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ABSTRACT 

Titanium dioxide (Ti02) is one of the most widely used photocatalyst due to its non­

toxic, low cost, good chemical stability, elemental abundance, and photocatalytic 

properties. But there are some problems faced by Ti02, first is that if Ti02 used is in 

the powder form an additional separation process is needed to separate the Ti02 

particles from the wastewater after the treatment. Ti02 has a high bandgap which 

requires UV-A light to activate it. The high recombination rate of electron hole pair 

occurs before the photocatalytic process starts. ZIF-67 is well known for its porosity 

properties. It is used in this study to act as an adsorbent to adsorb organic dye on 

the surface of Ti02 to allow photodegradation to occur and at the same time forming 

synergetic effect with Ti02 to reduce its band gap from UV region to visible light 

region. ZIF-67m02 thin film is form by using dip-coating method. The morphology of 

ZIF-67 m02 is observed by using SEM. A square-like shape of ZIF-67 is observed on 

the surface of Ti02 thin film. The photodegradation result obtained show that ZIF-

67m02 (43.63%) has a lower photodegradation efficiency than un-doped Ti02 

(58.81 %) under the irradiation of UV-A light. This shows that ZIF-67 does not 

enhance the photocatalytic ability of Ti02 under irradiation of UV-A light. This may 

cause by the combination of ZIF-67 with the Co-doped Ti02 thin film does not show a 

synergetic effect in photodegradation. Besides that, ZIF-67 does not overcome the 

high recombination rate of electron hole pair of Ti02 by adsorbing MB longer on the 

surface. But from this study shows that cobalt can act as a dopant to enhance the 

photocatalytic properties of Ti02 in the visible light region. Co-doped Ti02 shows a 

photodegradation efficiency of 25.27 % compared to un-doped Ti02 which is only 

14.36 %. 
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PENYEDlAAN DAN PENCIRIAN FILEM NIPIS ZIF-67/Ti02 

A BSTRAK 

Titanium dioksida (TiD.?) adalah salah satu fotomangkin yang paling banyak 

digunakan. Ia digunakan kerana tldak beracun, kos yang rendah, kestabilan kimia 

yang baik, mudah didapati, dan mempunyai sifat fotopemangkinan yang baik. Tetapi 

terdapat beberapa masalah yang dihadapi o/eh TiOu pertama adalah bahawa jlka 

TiD; digunakan ada/ah da/am serbuk ini menubuhkan satu proses pemisahan ini 

ada/ah untuk memisahkan zarah TiDz dari air sisa se/epas rawatan. Di samping itu, 

TiD; mempunyai bandgap yang tinggi yang memerlukan UV-A cahaya untuk 

mengaktifkannya. Tambahan pula, kadar penggabungan semu/a yang tinggi untuk 

lubang dan elektron berlaku sebelum proses fotopemangkinan bermu/a.ZIF-67 

terkenal dengan sifat keliangan. Ia digunakan dalam kajian ini untuk bertindak 

sebagai adsorben untuk menjerap pewarna organtk di permukaan TiO; untuk 

membolehkan fotodegradasi berlaku dan pada masa yang sama membentuk kesan 

sinergis dengan TiD; untuk mengaktifkan TiD; dari rantau UV kepada rantau cahaya 

visible. ZIF-67/TiD,? fi/em nipis dibentukkan dengan menggunakan kaedah kemiringan 

/apisan. Morfologi ZIF-67/TiDz dldapati dengan menggunakan SEM. Satu bentuk 

persegi daripada ZIF-67 dipelihara pada permukaan TiO; fi/em nipis. Kaedah 

fotodegradasi diperolehi bahawa ZIF-67/TiD2 (43,63%) mempunyai kaedah yang 

lebih rendah daripada TiDz sendiri (58,81%) di bawah sinaran UV-A cahaya. Ini 

menunjukkan bahawa ZIF-67 tidak meningkatkan keupayaan fotopemangkinan 

daripada TiD; di bawah sinaran UV-A cahaya. Ini bo/eh menyebabkan oleh gabungan 

ZIF-67 dengan TiD,? fi/em nipis tidak menunjukkan kesan sinergis da/am 

Pemfotorosotaan. Di samping itu, ZIF-67 tidak mengatasi masa/ah kadar 

penggabungan semula yang tinggi untuk lubang dan elektron TiDz dengan adsorbing 

MB di permukaan TiD; lebih lama. Tetapi daripada kaji"an ini menunjukkan bahawa 

kobalt bo/eh bertindak sebagai pendopan untuk meningkatkan sifat-sifat 

fotopemangkinan daripada TiDz di rantau cahaya visible. Co-doped TiDz 

menunjukkan kecekapan Pemfotorosotaan yang lebih balk daripada 25,27% 

berbanding un-doped TiD; yang hanya 14,36%. Ini adalah kerana dengan doping 

koba/t ke TiDz boleh beralih kelebihan penyerapan optik dari UV ke dalam julat 

cahaya visible. U M S 
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CHAPTER 1 

INTRODUCTION 

1.1 PHOTOCATALYSIS IN WASTEWATER TREATMENT 

In present years, environmental pollution is one of the most serious issues that 

causes a huge impact to the world. This is due to the increasing living standards and 

growth of population in the world as well as the unreasonable energy usage that 

have aggravated the pollution of environment. Many research activities are devoted 

in order to solve these problems (Li et al., 2014). Among the researches, 

photocatalysis shows the most promising solutions towards elimination of 

environmental contaminants (Pichat, 2013). 

In photocatalysis reaction either the catalyst molecule or the substrate 

molecule, are in an electronically excited state during the catalytic step. The 

absorption of photon by the catalyst causes the electron to be promoted from the 

valence band to the conduction band leaving a hole, h+ behind. Excited state of 

electrons in the conduction band and the holes in the valence band can cause a 

recombination process and dissipate the energy as heat or react with electron donors 

and electron acceptors adsorbed on the semiconductor surface (Hoffmann et al., 

1995). The efficiency of catalytic reaction is highly dependent on the concentration of 

the electronically excited catalyst speCies. It is non-catalytic in the absence of 

photons, therefore to maintain the catalytic cycle, a continuous irradiation is required 

(Oppenlander, 2003). 
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Titanium dioxide (TiOz) is one of the most widely used photocatalyst due to 

its non-toxic, low cost, good chemical stability, elemental abundance, excellent 

physicochemical properties for the applications in scope of energy and environmental 

science (Chen et al., 2014). In nature it can exist in three crystal form which are 

rutile, anatase and brookite (Othmer, 1996). The form of TiOz is temperature 

dependent, to obtained anatase form during the calcination process of TiOz, the 

temperature is required to rise around 500°C. (Lopez-Munoz et al., 2014). TiOz is 

insoluble in water and in diluted acids, but it dissolves slowly in hot sulphuric acid 

(Oppenlander, 2003). From the past research, anatase form shows a band gap of 

3.21 eV (Lopez-Munoz et al., 2014). The photocatalytic activity of TiOz is strongly 

affected by its crystallinity and particle size (Pecchi et al., 2001). Anatase shows 

more photocatalytic activity than rutile TiOz due to its larger charge carrier diffusion 

rates and lower recombination rates compared to rutile (Heather, 2002). Although 

rutile shows lower photocatalytic activity than anatase, the combination of anatase 

and rutile to form Degussa P-25 TiOz shows greater photocatalytic activity than 

anatase alone. This material consists of about 80 % of anatase 20 % of rutile and 

has a BET specific surface area of ca. 55 mZ 9-1• The diameter of its particles usually 

lies between 25 nm and 35 nm (Oppenlander, 2003). 

Despite of all the advantages in the usage of TiOz, there are some challenges 

faced in this material. First of all, the separation of TiOz particles from its aqueous 

suspensions represents a serious problem for practical use. Besides that, the high 

recombination rate of e -I h+ impeded TiOz from practical application. The reactivity of 

a TiOz is dependent on the recombination rate of e -I h+ at the surface. In order to 

increase the efficiency of the photocatalyst, the photogenerated holes and electrons 

must have a long lifespan, since recombination process shows a direct competition 

with the surface charge transfer to the adsorbed species. Hence, the recombination 

rate must be minimized to achieve optimum efficiency. Various experiments had been 

done such as doping, to extend the lifespan of the photogenerated holes and 

electrons. For example, the photocatalytic degradation of rhodamine B by Ti02 was 

highly enhanced when doped with lanthanide metals such as Eu3+ La3+ Nd3+ and , , , 
pr+. These dopants create a potential gradient at the surface, separating the 

photogene rated e i h+ pairs by trapping them as well as by facilitating their faster 

movement along the surface of Ti02 (Magesh et al., 2009). Lastly, th lar e an s 
2 
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gap of Ti02 (3.2 eV for anatase polymorph) which falls in the range of UV region, 

only shows photo-response to UV light, making it more costly due to the need of UV 

light source (Bagwasi et a/., 2013). 

In this study, Ti02 thin film in anatase phase is used to overcome the 

separation problem caused by Ti02 particles. Furthermore, Metal Organic Framework 

(MOF) is introduced in this study to overcome the high recombination rate of 

electron-hole pair and large band gap faced by Ti02 photocatalyst. MOF is a material 

consist of metal centres which is bound to each other by organic molecules ligands, 

instead of binding to a single metal centre, it is bind with several metal centres to 

form coordination polymers. By altering the types of metal nodes and bridging 

ligands, desirable framework topologies can be prepared (Schroder, 2010). In this 

study, ZIF-67 was used as the MOF to form ZIF-67/Ti02 composite. The low band 

gap of ZIF-67 (1.98 eV) is highly possible to reduce the band gap of Ti02 (3.2 eV) 

and alter the absorption spectrum from UV region towards visible light region. 

Besides that, the porous properties of ZIF-67 can also help to overcome the electron 

recombination problem of TiOz by elongating the time of adsorption between the 

pollutants and the surface of Ti02. 

1.2 OBJECTIVES OF STUDY 

The objectives of this study are: 

i) to prepare ZIF-67/Ti02 thin film, 

ii) to characterize ZIF-67 m02 thin film, 

iii) to determine the photocatalytic activity of ZIF-67/Ti02 thin film towards 

the degradation of methylene blue, and 

iv) to determine the adsorption ability of ZIF-67 m02 thin film towards 

methylene blue. 

1.3 SCOPE OF STUDY 

This study focuses on the synthesis and characterization of ZIF-67m0 2 thin film. The 

Co-doped Ti02 thin film was synthesized using the sol-gel method where Ti02 
precursor sol-gel was prepared from mixture of isopropyl alcohol (IPA) 

5 
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(IV) butoxide (TBOT). Then CoCh-6H20 and isopropyl alcohol (IPA) are added to the 

sol-gel to form the precursor sol-gel of Co-doped Ti02 • Then a glass slide was dipped 

in the sol-gel followed by drying and calcination. ZIF-67 precursor was prepared from 

CoCl2-6H20 and 2-methylimidazole. ZIF-67 {Ti02 composite was formed by dip-coating 

method. 

The surface morphology of ZIF-67 {Ti02 was determined using scanning 

electron microscope (SEM). Lastly, the photocatalytic activity was determined using 

UV-VIS spectrophotometer in the degradation of methylene blue solution. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 TITANIUM DIOXIDE 

Titanium dioxide, TiOz also known as titania is a natural occurring oxide of titanium. 

The main advantages of 1I0z are its high chemical stability when exposed to acidic 

and basic compounds, its nontoxicity, its relatively low cost and its highly oxidizing 

power, which make it a competitive candidate for many photocatalytical applications 

(Ohama et al., 2011). In nature titanium dioxide can exist in three crystal form which 

are rutile (tetragonal), anatase (tetragonal) and brookite (orthorhombic) (Othmer, 

1996). Figure 2.1 shows the crystal structures of anatase, brookite and rutile. 

(b) Ie} 

Fi~ure 2.1: Crystal structur~s of titanium dioxide (a) anatase (b) brookite and (c) 
rutile. [Figure adapted from Stengl et al. (2007)] 
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Among the three crystal forms, brookite is the most unstable form and rutile 

is the most thermally stable form found most in the crystal growth (Stengl et al., 

2007). Therefore the form of Ti02 is temperature dependent. Calcination process at 

higher temperature (>600 0c) for rutile phase with higher crystallinity and smaller 

specific surface, while at 500 °C form anatase phase with lower crystallinity and 

larger crystallinity and larger specific surface area, at temperature 200°C brookite is 

form (Lopez-Munoz et al., 2014; Oppenlander, 2003). Most photocatalytic studies 

have focused on the rutile (3.0 eV) and anatase (3.2 eV) (Heather, 2002). Although, 

anatase is less thermally stable compared to rutile, but anatase has better 

photocatalytic activity than rutile (Shinde et al., 2008). Table 2.1 shows the basic 

physical properties of anatase (Ohama & Gernert, 2011). 

Table 2.1: Basic physical properties for anatase form of titanium dioxide. [Table 

modified from Ohama and Gemert (2011)] 

Crystal form Tetragonal system 

Density (g/cm3
) 3.90 

Refractive index 2.52 

Permittivity 31 

Thermal stability Change to rutile form at high 

temperature 

Ti02 containing both anatase and rutile (AR) or anatase and brookite (AB) 

Ti02 crystals shows better photocatalytic activity than single phase Ti02• The 

presence of more than one polymorph of Ti02 reduces the recombination effect to 

enhance the photocatalytic performance of the resulting sample than in pure single 

phase Ti02 (Boppella et al., 2012). It is thought that the existence of the different 

phases of the same semiconductor offer a synergetic junction effect property. For 

instance, biphasic Ti02 with an AR mixture such as found in Degussa P25 is a good 

photocatalyst due to the presence of this junction effect that enhances its electron 

hole separation (Carneiro et al., 2011). Hiroaki and coworkers postulated that the 

high photocatalytic activity of an AR mixture is due to interfacial electron transfer 

from anatase to rutile that increases the charge separation efficiency (Kawahara et 

aI., 2002). Ohno and coworkers suggested that the large band bending in rutile is 
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responsible for the high reactivity of Degussa P25 (AR titania mixture) powders in the 

photocatalytic oxidation of naphthalene in air (Ohno et al., 2001). 

Recently, Ismail and coworker had shown that the brookite phase is a 

potentially good photocatalyst due to its lower symmetry and its band gap that is 

close to that of anatase (Ismail et al., 2010). Therefore, biphasic TiOz with either 

(AB) or (AR) mixture has the potential to become a better heterogeneous 

photocatalyst than pure anatase due to the enhanced charge carrier separation 

(Ardizzone et al.~ 2007). Generally TiOz with brookite phase or a mixture of TiOz 

polymorphs are obtained hydrothermally at high temperature and pressure conditions 

(Moonoosawmy et al., 2012). Additionally, a fine control of the parameters such as 

temperature, the nature of the precursor, water content, pH, catalyst, ionic strength 

and the nature of chelating agent is greatly required to promote phase selectivity 

(Stengl et al., 2011) 

There are some general applications of titanium dioxide. Titanium dioxide is 

used in heterogeneous catalysis, as a photocatalyst, and in electric devices in solar 

cells for production of hydrogen and electric energy. Besides that TiOz can be used 

as gas sensor and white pigment (e.g. in paints and cosmetic products). Furthermore 

Ti02 can be used as coating for different purposes such as a corroSion-protective 

coating, as an optical coating in ceramics (Diebold, 2003). 

2.1.1 Photocatalytic Reaction of Ti02 

TiOz is a semiconductive material that can acts as a strong oxidizing agent to 

decompose organic and inorganic compounds during the illumination of UV-A light. 

The illumination of the surface of the TiOz induces the separation of two types of 

carriers: (1) an electron (e) and (2) a hole (h+). To produce these two carriers, 

sufficient energy must be supplied by a photon to promote an electron (e-) from the 

valence band to the conduction band, leaving a hole (h+) behind in the valence band. 

The recombination of holes and electrons is relatively slow in TiOz compared to 

electrically conducting materials such as metals where the recombination occurs 

immediately (Ohama & Gernert, 2011). 

7 



(2.1) 

The required energy that has to be supplied by the photons for the promotion 

of the electrons depends on the band gap for the specific material. The band gap is 

the difference in energy between the highest permitted energy level for the electron 

in the valence band and the lowest permitted energy level in the conduction band. 

The band gap is the minimum energy of light required to make the material 

electrically conductive. The band gap energy, Eg of Ti02 (anatase) is 3.2 eV, which 

corresponds to photons with a wave length of 388 nm (Ohama & Gemert, 2011). 

The photOinduced hole can oxidize a donor molecule (D) adsorbed on the Ti02 

surface. 

(2.2) 

The electron in the conduction band can reduce an acceptor molecule (A). 

A+e--+-A (2 .3) 

The strong oxidation power of the hole enables a one-electron oxidation step by 

reacting with water to produce a hydroxyl radical (. OH ). 

(2.4) 

Oxygen can act as an electron acceptor, and be reduced by the promoted electron in 

the conduction band to form a superoxide ion (. 02) The superoxide ions are highly 

reactive particles, which are able to oxidize organic materials. Besides that, oxygen 

also plays an important role in reducing the electron-hole recombination rate, which 

increases the lifetime of the excited state and thus yield of the photocatalytic reaction 

(Ohama & Gemert, 2011). The oxidation-reduction process is shown in Figure 2.2. 

(2.5) 
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Conduction band 

hv 

Valence band 

'\ 
Figure 2.2: Photochemical mechanism of Ti02• [Figure adapted from Ohama and i ~ 
Gemert (2011)] = ~ 
2.1.2 Challenges Encountered by Ti02 

Recent years, the applications of Ti02 had been widely spreaded due to its superior 

properties such as high chemical stability, good photocatalytic properties and 

nontoxicity. Despite of all the advantages in Ti02, there are some challenges faced in 

this material. First of all, the separation of Ti02 particles from its aqueous 

suspensions represents a serious problem for practical use (Fujishima et a/., 2000). 

Besides that, the high electron-hole recombination rate of Ti02 reduces its 

photocatalylic ability. Lastly, the large band gap of Ti02 (3.2 eV for anatase 

polymorph) which falls in the range of UV region, only shows photo-response to UV 

light. This limits the usage of Ti02 as a photocatalyst, because only a small fraction of 

suns's energy « 1 0 %) consists of UV light. This makes Ti02 more costly because it 

requires a UV light source to irradiate sufficient energy for it to undergo 

photocatalytic degradation process (Chen et a/., 2007). Several researches had been 

done to improve the performance of Ti02 such as modification of Ti02 into thin films, 

E§ 

i~ 
~ . 
c:.o 
:. 
:or 

nanotube, and nanorod, forming composites with other elements or alter the 

properties by doping Ti02 material with other elements (Chen ~/ Mao, 200 MS 
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