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A B S T R A C T

In this study, the activated carbons (ACs) were prepared from guava seeds via two stages activation. The dried
guava seeds were semi-carbonized at 300 °C for 1 h, and then the carbonized samples were impregnated with
zinc chloride (ZnCl2). The ZnCl2: sample impregnation ratios (w/w) were altered from 1:1 to 5:1. The ACs were
characterized by the yield percentage, ash content, moisture content, pH value, adsorption quality of 2,4-
dichlorophenol (2,4-DCP) and surface functional groups. The surface area of the best produced AC3 was found
to be 919.40 m2 g−1. It was found that AC3 had highest 2,4-DCP adsorption capacity, which was 20.9 mg g−1.
The 2,4-DCP adsorption kinetic of prepared AC3 was pseudo-second order with correlation value of 0.995. In
addition, the 2,4-DCP adsorption capacity of AC3 was fitted to the Langmuir model with correlation coefficient
value of 0.977, indicating that chemisorption was a major contributor to the adsorption process.

1. Introduction

Extensive use of chlorophenols has brought many negative effects
on human. For example, pentachlorophenol is one of the most common
phenolic compounds found in human blood, plasma and fish [23].
Currently, the adsorption of chorophenol compounds from aqueous
solutions with activated carbon (AC) has been reported as an effective
method for water treatment [21]. AC is formed when the carbon
particles are arranged in a quasi-graphitic manner. It is an amorphous
carbon that consists of high degree of porosity and also good
absorptivity [30,36].

From the past researches, there are many studies on preparation of
AC from fruits stones, shells, seeds, and plant waste [33,42]. They
contain high amount of lignocellulosic material, an example includes
grape stalks [32], rice husk [44], Albizia lebbeck seed pods [2], coffee
residues [27], oil palm shells [22], cattle-manure compost [34], oil
palm empty fruit bunch [20], sour cherry stones [6], Crofton weed [50].

Guava is a berry like fruit of various mytaceous trees and often
called as the apple of the tropics. The scientific name of guava fruit is
known as Psidium guajava from Mytaceae family, and it is native from
Mexico. Generally, the guava fruits are planted in the tropical or sub-
tropical area of America, Asia and Africa [12]. In Malaysia, guava fruit
is an important tropical fruit due to its high commercial and nutritional
values, and there are various types of guava fruit, such as Gu4, Gu5,
Gu7, Jambu Biji, Laknaw, Hongkong pink, Red Malaysian, Taiwan and

Vietnamese [49]. All those species have a small size of 2.4–3.35 cm
radius and have a thin mesocarp with 9–15 mm. In contrast, the
Vietnamese guava fruit has a larger radius and mesocarp thickness of
5–5.5 cm and 19–25 mm respectively. The mesocarp colour of guava
fruit can be either white or pink colour. The average vitamin C content
of the fruits is around 40.1 mg g−1 to 180.5 mg 100 g−1 [49]. In the last
decade, the importance of guava fruit was improved from neglected
fruit to one grown largely for processing. The guava fruit can be either
used to make canned food or processed to guava juices or used for
producing jam and guava paste. Guava seeds are always considered as
agriculture waste in food industries, seeds represent around 5% weight
of guava fresh fruit. High amount of lignocellulosic materials can be
found in the guava seeds, so it is suitable to be used to synthesize the
AC [35]. Guava seed is considered as low cost agricultural waste and
highly available in the factories of guava processing. The major
components of the guava seeds are gluterlins, globulins, cellulose,
hemicelluloses and lignin which are suitable for preparation of AC [14].

Therefore, in this study, guava seeds (Psidium Guajava) were used
as the precursor for an alternative sorbent to determine its effect on the
removal of 2,4-Dichlorophenol (2,4-DCP) aqueous solution, replacing
the commercial AC in industrial fields. The AC was produced using two
different methods. One of the methods is a two stage chemical
activation. Zinc chloride (ZnCl2) was used as the activating agent for
the chemical activation with a fixed ratio of activating agent to
precursor used. The ash, moisture content, pH, product yield, and
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2,4-DCP adsorption capacity was used to characterize the prepared AC.

2. Materials and methods

2.1. Sample preparation

In this study, the guava seeds were used as raw material to prepare
AC. The samples were washed with distilled water and dried in an oven
at 110 °C for 24 h. The dried guava seeds were used as precursor to
synthesis AC [14].

2.2. Preparation of AC

Two stage self-generated atmosphere method was used to prepare
AC from dried guava seeds. The precursor was semi-carbonized (first
stage), and then it was subjected to activation process (second stage)
with chemical activation agent which was ZnCl2. Both semi-carboniza-
tion and activation were done in self-generated atmosphere. Self-
generated atmosphere is the atmosphere that consists of volatile matter
which is generated from pyrolysis process.

2.3. Semi carbonization process

Semi-carbonization by pyrolysis was carried out in muffle furnace.
A known amount of guava seeds were placed on a pyrex petri dish and
heated at 300 °C for 1 h in muffle furnace. After pyrolysis, the material
was stored in a desiccator to minimize moisture contact [24].

2.4. Impregnation with ZnCl2

Impregnation process was carried out before the activation process
and ZnCl2 was used as the dehydrating agent. The ZnCl2: sample
impregnation ratios (w/w) were altered from 1:1 to 5:1 (samples AC1-
AC5). 20 g of AC was impregnated with 200 mL of aqueous solution of
ZnCl2 with the weight varying from 20 g to 100 g. After that, the
mixture was heated at 85 °C until completely dried.

2.5. Chemical activation process

The impregnated samples were activated in a muffle furnace under
self-generated atmosphere at the optimum temperature 500 °C for 2 h.
Table 1 shows the data of activation process.

2.6. Washing process

The activated samples were refluxed with 0.01 M HCl at 85 °C for
30 min to remove excess ZnCl2, tar, ash and metal ion. After that, the
samples were washed with distilled water to remove all the acid until
pH of wash water become neutral. The washing process was done in a
water bath at 70 °C for 4 h each. The washed samples were then dried
in an oven at 110 °C for 24 h [6].

2.7. Characterization of AC

2.7.1. Determination of percentage of yield
The percentage yield of activated carbon was calculated using Eq.

(1). This analysis was performed to estimate the economics of scale for
this process.

Percentage of yield
W
W

x= 100f

i (1)

where Wf is the final mass of the dry impregnated sample at the end of
activation process and Wi is the initial mass of sample.

2.7.2. pH value determination
1.0 g of every activated sample was weighed and transferred into an

Erlenmeyer flask. 100 mL of distilled water was added into the
Erlenmeyer flask and boiled by using a reflux condenser to recycle
water vapour. Then, the AC was filtered out from the solution, and the
filtrate was cooled to 50 °C. Finally, the pH value of the filtrate was
determined by using a pH meter [7].

2.7.3. Moisture content determination
1.0 g of the AC sample was placed into a dry, closed beaker and

weighed. Then, the opened beaker with the lid was dried in an oven
until a constant weight was achieved. The sample containing beaker
was closed and took out from the oven, cooled to ambient temperature.
The closed beaker was weighed again. The moisture content of the AC
sample was calculated by using Eq. (2) [7,41]:

Percentage of moisture content Loss of weightx
Weight of sample after drying

= 100
(2)

2.7.4. Ash content determination
The AC sample from above was heated in a muffle furnace at 650 °C

for several hours until a constant weight was achieved. The burned
sample was cooled to ambient temperature in desiccators and weighed
again. The ash content of sample was calculated by using Eq. (3) [7,41]:

Percentage of ash content Weight of sample after ash processx
Weight of sample before ash process

= 100

(3)

2.7.5. Scanning electron microscope (SEM) analysis
SEM is an instrument used to study morphological structure of the

prepared AC. The sample was scanned with a focused beam of electrons
with a spot smaller than 10 nm. The electrons interact with sample
surface to a depth of approximately 1 mm. This interaction generates
various signals that can be detected and used to produce an image [10].
Before SEM analysis, the samples were dried at 110 °C for one week.
The granular form of AC sample was subjected to SEM and it was used
to search for porous structure of sample.

Table 1
The temperature and time for activation process.

Sample Ratio of impregnation (w/w) (ZnCl2:AC) Semi – carbonization Activation

Temperature (°C) Time (h) Temperature (°C) Time (h)

AC1 1:1 300 1 500 2
AC2 2:1 300 1 500 2
AC3 3:1 300 1 500 2
AC4 4:1 300 1 500 2
AC5 5:1 300 1 500 2
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2.7.6. Fourier transform infrared spectroscopy (FTIR) analysis
The functional groups of activated carbon surface were analyzed by

using FTIR. First, the prepared ACs were grinded and dried at 110 °C
for 24 h. Then, small amount of grinded sample was putted into the
FTIR spectrophotometer to obtain IR spectrum. The IR spectrum was
obtained at a resolution of 1 cm−1 over the range 4000–400 cm−1. Each
peak in the spectrogram in specific wavelength represents the specific
surface functional group present on the surface of AC sample.

2.8. Adsorption capacity

0.1 g of five AC samples with different impregnation ratios were
placed into five 800 mL Erlenmeyer flasks containing 600 mL of
20 mg L−1 2,4-DCP solution. The solution was stirred for 1 h. Then,
the AC was filtered out from the solution and the filtrates were analyzed
with UV–vis spectrophotometer. The pH and initial concentration of
2,4-DCP solution and adsorbent dosage of AC was used as the
parameter to study the adsorption kinetic and adsorption isotherm
for the sample that achieved highest adsorption capacity.

2.8.1. Effects of initial concentration 2,4-DCP
Batch adsorption was carried out in a set of 800 mL of beakers

which contain 600 mL of 2,4-DCP solutions with different initial
concentration (5, 10, 15, 20 mg L−1). 0.5 g of prepared AC was added
to each beaker and stirred for 1 h to reach equilibrium. The original pH
of the solution was maintained without any pH adjustment. After the
equilibrium was achieved, the ACs were filtered out form the solution
to reduce interference of the prepared carbon with analysis. UV–vis
spectrophotometer was used to test the adsorption of 2,4-DCP by the
AC [9]. The total quantity of adsorbed 2,4-DCP was calculated by Eq.
(4):

q =(C -C )V/We 0 e (4)

where C0 is the initial concentration of 2,4-DCP in liquid phase
(mgL L−1); Ce is the equilibrium concentration of 2,4-DCP in liquid
phase (mg L−1); V is the volume of the solution (L); W is the mass of
the dry adsorbent used (g).

2.8.2. Effects of solution pH
Adsorption of 2,4-DCP by prepared AC in different pH solution was

analyzed. Before the 0.5 g of the prepared AC was added to the 600 mL
with 20 mg L−1 of 2,4-DCP, 0.01 M HCl and 0.01 M of NaOH were
used to adjust the pH of each solution to an appropriate value (pH, 3–
9). The mixture was stirred for 1 h in without heating. After that, the
solution was filtered and analyzed by using UV–vis spectrophotometer
[47].

2.8.3. Effects of adsorbent dosage
Different amounts (0.1–0.5) of prepared AC were added to 4

different conical flasks with 50 mg L−1 of 2,4-DCP. The solution was
stirred for 1 h without heating. After the equilibrium was achieved, the
solution was filtered and analyzed using UV–vis spectrophotometer, to
determine the optimum amount of adsorbent required for maximum
adsorption [45,46].

3. Results and discussion

3.1. Physical characterization

The yield, moisture and ash content percentage along with pH of
AC1-AC5 are shown in Table 2.

The yield of the AC initially increased by ZnCl2 ratio, and then
decreased. ZnCl2 impregnation ratio gave a significant effect on the
yield of prepared carbon. Table 2 shows an increasing trend for AC1
with 20.05% to AC3 with 24.02%, and followed by a decreasing trend
for AC4 with 22.77% and AC5 20.03%. For AC1, AC2, and AC3, the

increment of ZnCl2 impregnation ratio increases the AC yield. The
ZnCl2 rearrange the carbon structure to form a rigid matrix with
numerous of cross-links, so more product can be produced [18]. Cross
linking reaction occurred in a low impregnation ratio, so the produc-
tion of volatile components were reduced, leading a high AC yield [43].
The ZnCl2 selectively remove H and O from the samples H2 and H2

rather than hydrocarbon. In addition, the AC yield was increased due to
polymerization which was promoted by the ZnCl2. Larger polycyclic
aromatic molecules were produced from these reactions, and this
resulted in an increased AC yield [1]. However, further increase in
the impregnation ratio of ZnCl2 gave a dehydrating effect during
activation. So it can inhibit the formation of tars and other liquid
matter that could block the pores on the surface of the samples.
Therefore, the released volatiles from the pores during activation and
yield are decreased [18]. During the activation process, the lignocellu-
losic materials were transformed into carbon, involved releasing of O
and H atoms as water, carbon monoxide, carbon dioxide, methane,
aldehydes or distillation of tar [47]. Since impregnation ratio of AC4 is
much lower than AC5, so the yield of AC4 is higher than AC5.

From the Table 2, the moisture content of the samples shows a
decreasing trend for AC1 with 3.58%, AC2 with 2.61, AC3 with 2.13%,
AC4 with 1.80%, and AC5 with 1.60%. Overall, the moisture content of
the samples is reduced by increasing ZnCl2 impregnation ratio and this
is because of the excellent dehydration characteristic of ZnCl2 as well as
some of the ZnCl2 were not washed out from the samples [20].
Although ZnCl2 is an excellent activating agent in AC preparation,
but it is seldom used in food and pharmaceutical industries due to
contamination problem [17].

High moisture content can reduce the adsorption of 2,4-DCP by AC,
so the sample must be dried in an oven at 110 °C for 24 h.
Furthermore, pre-drying the samples before running the adsorption
experiment can avoid high moisture content, dilutes the carbon and
necessitates the use of additional weight carbon during the experiment
[8]. The difference of moisture content between AC4 and AC5 is
insignificant, because further increase in ZnCl2 impregnation ratio
has little or no effect on the moisture content of the AC.

The ash content is the non-carbon or mineral impurities, which
does not chemically bond with carbon surface. The ash is made up from
different unwanted mineral substance; it becomes more concentrate
after pyrolysis. Normally, the type of raw material has a major effect on
the ash content of activated carbon. AC with high ash content is not
ideal, because it reduces the adsorption capacity and mechanical
strength [13].

The effects of ZnCl2 impregnation ratio on the ash content of the
samples are shown in the Table 2. Overall, the ash content of each
sample is less than 10%. Table 2 shows an increasing trend for AC1
with 4.59%, AC2 with 5.41%, AC3 with 6.79%, AC4 with 7.82% and
AC5 with 8.16%. Obviously, the ash content of the samples was
contributed by the ZnCl2 salt, so higher ash content was obtained.
Apart from this, the formation of insoluble inorganic product increased
when the impregnation ratio became higher [31].

The pH of the samples was determined by ASTM (1999) method
and the pH depends on the surface functional group [7]. For example,
the acidic functional group such as phenolic and carboxyl group may
cause an acidic pH value. Overall, the pH of all the samples are 5 and

Table 2
ACs with their relative yield, moisture, ash and pH.

Sample Yield (%) Moisture content (%) Ash content (%) pH

AC1 20.05 3.58 4.59 6.07
AC2 20.89 2.61 5.41 5.57
AC3 24.02 2.13 6.79 5.30
AC4 22.77 1.80 7.82 5.10
AC5 20.03 1.60 8.16 5.03
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above. Table 2 shows a decreasing trend for AC1 with pH 6.07, AC2
with pH 5.57, AC3 with pH 5.30, AC4 with pH 5.10 and AC5 with pH
5.03. From the observation, the samples become more acidic when the
impregnation ratio increased, because the ZnCl2 salts were hydrolyzed
in the presence of natural alkalinity. Therefore, the metal hydroxide
was formed and the alkalinity of the samples was reduced [20].

In addition, the adsorptions of inorganic ions depend on the surface
charge of adsorbent, which in turn is affected by its pH value [38]. On
the other hand, the adsorption of organic substances is favored at lower
pH value [29]. Based on these assumptions, the prepared AC is
deduced to be able to adsorb high amount of organic substances.

3.2. Morphological study of AC

SEM was used to study the morphological structure of the prepared
AC (Fig. 1).

From the observation, chemical impregnation with ZnCl2 of AC

results in formation of mesopores and micropores on the carbon
surface. In this experiment, the porosity of the AC depends on the
impregnation ratio. The AC with 1:1 impregnation ratio characterized
by the least pores amount and cracks. Based on the observation, the
amount of pores and cracks increase from AC1 to AC5 as shown in
Fig. 1(a)–(f). As shown in the Fig. 1, the pore size of the samples
increased from AC1 to AC3, but the pore size of AC4 and AC5 were less
than AC3 pore size. The pore size of AC3 is around 10 µm and largest
among all the samples, and this is because the excess ZnCl2 brought
shrinkage effect on the porous structure of AC4 and AC5 [11]. From the
adsorption capacity data, these become more obvious for a impregna-
tion ratio of 3:1 which is an optimal ratio for AC preparation. From the
Fig. 1(d) numerous clear and well defined pores can be observed. AC4
and AC5 showed lower 2,4-DCP adsorption capacity than the AC3 and
their pores are not deeper and larger than AC3 as shown in Fig. 1(e)
and (f). When the impregnation ratio is larger than 3:1, destructive
effect may occur on the micropore structure of AC [1].

Fig. 1. SEM micrographs (×1000 magnification) (a) guava seed (b) AC1 (c) AC2 (d) AC3 (e) AC4 (f) AC5.
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3.3. Surface functional groups of prepared AC

From the FTIR spectra as shown in Fig. 2, all the samples have the
similar functional groups, because all the samples were prepared from
the same type of guava seed with procedure. The small difference
between the spectrums is caused by the difference in impregnation
ratio. All of the FTIR spectrum show a broad band between 3300 cm−1

and 3500 cm−1, and this this broad peak indicates the N–H bond
stretching alkyl or aryl amine which can be found in the amino acid of
guava seed protein. Besides that, two significant bands were identified
in the range between the 2932 cm−1 and 2951 cm−1, this is caused by
the presence of asymmetric C–H bonds and symmetric C–H bonds
respectively. In addition, a sharp band observed in the range between
2349 cm−1 and 2462 cm−1 are assigned to C≡C stretching present in
the alkynes group. On the other hand, the aromatic C˭C bond may
present in the activated sample due to the presence of broad band at
around 1600 cm−1. A strong band at around 1383 cm−1 may be
contributed by the C-H bending present in the alkyl group. A broad
band was obtained in the region between 1300 and 1000 cm−1, this
may be attributed to C-O stretching present in alcohol and ether.
However, the presence of a weak sharp band around 660 cm−1 may be
deduced to C-Cl. The samples were washed by HCl, then acidic
functional group may present on the surface of the samples. In the
region of 500–1000 cm−1, a lot of overlapping and complex bands were
collected from the analysis. This is due to the different types of motion
of the various types of functional groups. Overall, the ZnCl2 impreg-
nation ratio did not give an obvious influence on the surface functional
groups of the samples.

3.4. Specific surface area and pore-distribution

AC3 was selected for surface area and pore distribution analysis.
The maximum Brunauer, Emmett and Teller (BET) surface area of
919.40 m2 g−1 and the average pore diameter of 23.68 Å obtained are
comparable with the findings of other researchers [3–5,19,20,25,26].
Table 3 represents the porous and surface characteristics of AC3.

The BET isotherm shown in Fig. 3, exhibited a Type I isotherm
without any adsorption hysteresis loop. This is a typical of a micro-
porous solid with chemisorption properties, which is corroborated by
the compliance to the pseudo-second-order model. As shown in Fig. 3,
during the initial stage, the adsorbed volume significantly increased in
the low relative pressure region (P/Po < 0.1). This result provides a

strong indication that the prepared carbon is primarily microporous in
nature.

3.5. Adsorption capacity of AC

The 2,4-DCP adsorption indicates the adsorption capacity of an AC
for molecules having similar molecular size to 2,4-DCP. 0.5 g of AC was
added and stirred with 600 mL of 20 ppm of 2,4-DCP for 3 h to achieve
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Fig. 2. Combined FTIR spectras of the AC1 to AC5 samples.

Table 3
Surface area, pore volume and pore size of AC3.

Surface area

BET surface area, m2/g 9.194×102

BJH method cumulative adsorption surface area, m2/g 7.800×102

BJH method cumulative desorption surface area, m2/g 8.028×102

Pore volume
BJH method cumulative adsorption pore volume, m3/g 0.2726×10−3

BJH method cumulative desorption pore volume, m3/g 0.2763×10−3

Pore size
Average pore diameter, Å 23.68
BJH method adsorption pore diameter (mode), Å 8.845
BJH method desorption pore diameter (mode), Å 9.152
DH method adsorption pore diameter (Mode), Å 8.870
DH method desorption pore diameter (Mode), Å 9.164
DR method micropore width, Å 1.802

Fig. 3. Nitrogen adsorption-desorption isotherm for AC3 sample.
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the adsorption equilibrium at 28 °C. After that, the 2,4-DCP adsorption
capacity by AC was analyzed using UV–vis spectrometer. Fig. 4 shows
that the adsorption capacity of the samples increases as the ZnCl2
impregnation ratio increase up to 3:1. As the impregnation ratio above
3:1, the 2,4 DCP adsorption capacity by AC decreases.

From the result it was found that, the impregnation ratio gives a
significant effect on the quality of prepared AC. AC3 achieved the
highest adsorption capacity among other samples, and its adsorption
capacity is 20.88 mg g−1. The quantity and size of the pores increased
as the impregnation ratio increased. However, 3:1 impregnation ratio
is the optimum ratio required for the AC preparation. When the
impregnation ratio is larger than 3:1, destructive effect may occur on
the porous structure of activated carbon [48]. From SEM image, AC3
consists large and widely distributed pores compared to other samples
with different impregnation ratio, so it can provide more free surface
area for adsorption to occur. Since the AC3 possess highest adsorption
capacity, the batch adsorption and further adsorption studies were
done with sample AC3, for adsorption isotherm and kinetic of 2,4 DCP
adsorption.

3.6. Batch adsorption of 2,4-DCP by prepared AC

3.6.1. Effect of 2,4 DCP solution pH on adsorption capacity
The adsorption of 2,4-DCP onto the prepared AC, AC3 at pH 3, 7,

and 9 were investigated. As shown in Table 4, the value of equilibrium
adsorption capacity, qe at pH 3 was higher than those at pH 7 and 9.
These results indicate that lower pH value is favourable for the better
adsorption of 2,4-DCP onto the prepared AC, AC3 in aqueous medium.
Since 2,4-DCP is a hydrophobic organic compound, it can form
protonated and deprotonated species in aqueous medium. The percen-
tage of both species present in solution is dependent on the pH of the
solution. 2,4-DCP molecules are protonated in acidic condition, while
the dichlorophenate anion is formed when the pH value larger than 7.
The decrease in the adsorption capacity of 2,4-DCP on the prepared AC
at higher pH was due to the electrostatic repulsion between the
dichlorophenate anion and AC. Then, the relatively strong electrostatic
repulsion forces reduce van der Waals forces between adsorbent
surface and the adsorbates molecules. Therefore, the adsorbates could
not adsorb tightly on the adsorbent surface [45]. On the other hand,
most of the 2,4-DCP molecules are maintained in the nonionized form
at pH 7, so no electrostatic repulsion force between the adsorbent

surface and adsorbates. Thus, the adsorption capacity of activated
carbon at pH 7 slightly higher compared to pH 9 [39].

3.6.2. Effect of AC dosage on adsorption of 2,4-DCP
Adsorbent dose is a parameter that is used to determine the

capacity and removal efficiency of the adsorbent for a given initial
concentration of 2,4-DCP. Table 5 shows the effect of AC, AC3 dosage
on the 2,4-DCP adsorption. The trend of 2,4-DCP removal efficiency
increases with AC dosage. The percentage removal of 2,4-DCP in-
creased from 34.50–87% along the increase of AC dose from 0.1g to
0.5 g. When the dose of AC is increased, the free surface area and
adsorption sites also increase. Therefore, more 2,4-DCP molecules can
be adsorbed on the AC surface.

3.6.3. Effect of initial concentration of 2,4-DCP solution on
adsorption capacity

Table 6 shows the adsorption capacity versus the different initial
concentrations of 2,4-DCP. From the result, the initial concentration of
2,4-DCP gave a significant effect on the adsorption of 2,4-DCP on AC.
The concentration of 2,4-DCP adsorbed on the surface AC increased
when initial concentration of 2,4-DCP increased. This change reflectsW
an increase in the driving force of concentration gradient when the
initial concentration of 2,4-DCP is getting higher [40].

3.7. Adsorption isotherm

Linear form of Langmuir and Freundlich equation were applied to
study the 2,4 DCP adsorption isotherm of the AC. In the present study
the 2,4 DCP adsorption was analyzed by Langmuir and Freundlich
isotherm model in order to describe the sorption equilibrium by Eqs.
(5) and (6) respectively.

Langmuir equation

C q
q K

/ = 1
( ) +

e e
max L

C
q

e

max (5)

where Ce is the equilibrium adsorbate concentration in solution
(mg L−1); qe is the equilibrium adsorbate concentration in the adsor-
bent (mg g−1); qmax is the monolayer capacity of the adsorbent
(mol g−1); KL is the Langmuir adsorption constant (L mg−1).

Freundlich equation

In q In K
n

In C( ) = ( )+ 1 ( )e F e (6)

Fig. 4. The 2,4-DCP adsorption capacity of the prepared guava seed based AC samples.

Table 4
Effect of 2,4-DCP solution pH by prepared AC3.

pH of
2,4-
DCP
solution

Initial
concentration,
C0 (mg L−1)

Equilibrium
concentration,
Ce (mg L−1)

Volume
of 2,4-
DCP
solution,
V (L)

Weight of
activated
carbon,
W (g)

Adsorption
capacity, qe
(mg g−1)

3 20 2.70 0.60 0.50 20.76
7 20 4.20 0.60 0.50 18.96
9 20 4.60 0.60 0.50 18.48

Table 5
Effect of AC3 dosage on the 2,4-DCP adsorption.

AC
dosage
(g)

Initial
concentration of
2,4-DCP, C0

(mg L−1)

Concentration of
2,4-DCP after
adsorption, Ce

(mg L−1)

Concentration of
2,4-DCP
adsorbed
(mg L−1)

Removal
efficiency
(%)

0.1 20 13.10 6.90 34.50
0.3 20 7.50 12.50 52.50
0.5 20 2.60 17.40 87.00

Table 6
Effect of initial concentration of 2,4-DCP on the 2,4-DCP adsorption by prepared AC3.

Initial
concentration of
2,4-DCP, C0,
(mg L−1)

Equilibrium
concentration,Ce

(mg L−1)

Volume of
2,4-DCP
solution, V
(L)

Weight of
activated
carbon, W
(g)

Adsorption
capacity, qe
(mg g−1)

5 0.10 0.60 0.50 5.88
10 0.60 0.60 0.50 11.28
15 0.90 0.60 0.50 16.92
20 2.60 0.60 0.50 20.88
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where Ce is the equilibrium concentration in the solution (mg/dm3); qe
is the equilibrium adsorption capacity (mg/g); KF, and n the Freunlich
model constant [30].

Adsorption isotherm data of 2,4-DCP onto AC3 presented in
Table 7. According to the fitting results, Langmuir isotherm model
was more suitable than the Freundlich isotherm model since the
correlation coefficients of Langmuir model (R2=0.977) was higher than
Freundlich model (R2=0.961). These results indicate the Langmuir
equation is more applicable than Freundlich equation. The validity of
Langmuir equation indicates monolayer adsorption of 2,4 DCP on the
specific homogeneous sites of AC [45].

3.8. Adsorption kinetics studies

The kinetics and dynamics of 2,4 DCP adsorption onto AC, AC3 can
be studied by employing the Langergren first order and pseudo-second
order rate equations. Both equations are very suitable used to study the
adsorption of an adsorbate from an aqueous solution, which are
expressed by the equations as bellows:

q q q
k

tIn ( − )=In −
2. 303e t e

ad
(7)

where qe is the amount adsorbed (mg/g) at equilibrium; qt is the
amount adsorbed (mg/g) at time; t is the time (min); kad is the rate
constant (min−1).

t
q K q

t
q

= 1 +
t e e2

2
(8)

where qe is the amount adsorbed (mg/g) at equilibrium; qt is the
amount adsorbed (mg/g) at time; t is the time (min).

Fig. 5(a) and (b) shows the Langergren first order and pseudo-
second order plots, respectively. It can be seen in the Fig. 6 that the
Langergren's first – order plot does not fit with the experimental
kinetic data very well. While the correlation coefficient, R2 of pseudo

second – order plot is equal to 0.995, these indicate that the
applicability of the pseudo-second order equation is better than
Langergren's first – order plots. The results indicate chemisorption
occurs between the adsorbent and adsorbate, so the rate of the
adsorption depends on the amount of adsorption sites on the adsorbent
surface rather than the adsorbate concentration in bulk solution
[15,16,28,37]. In order to understand the mechanism of 2,4 DCP
adsorption onto the AC, intra-diffusion model was used to determine
rate limiting step and the involved mechanism. Fig. 6 shows a plot of qt
versus t1/2. Since the plot gave a multi-linear nature, so the adsorption
process involves more than one mechanism [42]. 3 parts can be divided
from the plot, which is phase 1, phase 2, and phase 3. The phase 1
represents surface diffusion. The phase 2 indicates adsorption process
between 2,4 DCP and AC3 and it is the rate-limiting step. On contrary,
the phase 3 indicates where equilibrium had been achieved. The
adsorption process was controlled by 3 steps, but only one step can
predominates at any particular time phase.

4. Conclusion

The AC was produced with semi – carbonization followed by
chemical activation in a self – generated atmosphere. Overall, the
maximum yield of activated guava seed was produced with 1:3 (w/w)
ratio of sample: ZnCl2. The prepared AC was slightly acidic with a pH
value in between 5 and 6. The average moisture content of prepared AC
was in the range of 1.5–3.5%, the moisture content of prepared AC
showed a decreasing trend with higher impregnation ratio. The ash

Table 7
Adsorption isotherm data of 2,4-DCP onto AC3.

Adsorption capacity, qe, (mg g−1) Ce/qe In C( )e In q( )e

5.88 0.0170 −2.3026 1.7716
11.28 0.0531 −0.5108 2.4230
16.92 0.0532 −0.1054 2.8285
20.88 0.1245 0.9555 3.0388

(a) (b)
Fig. 5. (a) Langergren first-order rate plot and (b) pseudo second-order rate plot of 2,4-DCP adsorption by AC3.

Fig. 6. Intraparticle diffusion kinetic plot for the adsorption of 2,4-DCP at 28 °C
exhibiting multi linearity in the regions phase1, phase2 and phase3.
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content increased as the ZnCl2 impregnation ratio increased. The 2,4-
DCP adsorption kinetic of prepared AC3 was pseudo-second order with
correlation value of 0.995. In addition, the 2,4-DCP adsorption of
prepared AC3 fitted to the Langmuir model with correlation coefficient
of 0.977, so chemisorption occurred between specific homogeneous site
of AC3 and 2,4-DCP. From the FTIR spectra, the main functional
groups present on the surface prepared AC3 include amine, carbonyl,
symmetric and asymmetric alkyl group and chloride group. It was
found that AC3 with 1:3 of impregnation ratio consists of micropores
and mesopores widely distributed on the surface of prepared AC by the
observation from the SEM image taken from all samples. From the
results of batch adsorption of 2,4-DCP by AC3, 0.5 g of AC3 provided
better removal efficiency of 5 ppm of 2,4-DCP solution at pH 3. The
AC3, which is prepared from the guava seed found to be an efficient
adsorbent for removal of 2,4-DCP from aqueous medium.
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