MULTI-AGENT AND ARTIFICIAL NEURAL NETWORKS PREDICTION FRAMEWORK DEVELOPMENT FOR STOCK INVESTMENT STRATEGY

PHANG WAI SAN

THESIS SUBMITTED IN FULFILLMENT FOR THE DEGREE OF MASTER OF SCIENCE

FACULTY OF COMPUTING AND INFORMATICS UNIVERSITI MALAYSIA SABAH 2016

UNIVERSITI MALAYSIA SABAH

BORANG PENGESAHAN STATUS THESIS

JUDUL: MULTI-AGENT AND ARTIFICIAL NEURAL NETWORKS PREDICTION FRAMEWORK DEVELOPMENT FOR STOCK INVESTMENT STRATEGY

IJAZAH: SARJANA SAINS

Saya, <u>Phang Wai San</u>, Sesi Pengajian 2011-2016, mengaku membenarkan tesis Sarjana ini disimpan di Perpustakaan Universiti Malaysia Sabah dengan syaratsyarat kegunaan seperti berikut:-

- 1. Thesis ini adalah hak milik Universiti Malaysia Sabah.
- 2. Perpustakaan Universiti Malaysia Sabah dibenarkan membuat salinan untuk tujuan pengajian sahaja.
- 3. Perpustakaan dibenarkan membuat salinan tesis ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. Sila tandakan (/)
- SULIT (Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia seperti yang termaktub di dalam AKTA RAHSIA RASMI 1972)

TERHAD (Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)

TIDAK TERHAD

Disahkan oleh,

PHANG WAI SAN

(Tandatangan Pustakawan)

(DR. CHIN KIM ON)

Tarikh : 24 August 2016

CERTIFICATION

NAME : PHANG WAI SAN

MATRIC NO. : PK20108242

TITLE : MULTI-AGENT AND ARTIFICIAL NEURAL NETWORKS PREDICTION FRAMEWORK DEVELOPMENT FOR STOCK INVESTMENT STRATEGY

DEGREE : MASTER OF SCIENCE [COMPUTER SCIENCE]

VIVA DATE : 8 JUNE 2016

DECLARED BY;

1. SUPERVISOR

Dr. Chin Kim On

Signature

2. CO- SUPERVISOR

Dr. Patricia Anthony

DECLARATION

I hereby declare that this dissertation is a presentation of my work and has been generated by me as the result of my own original research. The work has not been submitted to any universities for a higher degree. Wherever contributions of others are involved, they have been acknowledged.

14 March 2016

Phang Wai San PK20108242

ACKNOWLEDGEMENT

First of all I would like to express my deepest gratitude to my supervisors Dr. Chin Kim On and Dr. Patricia Anthony, for their expert advices, technical guidance and reviews in my research. Their inspiring guidance, valuable advices and patient continuously encourage me throughout all stages of this research and thesis writing.

Besides my advisors, I would like to thank to my parents and siblings for their support and encouragement to pursue my interest. I am most grateful to my mother, Mrs. Chua Gee Hun for her unconditional love, understanding and support throughout my life.

An extended appreciation to my friends for their continuous support and help in completing this research work. I also thank them for tolerating my temper, input during the discussion and for their valuable comments and suggestions.

Phang Wai San PK20108242 14 March 2016

ABSTRACT

In personal wealth management, it is necessary to have a plan before making investment in order to ensure a profitable return for the investors. The process of generating an investment portfolio with good investment options is complex as it needs to consider a lot of parameters such as the track record of the companies, the company's revenue projection, the risk assessment, the political conditions and the nature of business. In this case, a multi-agent framework can be applied to solve the problem. This thesis focuses on the development of a multi-agent framework for wealth management particularly on stock market investment. The core objective is to develop an Intelligent Investment Planner which utilizes multiple agents that work together to plan, predict, assemble and generate a profitable investment portfolio for its investor. Kuala Lumpur Stock Exchange (KLSE) was selected as the targeted stock market. Four types of agents were developed, including the Web Mining Agent (WMA), the Wealth Forecasting Agent (WFA), the Strategy Agent (SA), and the Wealth Planning Agent (WPA). WMA comprises of an algorithm for web mining which enables it to mine and extract semi-structured information and create new structured information using ontology. The ontology developed is not limited to just a knowledge base to store data in structured format but it plays an important role as an inference sources in the decision making of the buying and selling of stock by performing fundamental analysis. WFA consists of a forecasting model to predict the stock price. This work involves the investigation of the performance of different classifiers (established/combinations/new prediction methods) that are used in stock market prediction. Artificial Neural Network (ANN) was chosen as the target candidates for the forecasting model in this work because of its ability to solve complex problems such as the stock price prediction. Feed Forward Neural Network (FFNN), Elman Recurrent Neural Network (ERNN), Jordan Recurrent Neural Network (JRNN) and Ensemble Neural Network (ENN) were tested in the experiments. Based on the results, ENN outperformed the other ANNs and so it was used in the stock market prediction. SA is responsible to generate the buy-sell signal based on the predicted stock prices. WPA generates the investment portfolio based on the buy-sell signal and the fundamental analysis of stock. It selects potential stocks based on investor's preferences and passes these potential stock candidates to WFA for stock price prediction. In turn, WPA decides on a suitable trading strategy that gives the most profitable investment returns and presents the investment portfolio to the investor. Several experiments were conducted to investigate the performance of the Intelligent Investment Planner in different environments using two trading strategies and the results obtained showed that the proposed planner was able to generate a profitable investment portfolio.

ABSTRAK

MENGIMPLEMENTASI KERANGKA MULTI-AGEN UNTUK PENGURUSAN KEKAYAAN PERSENDIRIAN

Pengurusan kekayaan persendirian memerlukan satu pelan sebelum membuat pelaburan demi memastikan pemulangan yang menguntungkan untuk para pelabur. Proses untuk membina portfolio pelaburan yang baik adalah kompleks kerana ianya melibatkan pelbagai parameter yang perlu dipertimbangkan seperti rekod prestasi syarikat, unjuran pendapatan syarikat, penilaian risiko, keadaan politik dan jenis perniagaan. Dalam karya ini, satu kerangka multi-agen diperkenalkan untuk mengatasi masalah tersebut. Karya ini memberi tumpuan kepada reka bentuk dan implementasi multi-agen bagi pengurusan kekayaan khususnya pada pelaburan saham. Objektif induk kajian ini adalah untuk membina "Intelligent Wealth Planner" yang merupakan satu sistem perancang pelaburan pintar yang melibatkan pelbagai agent vang berkerjasama untuk merancang, meramal, menghimpun, dan menjana satu portfolio pelaburan yang menguntungkan bagi para pelabur. Bursa Saham Kuala Lumpur (KLSE) telah dipilih sebagai pasaran saham dalam kajian ini. Empat bentuk agen diperkenalkan termasuk agent pelombong (WMA), agent ramalan (WFA), agent strategi (SA), dan agent perancang (WPA). WMA mempunyai satu algoritma untuk melombong dan mengekstrak maklumat separa struktur dan kemudianya menyimpan maklumat tersebut secara struktur di dalam ontologi. Ontologi yang dicipta tidak terhad kepada penyimpanan data dalam format yang berstruktur tetapi ia menjadi satu sumber data untuk menjalankan analisis fundamental saham. WFA mempunyai satu model ramalan harga saham melalui kajian terhadap prestasi pelbagai classifiers (mengguna kaedah yang siap sedia/ kombinasi kaedah/ kaedah baru). Rangkaian Neural Buatan (ANN) dipilih dalam karya ini kerana keupayaanya untuk menyelesaikan masalah seperti ramalan harga saham. Rangkaian Neural Feed Forward (FFNN) dan Rangkaian Neural Reccurent (RNN) telah dikaji. Rangkaian Neural Ensemble (ENN) diperkenalkan seterusnya. ENN merupakan model rangkaian neural yang menggabungkan output dari FFNN dan RNN dan menjadikan ia sebagai input kepada model ENN untuk mencapai pretasi yang lebih baik dari segi ketepatan ramalan. SA bertujuan untuk menjana isyarat jual-beli berdasarkan harga peramalan saham. WPA memain peranan untuk menjana portfolio pelaburan berdasarkan isyarat jual-beli saham dan analisis fundamental saham. Pelbagai eksperimen dijalankan untuk mengkaji prestasi "Intelligent Wealth Planner" dalam persekitaran yang berbeza dengan menggunakan pelbagai strategi dagangan saham. Keputusan yang dicapai dalam eksperimen menunjukkan bahawa "Intelligent Wealth Planner" mampu menjana portfolio pelaburan yang menguntungkan.

TABLE OF CONTENTS

		Page
CERTIF	ICATION	ii
DECLA	RATION	iii
ACKNO	WLEDGEMENT	iv
ABSTR	ACT	v
ABSTR	AK	vi
TABLE	OF CONTENTS	vii
LIST O	FTABLES	xii
LIST O	F FIGURES	xiv
LIST C	F ABBREVIATIONS	xvii
LIST OF SYMBOLS ××		
LIST	OF PUBLICATIONS	xxi
CHAP	FER 1: INTRODUCTION	1
1.1	Introduction	1
1.2	Introduction to Wealth Management	2
1.3	Problem Definition	2
1.4	Research Questions	3
1.5	Research Domain	3
1.6	Advantages of multi agent platform for Wealth Management	4
1.7	Motivation	5
1.8	Research Objectives	6
1.9	Research Contributions	6
1.10	Organization of the Thesis	7

CHAPTER 2: LITERATURE REVIEWS 9		9	
2.1	Introduction		
2.2	Agent Technology	9	
	2.2.1 How it works?	11	
	2.2.2 Multi-agent System (MAS)	12	
	2.2.3 The Multi-agent System in Financial Domain	12	
	2.2.4 The Multi-agent Framework	13	
2.3	Information Extraction for Ontology Modeling	14	
2.4	Stock Market Prediction	18	
2.5	Artificial Neural Network (ANN)	19	
	2.5.1 Introduction to Artificial Neural Network (ANN)	20	
	2.5.2 Training Neural Network	22	
	2.5.3 Benefits of Artificial Neural Network (ANN)	27	
	2.5.4 Types of Artificial Neural Network (ANN)	28	
	2.5.5 Application of Artificial Neural Network (ANN)	30	
2.6	Ensemble Machine Learning 37		
2.7	Stock Trading Strategy 40		
2.8	Discussion 40		
2.9	Summary	43	
CHA	PTER 3: METHODOLOGY	44	
3.1	Introduction	44	
3.2	Research Methodology 44		
3.3	The Multi-agent Framework 45		
3.4	The System Architecture	46	
3.5	Agent Roles and Responsibilities	49	

	3.5.1	The Web Mining Agent	49
	3.5.2	The Wealth Forecasting Agent	49
	3.5.3	The Strategy Agent	50
	3.5.4	The Wealth Planning Agent	50
3.6	Agents	Interaction	50
3.7	Modeli	ng the IWP Knowledge	51
	3.7.1	Ontology Modeling	53
	3.7.2	Ontology Harvesting	59
	3.7.3	Web Extraction	60
	3.7.4	Populating the Ontology	61
3.8	Finan	cial Time Series Forecasting with Artificial Neural Network	63
	3.8.1	Feed Forward Neural Network	64
	3.8.2	Elman Recurrent Neural Network	64
	3.8.3	Jordan Recurrent Neural Network	66
	3.8.4	Ensemble Neural Network	66
	3.8.5	The Tuning of Artificial Neural Network	67
3.9	Data	Collection	70
	3.9.1	Data Sources	70
	3.9.2	Data Normalization	72
3.10	Expe	rimental Evaluation	72
3.11	Sumi	nary	73
CHA	PTER 4	: USING ARTIFICIAL NEURAL NETWORK FOR STOCK PRICES PREDICTION	74
4.1	Intro	duction	74
4.2	Expe	rimental Setup	74
4.3	Expe	riments on Input	78
		ix	UNIVERSITI MALAYSIA SABAH

•

4.4	Experin	nents on Hidden Neurons	83
4.5	Experin	nents on Learning Rate	87
4.6	Experir	nents on Momentum Rate	89
4.7	Ensem	ble ANN	91
4.8	Summa	ary	101
СНАР	TER 5:	USING DIFFERENT TRADING STRATEGIES FOR STO TRADING SIMULATION	ОСК 102
5.1	Introdu	uction	102
5.2	The Tr	ading Flow	102
5.3	The Ag	gent Interaction to Generate Investment Plan	104
5.4	Experi	mental Setup	111
5.5	Experi	mental Results	113
	5.5.1	Scenario 1- Trading involving One Company	113
	5.5.2	Scenario 2- Trading involving Five Companies	114
	5.5.3	Scenario 3- Trading involving Ten Companies	115
	5.5.4	Scenario 4- Trading involving Fifteen Companies	116
	5.5.5	Scenario 5- Trading involving Twenty Companies	117
	5.5.6	Scenario 6- Trading involving Twenty Five Companies	118
5.6	Analy	sis of Experiment	119
5.7	Sumn	hary	120
CHA	PTER 6	: CONCLUSION AND FUTURE WORK	121
6.1	Intro	duction	121
6.2	Proje	ct Summary	121
6.3	Achie	vement of Objectives and Contribution	124
6.4	Futur	e Works	126
6.5	Conc	lusion	127
		×	UNIVERSITI MALAYSIA SABAH

REFERENCES	129
CD APPENDIX A - THE COMPLETE RESULTS FOR ANN EXPERIMENTS	134
CD APPENDIX B - THE COMPLETE RESULTS FOR TRADING STRATEGY EXPERIMENTS	134

•

LIST OF TABLES

		Page
Table 2.1:	List of activation function	21
Table 2.2:	Applications of ANN in different domains	34
Table 2.3:	ANN in stock market prediction	41
Table 3.1:	IWP Ontology's Class Table	55
Table 3.2:	IWP Ontology's Property Table	57
Table 4.1:	The average of 10 trainings using 5 days CP	78
Table 4.2:	The average of 10 trainings using 5 days CP + EMA_5, MO_5 and RSI_5 $$	79
Table 4.3:	The average of 10 trainings using 10 days CP	80
Table 4.4:	The average of 10 trainings using 10 days CP, EMA ₁₀ , MO_{10} and RSI ₁₀	80
Table 4.5:	The average of 10 trainings using EMA ₅ , MO ₅ , RSI ₅ , EMA ₁₀ , MO ₁₀ and RSI ₁₀	81
Table 4.6:	Summary of testing on input sets	82
Table 4.7:	Error rate with 13-4-1	83
Table 4.8:	Error rate with 13-4-4-1	84
Table 4.9:	Error rate with 13-10-1	84
Table 4.10:	Error rate with 13-10-10-1	85
Table 4.11:	Error rate with pruning	85
Table 4.12:	Summary of training on the number of hidden neurons	86
Table 4.13:	Summary of training on the learning rate	87
Table 4.14:	Summary of training on the momentum rate	89
Table 4.15:	Feed Forward Artificial Neural Network (FFNN)	92
Table 4.16:	Elman Recurrent Artificial Neural Network (ERNN)	93

Table 4.17:	Jordan Recurrent Artificial Neural Network (JRNN)	95
Table 4.18:	Ensemble Artificial Neural Network (ENN)	97
Table 4.19:	Summary of ANNs result	98
Table 5.1:	Buy-Sell Signal generated by the Strategy Agent	107
Table 5.2:	The Filter Strategy	111

.

LIST OF FIGURES

		Page
Figure 2.1:	Agent interacts with environment through sensors and actuators	10
Figure 2.2:	Autonomous Agent	11
Figure 2.3:	Vocabularies collection in Linked Open Vocabularies (LOV, 2016)	16
Figure 2.4:	Open Linked data diagram in Maˈrch, 2009 (Bizer, Heath and Lee, 2009)	16
Figure 2.5:	Open Linked data diagram in August, 2014	17
Figure 2.6:	Supervised training algorithm	23
Figure 2.7:	Unsupervised training algorithm	24
Figure 2.8:	Feedforward Neural Network topology	28
Figure 2.9:	Full Recurrent Neural Network Topology	29
Figure 2.10:	Jordan Recurrent Neural Network	29
Figure 2.11:	Elman Recurrent Neural Network	30
Figure 3.1:	Flowchart of Research Methodology	44
Figure 3.2:	The Intelligent Wealth Planner Multi-Agent Framework.	46
Figure 3.3:	The System Architecture.	47
Figure 3.4:	Flowchart of Modeling the IWP Knowledge.	53
Figure 3.5:	High Level Overview of the IWP Knowledge Base Architecture.	54
Figure 3.6:	IWP Ontology's Class Diagram.	55
Figure 3.7:	IWP Ontology's Property Hierarchy	56
Figure 3.8:	IWP Ontology's Architecture	59

•

.

.

Figure 3.9:	Snapshot of the targeted Web page to harvest.	60
Figure 3.10:	Tag Tree Indicating the structure of a HTML page.	60
Figure 3.11:	The Extraction Template.	61
Figure 3.12:	IWP Ontology's Architecture (A-box).	62
Figure 3.13:	IWP Ontology's Architecture (A-box) 1.	63
Figure 3.14:	The FFNN Model.	64
Figure 3.15:	The ERNN Model.	65
Figure 3.16:	The JRNN Model.	66
Figure 3.17:	The ENN Model.	66
Figure 3.18:	Flowchart of Tuning the ANN Baseline Model.	68
Figure 3.19:	Screenshot of the Historical Price for BAT.	71
Figure 4.1:	Incremental Pruning Algorithm	76
Figure 4.2:	The ENN Model.	77
Figure 4.3:	Training of the five input sets.	82
Figure 4.4:	Training of the hidden neurons structure.	87
Figure 4.5:	Training error rate at learning rate 0.01.	89
Figure 4.6:	Training error rate at momentum rate 0.53.	91
Figure 4.7:	The highest prediction result using ENN obtained by Company 24 with testing error rate of 0.00069.	99
Figure 4.8:	The lowest prediction result using ENN obtained by Company 32 with testing error rate of 0.01986.	100
Figure 5.1:	The Trading Flow	103
Figure 5.2	The screenshot of Front End Visualizer	104

Figure 5.3:	The Simple Trading Strategy	112
Figure 5.4:	Earning rate trading in 1 company	113
Figure 5.5:	Earning rate trading in 5 companies	114
Figure 5.6:	Earning rate trading in 10 companies	115
Figure 5.7:	Earning rate trading in 15 companies	116
Figure 5.8:	Earning rate trading in 20 companies	117
Figure 5.9:	Earning rate trading in 25 companies	118
Figure 5.10:	The Screenshot of the Outcome of Intelligent Wealth Planner Visualizer	119

ï

LIST OF ABBREVIATIONS

AL	- Agent Lookup
ANN	- Artificial Neural Network
AORD	- Australian all Ordinary Indexes
ARIMA	- Autoregressive Integrated Moving Average
BSE	- Bombay Stock Exchange
BDI	- Belief-Desire-Intention
BP	- Back propagation
BPNN	- Back propagation Neural Network
СР	- Closing Price
DCMI	- Dublin Core Metadata Initiative
ECG	- Electrocardiogram
EMA	- Exponential Moving Average
EMH	- Efficient Market Hypothesis
ENN	- Ensemble Neural Network
EPS	- Earnings per Share
ERNN	- Elman Recurrent Neural Network
FFNN	- Feed Forward Neural Network
FIPA-ACL	- Foundation for Intelligent Physical Agents- Agent Communication
	Language
FOAF	- Friend of a Friend
GD	- Gradient Descent
GI	- General Index
GRNNs	 Multiple Generalized Regression Neural Networks
GUI	- Graphical User Interface
IVR	- Interactive Voice Response
IWP	- Intelligent Wealth Planner
JADE	- Java Agent Development Framework
JADEX	- JADE eXtension
JRNN	- Jordan Recurrent Neural Network
KB	- knowledge base
KLSE	- Kuala Lumpur Stock Exchange

KQML	 Knowledge Query and Manipulating Language
LVQ	- Learning Vector Quantization
MAS	- Multi Agent System
MA	- Moving Average
Max	- Maximum
MFCC	- Mel Frequency Cepstral Coefficient
Min	- Minimum
MLP	- Multilayer Perceptron
MLR	- Multiple Linear Regression
MO	- Momentum
MSE	- Mean Square Error
NAV	- Net Asset Value
NN	- Neural Network
OWL	- Web Ontology Language
PE	- Price Earning
PSO	- Particle Swarm Optimization
PSOEN	 PSO based Selective Neural Network Ensemble
RDF	- Resource Description Framework
RDFS	- RDF Schema
RMSE	- Root Mean Square Error
RNN	 Recurrent Artificial Neural Network
RSI	- Relative Strength Indicator
RSM	 Random Subspace Method
SAF	- Semantic Agent Framework
SD	- Standard Deviation
SES	 Singapore Stock Exchange
SKOS	 Simple Knowledge Organization System
SOA	- Service Oriented Architecture
SOAP	 Simple Object Access Protocol
SOM	- Self Organizing Map
STP	- Semantic Technology Platform
TAS	- Trading Alert System
URI	 Uniform Resources Identifiers

.

WAD	-	Whiplash-association disorders
WSJ	-	Wall Street Journal
XML	-	Extensible Markup Language

.

1

LIST OF SYMBOLS

- % Percentage
- %K Stochastics
- %D Moving Average of Stochastics

LIST OF PUBLICATIONS

Conference Papers

Phang, W. S., Tan, L. I., and Anthony, P, 2012. Intelligent ethical wealth planner: a multi-agent approach. In *PRICAI 2012: Trends in Artificial Intelligence*. 447-457.

Tan Li Im, Phang Wai San, Chin Kim On, Rayner Alfred, and Patricia Anthony, 2014. Analysing Market Sentiment in Financial News using Lexical Approach, 2013 IEEE Conference on Open Systems (ICOS'2013), Kuching, Sarawak, 2-4 December 2014, 145-149.

Tan Li Im, Phang Wai San, Chin Kim On, and Patricia Anthony, 2015. Rule-based Sentiment Analysis for Financial News, IEEE International Conference on Systems, Man, and Cybernetics 2015.

Journal

Tan Li Im, Phang Wai San, Chin Kim On, Rayner Alfred, and Patricia Anthony, 2014. "Impact of Financial News Headline and Content to Market Sentiment," International Journal of Machine Learning and Computing. 4(3):237-242.

CHAPTER 1

INTRODUCTION

1.1 Introduction

This research work focuses on the development of a multi-agent framework in a wealth management setting. The aim of this work is to develop an intelligent wealth planner which is able to plan, predict, assemble and generate a profitable investment plan to its investors. The work covers a few research areas including semantic technology, agent technology, stock market prediction and information retrieval. Stock market prediction is a process that tries to guess the stock price in the future. Predicting stock price is not easy but if the stock price can be accurately predicted, it may reduce the investment risk and possibly yield significant profit. Hence, researchers have come up with various methods to predict the stock price movements such as artificial neural network, time series and so on. In this work, experiments will be conducted to test the prediction accuracy of four prediction methods. The best prediction method will be used as the prediction model that will be used by the Wealth Forecasting Agent. Information retrieval is the process of obtaining information that is relevant to the system. In this research, a Web Mining Agent is developed to retrieve information relevant to a particular company. This agent will mine the web to collect relevant information relating to the company's profile. The retrieved information is then transformed from a semi-structured data into a structured representation via the use of ontology. A successful stock trading strategies is important to consistently make successful stock trades. There are a lot of stock trading strategies available and it may vary from investor to investor. A stock trading strategy helps investors decide what stocks to buy and sell at a particular time. In this research, the strategy agent will choose the suitable trading strategy based on the forecasted stock prices and the Wealth Planning Agent decides on the investment options and generates a financial plan for its investors. A suitable stock trading strategy will be used by this agent so that it can suggest the

most profitable investment plan to its investors. The details of this research are elaborated in this chapter.

1.2 Introduction to Wealth Management

In general, wealth management refers to professional services that provide investment advice, wealth planning and financial plan management to the investors. This service is customizable according to the investor needs. The purpose of wealth management is to manage long-term wealth while making profit. As managing wealth is an ongoing process, the plan is adjusted along the way to cope with the changes. A good wealth management services fulfill the investors' financial needs and help them to make profit from the investment. A tailored wealth management solution is crucial to help an investors reach their goals.

This research explores the possibility of developing a wealth management system using a multi-agent framework. The purpose of this research is to build a wealth management system that is able to plan, predict, assemble and recommend investment plan for its investors based on certain parameters. In this framework, multiple agents with a variety tasks work together to achieve a certain goal.

1.3 Problem Definition

Currently, there is a trend in Malaysia where investors are starting to rely on the financial services to manage their wealth. It is necessary to have a plan that covers a variety of investment options in order to ensure a profitable return for the investors. From the current trend, it shows that wealth management has a high research value. The task to generate an investment plan with good investment options is complex and dynamic. Thus, an approach that is able to provide simplified yet efficient solution to handle wealth management is required.

This research utilizes multi agent approach in wealth management. The agent concept provides a simplified solution to the problem by using a distributed problem solving strategy. The wealth management system is built on top of a multi-agent platform where multiple agents work together to achieve a pre-determined goal. Each agent performs a specific task such as mining data (Web Mining Agent),

2

REFERENCES

- Abraham, A. 2005. Artificial Neural Network. Handbook of Measuring System Design. John Wiley and Sons Ltd., 901-908.
- Adebiyi, A. A., Ayo, C. K., Adebiyi, M. O. and Otokiti, S. O. 2012. Stock Price Prediction using Neural Network with Hybridized Market Indicators. Journal of Emerging Trends in Computing and Information Sciences. **3**(1): 1-9.
- Agrawal, J. G., Chourasia, V. S. and Mittra, A. K. 2013. State-of-the-Art in Stock Prediction Techniques. International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering. 2(4): 1360-1366.
- Aria, E. H., Amini, J. and Saradjian, M. R. 2003. Back Propagation Neural Network for Classification of IRS-1D Satellite Images. 1(2).
- Bação, F. and Lobo, V. 2010. Introduction to Kohonen's Self-Organizing Maps. Instituto Superior de Estatistica E Gestao de Informacam. Universidade Nova de Lisboa. Portugal.
- Bengio, Y. and Glorot, X. 2010. Understanding the Difficulty of Training Deep Feedforward Neural Networks. In Proceedings of the 13th International Conference on Artificial Intelligence and Statistics. **9**: 249-256.
- Bizer, C. Heath, T. and Lee, T. B. 2009. Linked Data the story so far. International Journal Semantic Web Information System. **5**(3): 1-22.
- Breiman, L. 1994. Bagging Predictors. Technical Report No. 421. Department of Statistics. University of California.
- Chang, S. V., Gan, K. S., Chin, K. O., Alfred, R. and Anthony, P. 2013. A Review of Stock Market Prediction with Artificial Neural Network (ANN). International Conference on Control System, Computing and Engineering. IEEE. 477-482.
- Cestra, J., Johnson, B., Kartalis, N., Mehrab, R. and Zucker, R. 2009. Pattern Recognition by Neural Network Ensemble. 1-5.
- C. Tao, D.W. Embley, and S.W. Liddle, 2009. FOCIH:Form-based ontology creation and information harvesting.Conceptual Modeling-ER 2009. Springer Berlin Heidelberg, 2009, 346-359.
- Disorntetiwat, P. 2001. Global Stock Index Forecasting using Multiple Generalized Regression Neural Networks with a Gatting Network. Phd Thesis. University of Missouri-Rolla.
- Dutra, I. D. C., Page, D., Costa, V. S. and Shavlik, J. 2003. An Empirical Evaluation of Bagging in Inductive Logic Programming. In the 12th International Conference of Inductive Logic Programming. **12**: 48-65.

- Elsy, G. R. and Francicso, V. M. 2013. A Review of Artificial Neural Networks: How Well Do They Perform in Forecasting Time Series. Journal of Statistical Analysis. 6(2): 7-15.
- Falinouss, P. 2007. Stock Trend Prediction using News Article's: a text mining approach. Master thesis.
- Fasli, M. 2007. Agent technology for e-commerce. Chichester: John Wiley & Sons.
- Frennberg, P., and Hansson, B. 1993. Testing the random walk hypothesis on Swedish stock prices: 1919–1990. Journal of Banking & Finance, 17(1): 175-191.
- Fong, S. and Tai, J. 2009. The Application of Trend Following Strategies in Stock Market Trading. In the Proceedings of Fifth International Joint Conference on INC, IMS and IDC. 1971-1976.
- Frennberg, P., and Hansson, B. 1993. Testing the Random Walk Hypothesis on Swedish Stock Prices: 1919–1990. Journal of Banking & Finance, 17(1): 175-191.
- Freund, Y. and Schapire, R. 1996. Experiments with a New Boosting Algorithm. In Proceedings of the Thirteeth International Conference on Machine Learning. 148-156.
- Godfrey, M. D., Granger, C. W., and Morgenstern, O. 1964. THE RANDOM-WALK HYPOTHESIS OF STOCK MARKET BEHAVIORa. Kyklos, **17**(1): 1-30.
- Grip, H., Ohberg, F., Wiklund, U., Sterner, Y., Karlsson, J. S. and Gerdle, B. 2003.
 Classification of Neck Movement Patterns Related to Whiplash-Associated
 Disorders Using Neural Networks. IEEE Transaction on Information
 Technology in Biomedicine. 7(4): 412-418.
- Haykin, S. 1994. Neural Networs. A Comprehensive Foundation, Macmillan College Publishing.
- Heaton, J. 2008. Introduction to Neural Networks with Java. Second Edition. Heaton Research Inc.
- Ho, T. K. 1998. The Random Subspace Method for Constructing Decision Forests. IEEE Trans. On Pattern Analysis and Machine Intelligence. 20(8): 832-844.
- Hsu, C. N., Chang, C. H., Hsieh, C. H., Lu, J. J., and Chang, C. C. 2005.
 Reconfigurable Web wrapper agents for biological information integration.
 Journal of the American Society for Information Science and Technology, 56 (5): 505-517.
- Jennings, N., and Wooldridge, M. J. (Eds.). 1998. Agent technology: foundations, applications, and markets. Springer Science & Business Media.

- Karlik, B. and Olgac, A. V. 2010. Performance Analysis of Various Activation Functions in Generalized MLP Architectures of Neural Networks. International Journal of Artificial Intelligence and Expert Systems. 1(4): 111-122.
- Khan, Z. H., Alin, T. S. and Hussain, M. 2011. Price Predictions of Share Market using Artificial Neural Networks (ANN). International Journal of Computer Applications. 22(2): 42-47.
- Kimoto, T., Asakawa, K., Yoda, M. and Takeoka, M. 1993. Stock Market Prediction with Modular Neural Networks. Neural Networks in Finance and Investing. 343-357.
- Krenker, A., Bester, J. and Kos, A. 2010. Introduction to the Artificial Neural Networks. In Artificial Neural Network Methodological Advances and Biomedical Applications. In Tech. 1-18.
- Larsen, J. I. 2010. Predicting Stock Prices using Technical Analysis and Machine Learning. Master Thesis. Norwegian University of Science and Technology.
- Lin, H., Hou, W. S., Zhen, X. L. and Peng, C. L. 2006. Recognition of ECG Patterns Using Artificial Neural Network. Sixth International on Intelligent System Design and Applications. 2: 477-481.
- Lowel, S and Singer, W. 1992. Selection of intrinsic horizontal connections in the visual cortex by correlated neuronal activity. Science. **255**(5031): 209-212.
- LOV. Retrieved 2016, from Linked Open Vocabularies (LOV): http://lov.okfn.org/dataset/lov 2016.
- McCulloch, W. and Pitts, W. 1943. A Logical Calculus of the Ideas Immanent in Nervous Activity. Bulletin of Mathematical Biophysics. **5**: 115-133.
- Naeini, M. P., Taremian, H. and Hashemi, H. B. 2010. Stock Market Value Prediction Using Neural Networks. International Conference on Computer Information Systems and Industrial Management Applicatios. 132-136.
- Obitko, M., Snasel, V. and Smid, J. 2004. Ontology Design with Formal Concept Analysis. In CLA 2004. 111-119.
- Rankovic, V., Novakovic, A., Grujovic, N., Divac, D. and Milivojevic, N. 2014. Predicting Piezometric Water Level In Dams Via Artificial Neural Networks. Neural Computing & Applications. Springer-Verlag. 1115-1121.
- Rudowsky, I. S. 2004. The Intelligent 401 (k): A Multiagent System Approach. Journal of Financial Service Professionals., **58**(4): 46-52.
- Sewell, M. 2011. Ensemble Learning. Technical Report RN/11/02. Department of Computer Science. UCL. London.

Singh, Y. and Chauhan, A. S. 2005. Neural Networks in Data Mining. Journal of Theoretical and Applied Information Technology. 5: 37-42.

Sivanandam, M. 2009. Introduction to Artificial Neural Networks. Vikas Publishing House PVT LTD.

- Soleh, A., Mazlina, A. M. and Jasni, M. Z. 2013. The Use of Artificial Neural Network for Forecasting of FTSE Bursa Malaysia KLCI Stock Price Index. In the 3rd International Conference on Software Engineering & Computer Systems.
- SOA. Retrieved 2013, from SOA Principles: http://www.soaprinciples.com/ 2011.
- SOAP. Retrieved 2013, from SOAP Specification, W3C Recommendation (Second Edition): http://www.w3.org/TR/soap/ 2007.
- Soni, S. 2010. Applications of ANNs in Stock Market Prediction: A Survey. International Journal of Computer Science & Engineering Technology. ISSN: 2229-3345. **2**(3): 71-83.
- Shiller, R. J., and Perron, P. 1985. Testing the Random Walk Hypothesis: Power versus Frequency of Observation. Economics Letters, **18**(4): 381-386.
- Sivanandam, M. 2009. Introduction to artificial neural networks. vikas publishing House PVT LTD.
- Suresh, A. S. A Study on Fundamental and Technical Analysis. International Journal of Marketing, Financial Services & Management Research. ISSN 2277-3622. 2(5): 44-59.
- Sutheebanjard, P. and Premchaiswadi, W. 2010. Stock Exchange of Thailand Index Prediction Using Back Propagation Neural Networks. International Conference on Computer and Network Technology. IEEE. 377-380.
- Syed, A. A. S., Azzam, A. and Shaukat, S. F. 2009. Neural Network Solution for Secure Interactive Voice Response. World Applied Science Journal. **6**(9): 1264-1269.
- Tan, S. S. and Koh, H. C. 1997. Neural Network Applications in Accounting and Business. Accounting and Business Review. **4**(2): 297-317.
- Tanti, D. K., Singh, B., Verma, M. K. and Mehrotra, O. N. 2011. An ANN based Approach for Optimal Placement of DStatcom for Voltage SAG Mitigation. International Journal of Engineering Science and Technology. **3**(2): 27-835.
- Thenmozhi, M. 2006. Forecasting Stock Index Returns using Neural Network. Delhi Business Review. 7(2): 59-69.
- Tilakaratne, C. D., Morris, S. A., Mammadov, M. A. and Hurst, C. P. 2007. Predicting Stock Market Index Trading Signals using Neural Networks. In Proceedings of the 14th Annual Global Finance Conference. 171-179.

- Tsang, P. M., Kwok, P., Choy, S. O., Kwan, R., Ng, S. C., Mak, J., Tsang, J., Koong, K. and Wong, T. L. 2007. Design and implementation of NN5 for Hong Kong stock price forecasting. In Engineering Applications of Artificial Intelligence. 453-461.
- Vamsidhar, E., Varma, K. V. S. R. P., Rao, P. S. and Satapati R. 2010. Prediction of Rainfall Using Back Propagation Neural Network Model. International Journal on Computer Science and Engineering. 2(4): 1119-1121.
- Walton, C. 2007. Agency and the Semantic Web. 19-54.
- Wang, J. H. and Leu, J. Y. 1996. A Stock Market Trend Prediction using ARIMAbased Neural Networks. IEEE.
- White, H. 1988. Economic Prediction Using Neural Networks: The Case of IBM Daily Stock Returns. In Neural Networks. IEEE. 2: 451-458.
- Yadav, R. and Mandal, D. 2011. Optimization of Artificial Neural Network for Speaker Recognition using Particle Swarm Optimization. International Journal of Soft Computing and Engineering. 1(3): 80-84.
- Yao, J. T. and Poh, H. L. 1995. Forecasting the KLSE Index using Neural Networks. IEEE International Conference on Neural Networks. 2: 1012-1017.
- Zhang, Q. J. and Gupta, K. C. 2003. Artificial Neural Network for RF and Microwave Design – From Theory to Practice. IEEE Transactions on Microwave Theory and Techniques. IEEE. 51(4): 1339-1350.
- Zhang, X., Chen, Y. and Yang, J. Y. 2007. Stock Index Forecasting using PSO-based Selective Neural Network Ensemble. International Conference on Artificial Intelligence. 1: 260-264.
- Zhang, Z., Wang, R., and Gao, S. 2008. Modelling financial investment planning from agent perspectives. International journal of modelling, identification and control, **3**(1):41-49.

