E S has a Taylor series expansion of the form 

00 

fez) = z + L anzn (1.2) 
n=Z 

where an is a complex number and zED. 

The subclass of S, denoted by T consisting of functions f of the form 
00 

fez) = z - L anzn (1.3) 
n=Z 

The class of T was introduced by (Silverman, 1975) and many researchers 

have studied the class T such as (Srivastava, Owa and Chatterjea, 1987), (Joshi 

and Srivastava, 1996), (Keerthi, Gangadharan and Srivastava, 2008), and (Jain, 

2012). 
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1.3 Subclasses of S 

The important subclasses of S include of class of starlike functions denoted as S·, 

class of convex functions denoted as C and class of close-to-convex functions 

denoted as K. Hence, this section defines the main subclasses of S as follows. 

Definition 1.2 (Goodman, 1975) A set E in the plane is said to be starlike with 

respect to Wo an interior point of E if each ray with initial point Wo intersects the 

interior of E in a set that is either a line segment or a ray. If a function fez) maps 

D onto a domain that is starlike with respect to wo, then we say that fez) is starlike 

with respect to woo In the special case that Wo = 0 we say that fez) is a starlike 

function. 

Theorem 1.1 (Goodman, 1975) Let fez) be analytic and univalent in the closed 

disk DR: Izl ~ R < 1. Then fez) maps DR onto a region that is starlike with respect 

to w = 0 if and only if 

(
z['(z)) 

Re fez) > 0 

for z on circle cR : Izl < R. 

According to (Jenkins, 1958), the class of starlike functions first treated by 

Alexander in 1915 and later by Nevanlinna in 1922. Many researchers have studied 

the class S" such as (Ghanim and Darus, 2010), (Hayami and Owa, 2010) and 

(Nishiwaki and Owa, 2013). 

According to (Goodman, 1975), the Koebe function which is given by 
00 

k(z) = z = ~ nzn 
(1-Z)2 L 

n=l 

is a starlike function. 

The class S· can be generalized to the class of starlike functions of order a, 

S"(a) and satisfying the condition 

(
z['(z)) 

Re fez) > a, o ~ a < I, zED. 

3 
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The class S·(a) was introduced by (Robertson, 1936). 

Definition 1.3 (Goodman, 1975) A set E in the plane is called convex if for every 

pair of points Wl and W2 in the interior of E, the line segment joining Wl and W2 is 

also in the interior of E. If a function f(z) maps D onto a convex domain, then fez) 

is called a convex functions. 

Theorem 1.2 (Goodman, 1975) Let fez) be analytic and univalent in the closed 

disk DR: \z\ ~ R < 1. Then fez) maps DR onto a convex domain if and only if 

( 
Zf"(Z)) 

Re 1 + f'(z) > 0 

for z on circle CR : Izl = R. 

According to (Jenkins, 1958), the first special subclass of S to be treated 

was that of convex functions introduced by Study in 1913. Many researchers have 

studied the class C such as (Xu, Gui and Srivatava, 2011), (Hayami and Owa, 2011) 

and (Ali, Nargesi and Ravichandran, 2013). 

According to (Goodman, 1975), the Mobius function 
00 

l+z I Lo(z)=--=1+2 zn 
l-z 

n=l 

is a convex function because it maps D onto a half-plane. 

(1.4) 

The class C can be generalized to the class of convex functions of order a, 

C(a) and satisfying the condition 

( 
zf" (Z)) 

Re 1 + f' (z) > a, 0 ~ a < 1, zED. 

The class C(a) was introduced by (Robertson, 1936). 

We now turn to an interesting subclass of S which contain s· and has a 

simple geometry description. This is the class of close-to-convex functions which 

was introduced by (Kaplan, 1952). A functions fez) analytic in the unit disc is said 

to be close-to-convex if there is a convex g(z) such that 

4 
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(
I'(Z)) 

Re g'(z) > 0, for all zED. 

Every convex function is close-to-convex. More generally, every starlike 

function is c1ose-to-convex. Indeed each f E S· has the form fez) = Z9'(Z) for 

some gEe and 

(
I' (Z)) (zl' (Z)) 

Re g'(z) = Re fez) > o. 

These remarks are summarized by the chain of properties inclusion C c 

s· cK. 

Many researchers have studied the class of dose-to-convex function such as 

(EI-Ashwah and Thomas, 1987), (Srivastava, Mishra and Das, 2001), (Gao and 

Zhou, 2005), (Mehrok, Singh and Gupta, 2011), (Mehrok and Singh, 2011b) and 

(Tang and Deng, 2013). 

1.4 p-valent Functions 

This section gives the definition of p -valent functions which is also known as 

multivalent functions. The theory of p-valent functions is the generalization of the 

theory of univalent function. The following is the definition of p-valent function. 

Definition 1.4 (Goodman, 1975) A function fez) meromorphic in a domain E is 

said to be p-valent in E (or multivalent of order p in E) if for each Wo (infinity 

included) the equation fez) = Wo has a most p root in E (where the root are 

counted in accordance with their multiplicity) and if there is some WI such that the 

equation fez) = W l has exactly p root in E. 

In this thesis, let A (p) denote the class of functions of the form 
00 

fez) = zP + I ap+nzp+n (1.5) 
n=l 

which are analytic and p-valent in D and pEN = {1,2,3, ... }. 

5 
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Next, let T(p) denote the subclass of A(p) consisting of functions which are 

analytic and p-valent which can be expressed in the form 
00 

fez) = zP - L ap+nzp+n (1.6) 
n=l 

with ap+n ~ 0, pEN = p,2,3, ... }. 

Many researchers have studied of the class T(P) such as (Goel and Sohi, 

1981), (Owa and Obradovic, 1988), (Aouf, 1989) and (Amsheri and Zharkova, 

2011). 

1.5 Subordination Principle 

This section gives the definition of subordination which will be used to define new 

subclasses of A(p) in Chapters 3 and 4. The following is the definition of 

subordination: 

Definition 1.5 (Owa, 1986) Let f(z) and g(z) be analytic in the open unit disk 

D = {z: \z\ < 1}. A function fez) is said to be subordinate to g(z) if there exists a 

function CP(z) analytic in the unit disc D satisfying CP(O) = 0 and \CP(z)\ < 1, zED 

such that fez) = g(cp(z)) for zED. We denote by fez) -< g(z) this relation. In 

particular, if g(z) is univalent in the unit disc D the subordination is equivalent to 

f(O) = g(O) and range of fez) c range of g(z). 

1.6 Function with Positive Real Part 

Closely related to the classes s· and C is the class of all functions of the form 
00 

p(z) = 1 + L Pnzn (1.7) 
n=l 

be analytic in D and satisfies the condition p(O) = 1. Re(p(z)) > o. 

According to (Polatoglu and Bolcal, 2000) this function is called 

Caratheodory functions. The class of these functions is denoted by P. The Mobius 

function which is given by (1.4) playa central role in the class P. This function is in 

the class P, it is analytic and univalent in D, and it maps D onto the half-plane 

(Goodman, 1975). 

6 
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By using the subordination principle, we have 

1+z 
p(z) E P if and only if p(z) -< 1- z. 

1.7 Objectives of Study 

The objectives of this study are: 

(i). to propose a new subclass of r(p) and determine the properties of 

functions in this class which include coefficient estimates, growth and 

distortion theorem, closure theorem and extreme points; 

(ii). to determine the upper bounds of the coefficients and Fekete-Szego 

inequality for functions in certain subclasses of A(P); and 

(iii). to determine the upper bounds of the second Hankel determinant for 

functions in certain subclasses of A(p). 

1.8 Thesis Outline 

This study consists of five chapters. It begins with Chapter 1 which gives an 

overview on the geometriC function theory and some definitions of functions which 

will be referred throughout this study. Chapter 2 giving a new subclass of r(p) 

which is denoted by S5 rep, A, a, p, 0) and obtaining the coefficient estimates, growth 

and distortion theorem, closure theorem and extreme points of f E Ss rep, A, a, p, 0). 

Next, Chapter 3 giving the upper bounds of the the coefficients and Fekete-Szego 

inequality for certain subclasses of A(p) which are denoted by S;(p,A,B) , 

Cs(p, A, B), MsCp, b, A, A, B), SpCb, A, a) and cp Cb, A, a). Whereas, the upper bounds of 

the second Hankel determinant for certain subclasses of A(p) which are denoted by 

S;(p,cp) and Cs(p,cp) are discussed in Chapter 4. Rnally, this study ends with 

conclusion and future works in Chapter 5. 
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CHAPTER 2 

THE CLASS SsT(p,l,a,p, 6) 

2.1 Introduction 

This chapter develops new subclass ofT(P) which are denoted by SsT(p,A.,a,p,8) 
. n-p 

With p = 1,3,5,7, ... , 0 $; A.:5 1, 0:5 a < 1, 0 < p < 1 , 0:5 8 < -2- and n > p. Some 

properties of functions in the class SsT(p,A.,a,p,8) which include coeffident 

estimates, growth and distortion theorem, closure theorem and extreme points are 

obtained. The reason of developing S5 T(p, A, a, p, 8) and investigating the properties 

of functions belonging to this class were motivated by the original idea of (Khairnar 

and Rajas, 2010) and (Singh, 2013). 

2.2 Class SsT(p,l, a, p, 8) 

This section begins by giving the previous known definitions of classes which are 

introduced by (Khairnar and Rajas, 2010). 

Definition 2.1 (Khairnar and Rajas, 2010) A function [E S;M(p,a,p,8) if it 

satisfies 

\f(Z;C~~-Z) - (p + 8)\ < P \f(~Z~';~~Z) + (p - 8)\ 
for pEN, 0 :5 a < 1, 0 < p < 1 , 0 :5 0 < p and zED. 

Definition 2.2 (Khairnar and Rajas, 2010) A function f E S;M(p, a,p, 8) if it 

satisfies 

, zf'(z) \ \ azf'(z) \ 
fez) + f(i) - (p + 8) < (J fez) + f(i) + (p - 8) 

for pEN, 0 :5 a < 1, 0 < p < 1 , 0 :5 0 < p and zED. 
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Definition 2.3 (Khaimar and Rajas, 2010) A function [ E S;cM (p, a, fJ, 6) if it 

satisfies 

\ 
zf'(z) _ (p + 6)\ < p I azf'(z) + (p - 6)\ 

fez) - f(-z) fez) - IFZ) 
for pEN, 0 ::;; a < 1, 0 < p < 1 , 0 ::; 0 < p and zED. 

The above conditions imposed on a, p and 0 are necessary to ensure that 

. these classes form a subclass of A(p). 

Khainar and Rajas (2010) have obtained some of the basic properties for 

functions I belongs to the classes S;M(p,a,p,o) , S;M(p,a,p,o) and 

S;cM (p, u, p, 6) such as growth and distortion theorems, closure theorems, extreme 

points and convolution theorems. 

In 2013, Singh considered the class Ms(A) as defined below. 

Definition 2.4 (Singh, 2013) Let Ms(J.) be the subclass of functions fez) E A and 

satisfying the condition 

( 
zf'(z) + AZ2["(Z) ) 

Re > 0, 
(1- A)[f(Z) - I(-z)] + J.z[f(z) - [(-z)]' 

for 0 ::;; J. ::;; 1, zED. 

Class Ms(J.) was subclass for Ms(A,A,B) that introduced by (Selvaraj and 

Vasanthi, 2011). Obviously Ms(O) = 5;, the class of starlike functions with respect 

to symmetric points introduced by (Sakaguchi, 1959) and Ms(1) = Cs , the class of 

convex functions with respect to symmetric points introduced by (Das and Singh, 

1977). For a class Ms(J.), (Singh, 2013) has obtained the sharp upper bounds of 

the second Hankel determinant for functions belonging to such class. 

Motivated by the classes 5; M(p, u, P,6) and Ms(A), we develop the following 

subclass of Tep) which is denoted by SsT(p,A,a,fJ,o) with the conditions p = 
n-p 1,3,5,7, ... , 0::;; A ::;; 1, 0::;; a < 1, 0 < p < 1 , 0::;; 6 < -2- and n > p. 
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Definition 2.5 A function [E SST(p,A,a,p, 8) if it satisfies 

, 
zf'(z) + AZ2["(Z) I 

(1- A)[[(Z) - [(-z)] + AZ[f(Z) - f(-z)]' - (p + 8) 

\ 

a[zf'(z) + AZ2f"(Z)] \ <p +(p-8) (2.1) 
(1 - A)[f(Z) - [(-z)] + AZ[f(Z) - [( -z)]' 

for zED. 

For different choices of parameters p, A, a, p, and 8 , we obtain special 

relationship with the previous known classes as follows: 

i) Ss T(p, 0, a, p, 8) c S; M (p, a, p, 8) which was introduced and studied by 

(Khairnar and Rajas 2010). 

ii) SsT(1,O,a,p,S) c M(a,p,S) which was introduced and studied by (Khairnar 

and More, 2008). 

iii) SsT(1,O,a,p,O) c S;T(a,p) which was introduced and studied by (Halim, 

Janteng and Darus, 2005) and (Halim, Janteng and Darus, 2007). 

iv) SsT(1,l,a,p,O) c CsT(a,p) which was introduced and studied by (Wong and 

Janteng, 2008a) and (Wong and Janteng, 2008b). 

In the next section, we will determine the basic properties of functions 

[ E SsT(p, A, a,p, 8) such as coefficient estimates, growth and distortion theorem, 

closure theorem and extreme pOints. 

2.2.1 Preliminary Lemma 

The following preliminary lemma is required to prove the main results. 

Lemma 2.1 let [ E T(p), then 
00 

2)a(p + n)[(1- A) + A(p + n)] 
n=1 

+ (p - 8)[1 - (-1)p+n][(1- A) + A(p + n)J]ap+" Izl" 

< ap[(1- A) + Ap] + (p - 8)[1- (-1)P][(1 - A) + Ap] 

Proof. let f E T(p). From (Owa, 1985), we have 

L~=l(P + n) ap+nlzln < p, L~=l(P + n)2ap+nlzl" < p2 and L~=l ap+nlzl" < 1. 

(2.2) 
10 
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Thus, 
00 

L)a(p + n)[(1-}.) + }.(p + n)] 
n=l 

+ (p - 8)[1 - (-1)p+n][(1_}.) + }.(p + n)l]ap+n Izln 
00 

= I a(p + n)[(1-}.) + }.(p + n)] ap+nlzln 

n=l 
00 

+ I (p - 8)[1- (_l)p+n][(1-}') + }.(p + n)] ap+nlzln 

n=l 
00 00 

= I a(1- }.)(P + n) ap+nlzln + L a}.(p + n)2 ap+nlzln 

n=l n=l 
00 

+ I (p - 8)(1- }.)[1- (_l)p+n] ap+nlzln 

n=l 
00 

+ I }.(p - 8)(P + n)[l- (-1)p+n] ap+n Izln 
n=l 

00 00 

= a(1-}.) I (p + n) Qp+nlzln + a}. I (p + n)2 Qp+nlzln 

n=l n=l 
00 

+(p - 8)(1-}.) L[1- (-1)p+n] ap+nlzln 

n=l 
00 

+ }.(p - 8) L (p + n)[1 - (-1)p+n] ap+nlzln 

n=l 
00 00 

< a(1-}.) I (p + n) Qp+nlzln + a}. L (p + n)2 Qp+nlzln 

n=l n=l 
00 

+(p - 8)(1-}.) I[1- (-1)P] ap+nlzln 

n=l 
00 

+ }.(p - 8) I (p + n)[1- (-1)P] ap+nlzln 

n=l 

00 00 

= a(1-}.) I (p + n) Qp+nlzln + a}. L (p + n)2 ap+nlzln 
n=l n=l 
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