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Abstract

This paper aims to show the usefulness of the quarter-sweep acceler-
ated over relaxation (QSAOR) method by implementing the quarter-
sweep approximation equation based on finite difference (FD) to solve
two-dimensional (2D) Helmholtz equations compared to full-sweep ac-
celerated over relaxation (FSAOR) and half sweep accelerated over re-
laxation (HSAOR) methods. The formulation and implementation of
the QSAOR, HSAOR and FSAOR methods are also presented. Some
numerical tests were carried out to illustrate that the QSAOR method
is superior to HSAOR and FSAOR methods.
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1 Introduction

With the passage of time, Helmholtz equations are increasingly becoming im-
perative in numerical analysis for enumerating various problems in different
fields. Those fields include engineering and scientific fields, optical waveg-
uide, water wave propagation, acoustic wave scattering, radar scattering and
lightwave propagation problems, noise reduction in silencers, time harmonic
acoustic and electromagnetic fields [13, 15, 16]. The emphasis of this paper
is on Helmholtz equations that are stated by the elliptic equation as shown
below:

∂2U

∂x2
+

∂2U

∂y2
− αU = f (x, y) , (1)

where Dirichlet boundary conditions and functions f (x, y) are postulated. In
this study, it is supposed that the domain is the square unit. It was also
supposed that the grid spacing is h = 1/n with xi = ih and yj = jh, where
(i, j = 1, 2, . . . , n) Eq. (1) can be approximated at point (xi, yj) by the full-
sweep finite difference (FD) approximation equation that is the most frequently
used for approximation. Approximated equation is given below:

Ui+1,j + Ui−1,j + Ui,j+1 + Ui,j−1 −
(
4 + αh2

)
Ui,j = h2fi,j, (2)

Using grid spacing 2h, Eq. (2) could also be discretized using the same formula,
resulting in the following formula:

Ui+2,j + Ui−2,j + Ui,j+2 + Ui,j−2 −
(
4 + 4h2α

)
Ui,j = 4h2fi,j, (3)

The clockwise rotation of grid along the x−y axis by 45◦ results in the following
rotated FD approximation equation [1, 4]:

Ui+1,j+1 + Ui−1,j−1 + Ui+1,j−1 + Ui−1,j+1 −
(
4 + 2h2α

)
Ui,j = 2h2fi,j (4)

From onwards, three sections are there in this paper. In the first section
(Section 2), the formulation of full-, half- and quarter-sweep FD approximation
equations based on second order FD schemes is explained. In the second
section, the formulations of the QSAOR, FSAOR and HSAOR in solving the
system of linear system (LS), attained from discretization of the 2D Helmholtz
equations, are elaborated. Lastly, the numerical results and discussions are
given in the final section.
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2 The AOR Iterative Method

The AOR iterative method was introduced by [2] to investigated the numerical
solution of the LS:

AU = f, (5)

where A ∈ Cn,n signifies nonsingular, sparse matrices with non-vanishing diag-
onal entries, U, f ∈ Cn,n and U with are to be determined. First, the common
AOR method is considered. Let A ∈ Cn,n be a one-cycle and coherent ordered
matrix of the form:

A =

[
D U
UT D

]
(6)

where U ∈ Cn1,n2, UT ∈ Cn2,n1 and D ∈ Cn1,n1 are diagonal nonsingular
matrices, respectively, with n1 + n2 = n. So A could be written as follows:

A = D − L− V (7)

where,

D =

[
D 0
0 D

]
, L =

[
0 0
−UT 0

]
, V =

[
0 −U
0 0

]
.

The Jacobi matrix is defined as:

B = D−1 (L+ V ) = L+ V (8)

with

L = D−1L =

[
0 0
L 0

]
, V = D−1V =

[
0 V
0 0

]
.

where, underlineL = −D−1UT and V = −D−1U . Generally, the AOR method
can be written as:

Lr,w = rL
(
I − rD−1L

)−1 [
(1− w) I + (w − r)L+ wD−1V

]
(9)

Hypothetically, using Eq. (2) for each point (xi, yj) gives a linear system (5)
with coefficient matrix A that is given below:

A =


D0 V0
L0 D0 V0

L0 D0
. . .

. . . . . . V0
L0 D0


(n−1)2×(n−1)2

(10)
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where

D0 =


R0 R1

RT
1 R0 R1

RT
1 R0

. . .
. . . . . . R1

RT
1 R0


(n−1)×(n−1)

,

V0 =


R2

R2

R2

. . .

R2


(n−1)×(n−1)

,

L0 =


RT

2

RT
2

RT
2

. . .

RT
2


(n−1)×(n−1)

where ρ0 = 4 + h2α and the submatrices R0, R1 and R2 are given by

R0 =


ρ0 −1 −1
−1 ρ0 −1 0

−1 ρ0 −1
−1 −1 ρ0

 , R1 =


0 −1
−1 0 0 0
0 0 0 −1

0

 , R2 =


0

0
−1

−1

 .

Similarly to (10), applying Eq. (4) to each point (xi, yj) leads to the LS in (5)
with coefficient matrix A given by

A =


D1 V1
L1 D1 V1

L1 D1
. . .

. . . . . . V1
L1 D1


(n−1)2

2
× (n−1)2

2

(11)



An implementation of QSAOR iterative method 89

where

D1 =


R3 R4

RT
4 R3 R4

RT
4 R3

. . .
. . . . . . R4

RT
4 R3


(n−1)×(n−1)

,

V1 =


R5

R5

R5

. . .

R5


(n−1)2

2
× (n−1)2

2

,

L1 =


RT

5

RT
5

RT
5

. . .

RT
5


(n−1)2

2
× (n−1)2

2

where ρ1 = 4 + 2h2α and the submatrices R3, R4 and R5 are given by

R3 =


ρ1 −1 −1
−1 ρ1 −1 0

−1 ρ1 −1
−1 −1 ρ1

 , R4 =


0 −1
−1 0 0 0
0 0 0 −1

0

 , R5 =


0

0
−1

−1

 .

On the contrary to (10), by applying Eq. (3) to each point (xi, yu), we obtain
the LS in (5) with coefficient matrix A given by

A =


D2 V2
L2 D2 V2

L2 D2
. . .

. . . . . . V2
L2 D2


(n−2)2×(n−2)2

(12)
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with

D2 =


R6 R7

RT
7 R6 R7

RT
7 R6

. . .
. . . . . . R7

RT
7 R6


(n−2)×(n−2)

,

V2 =


R8

R8

R8

. . .

R8


(n−2)×(n−2)

,

L2 =


RT

8

RT
8

RT
8

. . .

RT
8


(n−2)×(n−2)

where ρ2 = 4 + 4h2α and the submatrices R6, R7 and R8 are given by

R6 =


ρ2 −1 −1
−1 ρ2 −1 0

−1 ρ2 −1
−1 −1 ρ2

 , R7 =


0 −1
−1 0 0 0
0 0 0 −1

0

 , R8 =


0

0
−1

−1

 .

The coefficient matrices in Eqs. (10), (11) and (12) are point wise tridiag-
onal with a non-vanishing diagonal element, they have property A and π−CO,
as recommended by [3]. Thus, for full-, half- and quarter-sweep approaches,
the theory of point wise AOR iterative method is also valid.

3 The QSAOR Method

Quarter-sweep approach was employed to derive the QSAOR iterative method,
in which the domains were divided into three types of points (i.e. •, 2 and
◦), as indicated in Figure 1. By applying the AOR iterative method (9) into
Eq. (3), we obtain the QSAOR method for the 2D Helmholtz equation as
follows:



An implementation of QSAOR iterative method 91

Figure 1: Show the distribution of uniform node points respectively at n = 8.

U
(k+1)
i,j =

r

ρ2

(
U

(k+1)
i−2,j − U

(k)
i−2,j + U

(k+1)
i,j−2 − U

(k)
i,j−2

)
+
w

ρ 2

(
U

(k)
i+2,j + U

(k)
i−2,j + U

(k)
i,j+2 + U

(k)
i,j−2 − 4h2fi,j

)
+ (1− w)U

(k)
i,j (13)

where ρ2 = 4 + 4h2α. A quarter of the points, lying on the 2h-grid could be
iterated with the help of Eq. (3). In addition, it could be spotted that Eq. (13)
includes points of type •. Consequently, the iteration could be executed au-
tonomously relating only this type of points. Then, QSAOR iterative method
could be formulated as shown in Algorithm 3.1 below.

1. Three types of points (i.e., •, 2 and ◦) should be used to label the
solution domain, as depicted in Figure 1.

2. Iterations were performed with the help of Eq. (13) and the values of the
values of r = ω from segment [1, 2) were considered.

3. From the value revealed in step 2, in the interval range of 0.1, the optimal
opt having precision of 0.01 was defined by selecting consecutive values,
where k was minimal; r was considered to be equal to ω.

4. Using the value of ω opt, experiments were performed and consecutive
values of r were chosen with the precision of 0.01 in the interval range of
0.1 from the ω optimal.

5. The value of r optimal was defined, where k was minimal.

6. For the rest of the points, solutions were evaluated by keeping in view
the following sequence:
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a) Type 2 points use the half-sweep FD approximate formula (4) on
grid

√
2h, see [6, 7, 8, 9].

Ui,j =
1

ρ2

(
Ui+1,j+1 + Ui−1,j−1 + Ui+1,j−1 + Ui−1,j+1 − 2h2fi,j

)
b) Type ◦ points use the full-sweep FD approximate formula (2) on grid
h, see [10, 11, 12].

Ui,j =
1

ρ0

(
Ui+1,j + Ui−1,j + Ui,j+1 + Ui,j−1 − h2fi,j

)
7. Finally, the approximate solutions were displayed.

4 Numerical Results

Numerous numerical tests were executed so as to validate the usefulness of
the proposed methods. For comparison, three criteria were contemplated for
QSAOR, HSAOR and FSAOR methods that includes number of iterations (k),
execution time (t) and maximum absolute error (Abs. Error). The tolerance
used was ε = 10−10. As mentioned above, FD method was used to discretize
and to form the LS for the following problems.
Problem 1

∂2U

∂x2
+

∂2U

∂y2
− αU = 4− α(x− y)2.

U (x, 0) = x2, U (x, 1) = (x− 2)2,

U (0, y) = y2, U (1, y) = (y − 2)2.

The precise solution is shown below:

U (x, y) = (x− y)2

Table 1 tabulates the results of numerical experiments, acquired from execu-
tions of the iterative methods in Example 1.
Problem 2

∂2U

∂x2
+

∂2U

∂y2
− αU = −(cos(x+ y) + cos(x− y))− α cos(x) cos(y).

U (x, 0) = cos y, U
(
x,
π

2

)
= 0,

U (0, y) = cos x, U (π, y) = − cos y.
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The particular solution is given below:

U(x, y) = cos(x) cos(y).

For Example 2 , Table 1 records numerical results of FSAOR, HSAOR and
QSAOR iterative methods.

5 Discussion

In the Helmholtz equation model, three types of point wise AOR iterative
methods were implemented in order to monitor the number of iterations and
the execution times. It could be found from the numerical results that among
the other two AOR iterative methods (FSAOR and HSAOR), QSAOR meth-
ods are the speediest with regards to the execution time or the number of iter-
ations. In addition, if the computational complexity of all three AOR iterative
methods is compared, then the QSAOR method bears the least computational
complexity.

Practically, the QSAOR methods are as accurate as the HSAOR and FSAOR
iterative methods, however, they benefit in terms of less computing times and
reduced number of iterations in order to accomplish the same outcomes. For
instance, in Problems 1 and 2, the number of iterations of QSAOR reduced
about 46%−52% and 43%−70%, and 22%−31% and 22%−39%, in compar-
ison with FSAOR and HSSOR iterative methods respectively. Furthermore,
the execution times of QSAOR were only about 64% − 73% and 63% − 84%,
and 15% − 21% and 30% − 32%, compared to FSAOR and HSAOR iterative
methods in Problems 1 and 2 respectively. Thus, auspicious outcomes are
obtained from the experimental results, which establishes the fact that they
could be implemented as a substitute for the conventional FD scheme.

From the obtained number of iterations and timings, it could be observed
that the QSAOR iterative method requires the least time for all n among
the three AOR iterative methods. This is because, among the three iterative
methods, the QSAOR iterative method requires the least number of iterations
and computational operations.

Besides, the accuracy is considerably improved, because all the methods
utilized the descriptive stencil O (h2). As a whole, the numerical results il-
lustrate that the QSAOR iterative method is superior to the FSAOR and
HSAOR iterative methods. This is due to the computational complexity of
the QSAOR iterative method, which was reduced around 75% and 50% for
FSAOR and HSAOR iterative methods respectively
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Table 1: Number of iterations, execution time (seconds) and maximum abso-
lute error for the iterative methods for Examples 1 and 2.

Example 1
n Methods r ω k t Abs.Error

FSAOR 1.89 1.88 206 0.06 1.8589e-10
64 HSAOR 1.84 1.83 165 0.04 6.7526e-10

QSAOR 1.79 1.74 104 0.02 3.4266e-10
FSAOR 1.95 1.90 432 0.33 8.8315e-10

128 HSAOR 1.93 1.82 331 0.17 2.5143e-10
QSAOR 1.89 1.88 206 0.07 1.8589e-10
FSAOR 1.97 1.97 798 2.14 3.6376e-9

256 HSAOR 1.96 1.94 590 1.10 5.5464e-10
QSAOR 1.94 1.94 433 0.48 1.9934e-9
FSAOR 1.99 1.98 2081 25.54 1.0417e-9

512 HSAOR 1.97 1.96 1178 12.47 7.6380e-10
QSAOR 1.97 1.97 798 3.22 3.6376e-9

Example 2
n Methods r ω k t Abs.Error

FSAOR 1.88 1.90 263 0.15 1.4488e-6
64 HSAOR 1.85 1.80 151 0.09 5.7996e-6

QSAOR 1.79 1.76 114 0.04 5.7943e-6
FSAOR 1.94 1.94 472 0.45 3.6134e-7

128 HSAOR 1.92 1.91 297 0.20 1.4505e-6
QSAOR 1.89 1.88 218 0.13 1.4498e-6
FSAOR 1.97 1.96 874 3.05 8.8714e-8

256 HSAOR 1.96 1.95 583 1.53 3.6212e-8
QSAOR 1.94 1.94 472 0.65 3.6134e-7
FSAOR 1.99 1.98 2083 32.16 2.3383e-8

512 HSAOR 1.98 1.99 1259 20.69 9.0578e-8
QSAOR 1.97 1.96 874 4.88 8.8714e-8
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