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ABSTRACT 

Copper terephthalate, with its high pore volume, high surface area and large number 
of open metal sites, is one of the well-known metal-organic framework materials. It 

was synthesized by mixing copper (II) nitrate trihydrate and 1,4-benzenedicarboxylic 

acid in N, N-dimethylformamide solution through sonication method. The light blue 

product was identified as pure copper terephthalate crystals. Besides, copper 
terephthalate is cubic crystal with minimum particle diameter of 2 pm. Thermal 

stability analysis showed that the copper terephthalate crystal was able to withstand 
temperature up to 360 °C. Chemical stability experiment revealed that copper 
terephthalate is stable in water, methanol and ethanol for at least 7 days. 
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SINTESIS DAN PENCIRIAN KUPRUM TEREPHTHALA TE 

ABSTRAK 

Kuprum terephthalate, dengan isipadu hang yang tinggi, luas permukaan yang tinggi 
dan tapak logam terbuka yang banyak, adalah salah satu bahan rangka kerja logam 

organic yang paling terkenal. Kuprum terephthalate telah disintesis dengan 

mencampurkan kuprum (II) nitrat-trihydrate dan asid 1,9-benzenedicarboxylic da/am 
larutan NN-dimetilformamid me/alui tindakan sonik. Produk biru muda telah 
dikena/pasti sebagai hablur kuprum terephthalate yang tu/en. Se/ain itu, hablur 

kuprum terephthalate berbentuk klub dengan diameter minima sebanyak 2 Nm. 
Analisis kestabilan terma menunjukkan bahawa hablur kuprum terephthalate mampu 
menahan suhu sehingga 360 °C. Eksperlmen kestabilan kimia mendedahkan bahawa 
kuprum terephthalate adalah stabil dalam air, metanol dan etanol sekurang- 
kurangnya 7 had. 
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CHAPTER 1 

INTRODUCTION 

1.1 Metal Organic Frameworks (MOFs) 

Metal organic frameworks (MOFs) are subclass of hybrid porous solid which are built 

up by metal atoms linked together by multifunctional organic ligands (Leus et al., 
2012). Rapidly emerging as a new class of nanoporous material, MOFs have attracted 

tremendous research in the academic community over the past decade (Hu et al., 

2009). The research results in thousands of different MOFs structures have been 

synthesized and categorized in Cambridge Structural Database (CSD) today (Keskin 

and Kizilel, 2011). These large number of structures are due to the large variety in 

possible combinations of organic and inorganic subunits of MOFs (Ghysels et al., 
2013). 

Compared to other porous materials, MOFs have gained massive interest 

due to their distinct features of high porosity, low density and large surface area. 
Modulated pore sizes of MOFs range from microporous (less than 2 nm) to 

macroporous (more than 50 nm), endowing them in enormous high surface area of 
more than 3000 m2g"1 (Jiang and Xu, 2011). Besides, MOFs have flexible structure 
that can adjust themselves to accommodate incoming gases or liquids. MOFs can be 

obtained in high yield and low cost as they can be synthesized using hydrothermal, 

solvothermal, ionothermal and microwave method (Chang, 2008). 

MOFs have a series of functional groups that can be grafted onto linker, 

giving perspectives of different applications such as hydrogen storage, gas 
separation, catalysis and drug delivery (Gu et at., 2012). Furthermore, MOFs display 



excellent properties in sensing and imaging device due to their high porosity and high 

surface area (Li and Xu, 2013). Recently, MOFs have been suggested as separating 

materials and proton conducting materials that allow protons to be transported at 

high temperature and relatively low-humidity environments in fuel cell technology 

(Paesani, 2013). 

1.2 Copper Terephthalate 

MOFs incorporating terephthalic acid (TPA) have been known since 1967. Nickel 

terephthalate compound was synthesized by Acheson and Galwey (1967) while other 
hydrated metal terephthalate compounds such as iron, chromium, cobalt, copper, 

silver, manganese, lanthanum terephthalate were synthesized by Sherif (1970). 

Compared to other terephthalate series such as cobalt, nickel and zinc terephthalate, 

copper terephthalate, with lamellar geometry structure occupies a prominent position 

because of its high pore volume, high surface area and large number of open metal 

sites (Figure 1.1) (Anbia and Sheykhi, 2012). The first copper terephthalate with 
large surface area was reported by Mori et al. (1997). 

Figure 1.1: Open metal sites of copper terephthalate (Carson et al., 2009). 
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Copper terephthalate, with open coordination sites, has the potential to 

perform both homogeneous and heterogeneous catalytic behaviour. Compare to 

zeolite, copper terephthalate has the advantage in its ability to be 'tuned' to reactions 
of delicate molecules (Alaerts et al., 2006). Besides, copper terephthalate exhibits a 

markedly higher surface area, making it a superior material for gas separation and 
sieving application such as removal of sulphur dioxide, nitrogen monoxide and 
volatile organic compounds emission (Panasyuk eta/., 2007). 

Metal organic frameworks connected by rigid or semi-rigid organic linkers 

are fascinating candidates that can provide very high surface area and controllable 
pore sizes for energy storage. The tuning of the pore size and enhancement of 
micropore volume in copper terephthalate enable it to have the potential to store 
sufficient methane gas (Prasanth et al., 2011). This potential application is very 
helpful especially in energy storage development as natural gas has a significant 
advantage over conventional fossil fuels from an environmental viewpoint and the 
natural abundance and resources (Anbia and Sheykhi, 2012). 

1.3 Objectives of Study 

The objectives of this study are: 

i. to synthesis copper terephthalate by sonication method, 
ii. to characterize copper terephthalate using XRD, SEM, TGA and DSC, 
iii. to examine the chemical stability of copper terephthalatein water, methanol 

and ethanol. 
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1.4 Scope of Study 

This study focused on synthesis and characterization of copper terephthalate. During 

the synthesis process, copper nitrate trihydrate [Cu(NO3)2.3H2O], 1,4- 
benzenedicarboxylic acid (H2BDC) and N, N-dimethylformamide (DMF) were reacted 
and sonicated for 2 hours. The suspension was cooled to room temperature before 

centrifugation was carried out for 30 minutes. Then, the suspension was further 

washed with DMF and was dried in oven at 150 °C for 20 minutes. The precipitate 
was cooled under room temperature for overnight. 

Copper terephthalatewas characterized by X-ray diffractometer (XRD), 

scanning electron microscope (SEM), thermogravimetricanalyzer (TGA) and 
differential scanning calorimeter (DSC). Identification of copper terephthalate was 
done using XRD while thermal stability of copper terephthalate was examined using 
TGA and DSC. Surface morphology of copper terephthalate was determined using 
SEM. Lastly, chemical stability of copper terephthalate was also examined in water, 
methanol and ethanol. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Nanoporous Materials 

Nanomaterials have been a primary focus of nanoscience and nanotechnology in 

which both field develop multidisciplinary field of study attracting great investment, 

interest and effort in research and growth around the world. As a subset of 

nanomaterials, nanoporous materials are either an organic and/or inorganic 

framework which retaining a porous structure with a typically huge surface area. The 

word 'porous' origins from the Greek word 'nopoo' (porous) that means 'passage' 

(Logar and Kaucic, 2006). Nanoporous materials possess unique structural, surface 

and bulk properties, making them important in various fields such as separation, ion 

exchange, sensor, catalysis, bio-molecular isolation and purification (Zhang et al., 
2010). They provide new chances for preparing nanoparticles, nanowires and other 

quantum nanostructures in area of chemistry, guest-host synthesis, molecular 

reactions and manipulation in nanoscale (Lu and Zhao, 2001). 

According to the International Union of Pure and Applied Chemistry (IUPAC), 

porous materials can be classified based on their pore diameters. Micropores are 
smaller than 2 nm in diameter, mesopores have pore diameter between 2 nm and 50 

nm while macropores have pore diameters greater than 50 nm. Nanoporous 

materials have pore diameters between 1-100 nm and porosity (volume ratio of pore 
space to the total volume of the material) greater than 0.4 (Lu and Zhao, 2001). 
Pores in porous materials can be classified into two types which are open pore and 
close pore. Open pores connect to the surface of the material whereas close pores 
isolate from the outside (Logar and Kaucic, 2006). Open pores are required for 



separation, catalysis and sensing while close pores are useful in sonic and thermal 

insulation (Lu and Zhao, 2001). Basically, there are four types of porous structures 
(Figure 2.1). Firstly, zero-dimensional cavities with nanosized pores that are isolated 

and do not connect with the surface of the material. Second type is one- 
dimensional space, with pores that are seen in a variety of compounds and are useful 

transport channels from the surface to the inner porosity. Thirdly, two- 

dimensional space with pores cut through the structure and create layers connected 
together by Van der Waals forces or interactions with guest molecules. Lastly, three- 

dimensional space which contains three dimensional interesting channels constructed 
from several one dimensional channels that run in different directions. 

OD Cavities (Closed pore) 

2D Space (Layers) 

1D Space (Channels) 

3D Space (Intersecting channels) 

Figure 2.1: Pore Types (Beretta, 2009). 
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2.1.1 Types of Nanoporous Materials 

There are many ways to make nanoporous materials whereby some have been used 
industrially for a long time. It is most strikingly that the production of a large variety 

of membranes where control over pore size is increasing drastically. Substances in 

the nanoporous membranes can be selectively escaped out of a solid by leaving 

pores in their place or combinations of polymers can be made to form into 

nanoporous solids by heating so that one polymer degrades and able to be escaped. 
One of the methods involves the combination of polymers and inorganic materials, 

such as silica is by using sol-gel method. This method can be used to make gel-based 

materials such as aerogels. During the process, a gas is dispersed in a gel, producing 
a very light solid where only four times as dense as air (Holister et al., 2003). 

Application of nanoporous membranes is the ability of nanopores to act as 
permeable membrane selector to let certain substances pass through or to force only 
one molecule like DNA to diffuse through at a time. Controlling the size of these 

pores accurately is one of the technological challenges faced in making these 

materials. Another approach to control the pores size in membranes was developed 
by using ultraviolet light to break down the molecules in a layer of self-assembled 
thin film silica that contain a periodic structure. The exposure to light causes the 
silica to solidify, following the same periodic pattern. Researchers believe that by 

changing exposure of light will alter pore sizes very consistently and possible to have 

sufficient control to create pores that are fine-tuned enough to separate oxygen from 

nitrogen molecules (Hamon et a/., 2009). 

In early 2002, researchers in Japan managed to produce a self-assembled 
structure out of silica and benzene with pores between 3 and 5 nm which promising 
recent development in organic or inorganic hybrid (Figure 2.2). The most remarkable 
property of this structure is that there are perfectly ordered structures insides the 
pores and the benzene can be functionalized without the regularity being lost. This 
modification of benzene increase possibility of creating a large variety of pores with 
internal structures that are precisely engineered at molecular scales (Sun et at., 
2010). 
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Figure 2.2: Ordered mesoporous organosilica hybrid material with a crystal-like 
wall structure (Holister eta/., 2003). 

i 

Second type of nanoporous material is bulk nanoporous materials which can 

better to be pictured as small sponge-like substances. Bulk nanoporous materials 

show catalytic properties because the properties of materials tend to change in 

different ways when they are held inside nanopores. Although bulk nanoporous 

materials are less exciting in term of range of possibilities and excellent level of 

control but they offer new applications on industrial scale. The adsorbent and 

absorbent of bulk nanoporous materials offer potential properties in environmental 

remediation by eliminating heavy metals of arsenic or mercury (Lu and Zhao, 2001). 

The two examples of bulk nanoporous materials are activated carbon and 

zeolites. Activated carbon has been produced by a very large number of companies 
for a long time. Researchers in Korea have created activated carbon with uniform 8 

nm and 12 nm pore sizes using silica nanoparticles that showed an adsorption 

greater than 10 times compared to commercial activated carbon. The removal of 

metal ions from a crystalline matrix which containing both metal and carbon allows 
the creation of various nanoporous carbon materials depending on the process 
condition. This approach is being commercialized by the Swiss company Skeleton 
Technologies (Holister et at., 2003). Zeolites are microporous minerals that are 

widely used in water purification industry. Applications for zeolites cover a broad 

range of areas such as catalysis, separation, ion exchange, sensing and advanced 
optoelectronics (Valtchev, 2002). Later on, a modified zeolite (electrides) was shown 
to be one of the interesting class of materials. Electrifies are positive charged 
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structure with charge being balanced in the form of an electron gas in the pores. In 

addition, electrides are stable at room temperature and have interesting electrical, 

magnetic and optical properties (Xu et al., 2012). 

2.1.2 Classification of Nanoporous Materials 

Nanoporous materials such as polymer, carbon, glass, alumina-silicate, oxides and 

metal can be categorized based on their materials constituents and their properties 
(pore size, surface area, permeability, strength, thermal stability, chemical stability, 

cost and life) (Table 2.1). 

Table 2.1: Classification of nanoporous materials (Lu and Zhao, 2001). 

Alumino- 
Polymeric Carbon Glass Oxides Metal 

silicate 
Meso- Micro- Meso- Micro- Micro- Meso- 

Pore size 
macro meso macro meso meso macro 

Surface Low High Low High Medium Low 

area/Porosity >0.6 0.3-0.6 0.3-0.6 0.3-0.7 0.3-0.6 0.1-0.7 
Low- Low- Low- 

Permeability High Low High 
medium medium medium 

Weak- 
Strength Medium Low Strong Weak Strong 

medium 
Thermal Medium- Medium- 

Low High Good High 
stability high high 
Chemical Low- Very 
stability medium 

High High High 
high 

High 

Cost Low High High 
Low- 

Medium Medium 
medium 

Life Short Long Long 
Medium- 

Long Long 
long 
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2.1.3 Properties of Nanoporous Materials 

The unique properties of nanoporous materials include large surface area and 

uniform pore distribution, high selectivity, high adsorption capacity, excellent 

mechanical stability and good stability and durability (Dai and Ju, 2012). The large 

surface area and the uniform pores distribution can provide more catalytic sites for 

the loading of a large amount of catalyst and thus making it high sensitivity in 

detection (Ju et al., 2011). Surface area is important as it can affect the behaviour of 

nanoporous materials in processes which include activity of catalysts, water 

detoxification and purification of hydrocarbons. Particle size distribution is an 

important physical characteristic influencing the behaviour during storage and 

processing. The great porosity and uniform structure of nanoporous materials 

facilitate the fast transport of the analytes to active sites in the nanopores (Dai and 

Ju, 2012). 

Selectivity is highly desired for separation in multi-component mixture of 

nanoporous materials. The selectivity of an adsorbent depends on the pore size, 

shape, pore size distribution and the nature of the adsorbate components. 
Modification surface of nanoporous adsorbent by organic materials have been 

developed in order to increase selectivity to target metals of nanoporous materials. 
Selection of the organic materials are made in such a way that one side of the 

molecules should contain charges or polar groups that can interact preferentially with 

metal ions while another side should be atoms or molecules that have ability to 

connect to the surface of nanoporous materials (Wongsakulphasatch, 2012). 

Furthermore, nanoporous materials also possess high adsorption capacity. 
Fundamental properties that affect this parameter are specific surface area, pore size 
and surface chemical nature. These parameters indicate how much adsorbates can 
be accumulated by per unit mass of adsorbates. Large surface area will give high 

adsorption capacity of nanoporous materials (Xia et al., 2011). 

Next, nanoporous materials have excellent mechanical properties that 
depend on its porosity and sizes of microstructure. Surface stress has great impact 
on the mechanical and physical properties of nanoporous materials. Hence, 
adsorbents need to be mechanically strong to support friction, corrosion and crushing 
in adsorption columns or vessels. Elastic constants of nanoporous materials can be 
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