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ABSTRACT 

Online auction has given consumers a "virtual" flea market with all the new and used 
merchandises from around the world. Due to the increasing demand of online auction, 
consumers are faced with the problem of monitoring multiple auction houses, picking 
which auction to participate in, and making the right bid. If bidders are able to predict the 
closing price for each auction, then they are able to make a better decision on the time, 
place and the amount they can bid for an item. However, predict closing price for an 
auction is not easy since it is dependent on many factors such as the behaviour and the 
number of the bidders. This thesis investigates one of the methods used in predicting the 
closing price of an auction called the Grey System Theory. This method has been known to 
accurately speculate values in areas where the information is insufficient. Three other 
predictor methods are compared with Grey System Theory which are Time Series, Artificial 

Neural Network and Simple Exponential Function. These four prediction methods are then 
applied into different agent. The Grey System Agent is compared with other prediction 
agents namely the Time Series Agent, the Artificial Neural Network Agent and the Simple 
Exponential Function Agent. The effectiveness of these agents is evaluated using a 
simulated auction environment as well as real data obtained from eBay. In conclusion, Grey 

System Agent is able to predict well in simulated marketplace and eBay. Besides that, 
moving observation increased the performance of the prediction. 
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ABSTRAK 

Lelong dalam talian telah memberi pengguna-pengguna satu pasar lambak ''maya'' dengan 
semua dagangan yang baru dan terpakai dari seluruh dunia. Disebabkan oleh penokokan 
perrnintaan lelong dalam talian, pengguna-pengguna bersemuka dengan masalah 
memantau rumah-rumah lelong, pemilihan lelong untuk diserta~ dan memastikan bahawa 
mereka mendapat item tersebut sesuai dengan perrnintaan mereka. Jika pembida-pembida 
mampu untuk meramalkan harga penutup untuk tiap-tiap lelong, maka mereka 
mempunyai kelebihan daripada pembida-pembida yang lain. Bagaimanapun, meramal satu 
harga penutup untuk satu jualan lelong adalah bukan mudah memandangkan ianya adalah 
bergantung kepada banyak faktor seperti kelakuan pembida dan jumlah pembida-pembida 
yang menyertai lelong itu. Tesis ini menjelaskan satu kaedah ramalan harga penutup satu 
jualan lelong yang dipanggil "Grey System Theory~ Kaedah ini telah diketahui dapat 
meramal dengan tepat walaupun maklumat tidak mencukupi. Tiga kaedah-kaedah 
peramal yang lain dibandingkan dengan "Grey System Theory" yang adalah "Time Series; 
''Artificial Neural Network" dan ''Simple Exponential Function': Ini empat kaedah-kaedah 
ramalan sedang kemudian memohon kepada ejen berbeza. "Grey System Agent" 
dibandingkan dengan ejen-ejen ramalan lain yakni "Time Series Agent; ''Artificial Neural 

Network AgentH dan ''Simple Exponential Function Agent" secara teratur. Untuk mengujl 
keberkesanan ini agent-agent adalah dinilaikan menggunakan satu persekitaran lelong 

yang tersimulasi serta data sebenar yang diperolehi dari eBay. Dalam kesimpulan, "Grey 
System Agent" mampu meramalkan baik dalam persekitaran lelong yang tersimulasi dan 
eBay. Selain itu, data bergerak member keputusan yang lebih baik daripada data tetap. 
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CHAPTER 1 

INTRODUCTION 

1.1. Overview 

The word "auction" is derived from the Latin "aguere", which means "to increase" or 

"augment" (Krishna, 2002). Auction markets provide centralized procedures for the 

exposure of purchase and sale orders to all market participants simultaneously (Lee, 

1996). In fact, auctions are not a new topiC but have been widely used for centuries 

(Cassady, 1968). The design and conduct of auctioning institutions have caught the 

attention of many people over thousands of years. One of the earliest reports of an 

auction was that used to allocate scarce resources in Babylon from about five hundred 

B.C. (Shubik, 1983). During the closing years of the Roman Empire, auctions were used 

to sell everyday household objects, war spoils, or even tax collection rights. In China, the 

personal belongings of deceased Buddhist monks were sold at auctions as early as the 

seventh century A.D. (Paul and Robert, 1982). Auction is defined as a market institution 

with an explicit set of rules determining resource allocation and price on the basis of bids 

from the market participants (McAfee and Mcmillan, 1987). An auction is also defined as 

a bidding mechanism, described by a set of auction rules that specify how the winner is 

determined and how much he has to pay (Wolfstetter, 2002). Against this background, an 

online auction can be defined as an Internet-based version of a traditional auction. Online 

auction is one of the most popular and effective ways of trading by bidding for products 

and services over the Internet (Bapna et aI., 2001). Nowadays, online auctions have 

become an increasingly popular and effective medium for transacting businesses as well, 

either procuring goods or services, both between individuals over the internet and 

between business and their suppliers. According to He et aI., (2003), online auctions are 

increasingly being used for a variety of e-commerce applications. Online auctions are 

establishing the "true market value" and distribution of goods, property, and real estate 

to those who value it most highly. Today, online auction is an accepted media where 

bidders can compete equally and act in their own interest. They fill the buying and selling 

needs of thousands of people, products and properties all over the world. Objects as 

diverse as spectrum rights, treasury bills, and cars are regularly auctioned off. Since 

many products have their origin on the auction block, no one, regardless of financial 



status, can escape the effects of auction buying and selling in online auction. The 

utilization of online auction is widely emerging and becoming a popular business entity 

because of the flexibility and convenience that it offers to consumers. Online auction has 

given consumers a ''virtual'' flea market with all the new and used merchandises from 

around the world. They also give sellers a global storefront from which to market their 

goods. Compared to traditional auction, the globalization of internet auction has attracted 

more consumers to purchase various goods anywhere and anytime by just a click on their 

finger tip. 

Over the last few years, a big number of online auction houses have emerged and 

the number is increasing rapidly. Some examples of popular online auction houses 

include eBayl, Amazon2
, Yahoo!Auction3 and UBicr'. According to the internet auction listS, 

there are currently more than two thousand six hundred auction company listings around 

the world. The total revenue of the popular auction house e-Bay (in Figure 1.1) has 

increased by more than $4.4 billion from 2004 ($3,271,309) to 2007 ($7,672,329). In 

addition, over ten million items can be found daily for sale at online auctions. Some of 

the examples are the antiques, books, electronic appliances, agricultural products and so 

forth. Online auctions continue to attract many customers, and currently sell goods worth 

over thirty billion USD annually (David et aI., 2005). In eBay alone, for example, there 

are often hundreds or sometimes even thousands of concurrent auctions running 

worldwide selling such substitutable items. 

1 ht.tp:/Iwww.ebay.com/ 
2 ht.tp:/Iwww.amazon.com/ 
3 ht.tp:/lauctions.yahoo.com/ 
4 ht.tp:/Iwww.ubid.com/ 
5 http://www.lntemetauctlonllst.com/ 

2 



E8AY 
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Income Statempots I Balance Sheets I Slalemenls of Cash flow I FlOanclal RaMs 
Ann ... llncon>e St.1tement 4v.h.es In ooo·s. Get Qlhlilertv Dil1a 
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f POfIocl E~ 121)1120.' 12!l1.'2OM 12!l1J2005 12il1~ "' ... ~,", " • ~.' '," ". J 

Total Revenue $7,672,329 $5,969,741 $4,552,401 $3,271,309 

Cost of Revenue $1,762,972 $1,256,792 $818,1a.. $814,415 

Oross Profit 15,909,357 $4,712,949 $3,734,297 $2.656,894 

Operating Expenses 
Re_c:h end 0eveI0pment $619,727 $494,695 $328,191 $240,647 

Sales, Oenerel end AdrT*\. $3,081,408 $2,598,220 $1,835,458 $1 ,291 ,f178 

Non-Recurring lerns S1,390,938 $0 $0 $0 

00- Operating lerns $~,104 $197,078 $128,941 $65,927 -------------- ---.. -.----.---,,-----~ -.~~ ~.--.---"----
Operating Income $613,180 $1,422,956 $1,441,707 $1,059,242 

Add' IneomeJexpense Items $154,271 $130,021 $111,14e $77,867 

Earnings Before Interest and Tax $767,451 $1,552,977 $1,552,855 $1,137,109 

Intefest Expense $16,600 $5,916 $3,478 $8,879 

Earnings Before Tax $750,851 $1,547,061 $1,549,377 $1,128,230 

Income Tax $402,600 $421,418 $467,285 $343,885 

Minority Interest $0 ($4) ($49) ($6,122) 

~~_ ... ln!~!12e:Co[lt ... ?perati~n.~_. ______ ~~~.:'~,2~1 ___ !1!.125:6~ ___ $1 '~,~3 $778,223 

Net Income $348,251 $1,125,639 $1,082,a..3 $778,223 

Net Income Applicable to 
Common Shareholders 

.- -~----.--... -.. ~ - _.- ---_." _._-
$348,251 $1,125,639 $1,082,043 $778,223 

Figure 1.1: Annual Revenue of eBay Auction House from 2004 until 2007' 

1.2 Online Auction 

A question may be asked, "Why are auctions used rather than other selling devices such 

as posting a fixed price?" According to cassady (cassady, 1968), one of the answers is, 

perhaps that some products have no standard value. For example, the price of any catch 

of fish depends on the demand and supply conditions at a specific moment of time, 

influenced possibly by prospective market developments, Besides, for manuscripts and 

antiques too, price must be remade for each transaction. For example, how can one 

discover the worth of an original copy of antiques from Tang Dynasty except by an 

auction method? To date, many traditional auction businesses are moving into the online 

auctions space joining winners in this market place as a consequence of rapid growth of 

advance computer technology (Akula and Menasce, 2004). The major difference between 

these two types is the additional degree of flexibility, multiplicity as well as convenience 

in the way the online auction is conducted. 

6 http://fundamentals,nasdaq,com/nasdactJundamentals,asp?CompanyID=7098&NumPerlods=4&Duration 
=2&documentType=1&coname=eBay+lnc,&logopath=http%3A%2F%2Fcontent.nasdaq,com%2Flogos%2 
FEBA Y ,GIF&market=NASDAQGS&PageName=Company+Financlals&selected= EBAY&symbol= EBAY&ads= 1 
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