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Abstract – This study was conducted to establish callus cultures from leaf, stem and root explants of 

Physalis minima using different combinations of 2,4-D and kinetin. Callus growth and anti-cancer 

compound, physalin B production were further enhanced by optimising the cell explants and media 

compositions such as basal media, salts concentration, carbon sources and plant growth regulators. 

The results indicated that callus cultures derived from leaf, stem and root explants were best initiated 

using a combination of 9.0 µM 2,4-D and 4.5 µM kinetin. Callus growth and synthesis of physalin B 

were peaked at the late exponential growth phase over 25 d of culture. Callus growth did not vary 

between explants, but physalin B was observed higher in leaf (0.78 mg g-1 dry wt.), followed by root 

(0.71 mg g-1 dry wt.) and stem (0.64 mg g-1 dry wt.). MS basal medium was found superior to B5, SH 

and WH basal media in supporting growth and physalin B production. Further tests on the media 

compositions obtained a half strength of MS salts (½MS), 2.5% (w/v) sucrose and 9.0:4.5 µM of 2,4-

D:kinetin combination, which were the preferred salts strength, carbon sources and plant growth 

regulators for optimum growth (0.23 g dry wt.) and physalin B production (1.75 mg g-1 dry wt.) of 

callus cultures derived from leaf. Copyright © 2015 Penerbit Akademia Baru - All rights reserved. 

Keywords: Basal medium, Carbon source, Callus cultures, Explants, Plant Growth Regulators, Secondary 
metabolites, Physalin B 

1.0 INTRODUCTION 

Physalin B is a steroid derivative that possesses a novel 13,14-seco-16,24-cycloergostane 
skeleton discovered from the Physalis alkekengi var. Franchetii by Matsuura et al. [1] and 
was later used as a taxonomic maker for the genus [2]. Physalin B has a wide array of 
bioactivities including for anti-inflammatory [3–4], anti-mycobacterial [5–6], antimicrobial 
[7], anti-malarial [8], antileishmanial [9], antinociceptive [10] and anticancer [11–17]. 
Physalin B represents a novel therapeutic option for the treatment of inflammatory diseases 
through the activation of glucocorticoid receptors [3]. Physalin B has also been found to 
display a non-selective cytotoxic effect on human CORL23 lung and MCF-7 breast 
carcinoma cells [18] and possess suppressive effects on human leukemia (K562 and 
APM1840 HL-60, KG-1, CTV1 and B cell), cervix (HeLa), hepatoma (HA22T), nasopharynx 
(KB), colon (Colo-205), lung (Calu-1), sarcoma cell lines [12–13],[19]  and other cancerous 
cell lines such as A431, HCT-8, PC-3, and ZR751 [20]. Physalin B induces apoptosis of 
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melanoma cancer cells by inducing the pro-apoptotic protein NOXA expression and also 
triggers the expression of Bax and caspase-3 [16]. Recently, physalin B was reported to 
inhibit Gli in Hedgehog signalling pathways [21–22], which leads to their significant function 
in controlling cancerous cells. 

Physalin B can be obtained from various Physalis sp. including Physalis minima [1], [23–25], 
which is the only species found in Malaysia. Physalis minima plants are tetraploid with 
globular fruits enclosed in an inflated bladder-like calyx and belong to the Solanaceae family 
[26]. The decoction of the entire plant is traditionally consumed by Malay communities in 
Peninsular Malaysia to treat cancer [27]. The plants have also been used to remedy 
headaches, earaches, fevers, ulcers, spleen disorder, wound pustule, intestinal pains, 
purgative, diuretic, gonorrhoea, as a tonic, and to restore flaccid breasts [26], [28–30].  

Sipahimalani et al. [31] initially reported the presence of physalin B in tissue culture systems, 
and were further investigated by Jualang et al. (2005) [25] to compare the production of 
physalin in cell cultures and intact plants. Physalin production in hairy-roots was also 
reported by Jualang et al. (2002) [24] and Jualang et al. (2013) [32]. Our continuous effort to 
study the enhancement of physalin production in cell cultures is further elaborated in this 
report. Plant cell cultures hold great promises for a controlled production of useful secondary 
metabolites on demand. Cell cultures are capable of producing specific bioactives at a rate 
similar or superior to that of intact plants under controlled conditions, independent of climatic 
changes and soil conditions, free from microbes and insects, and feasible for automated 
control of cell growth and regulation of metabolites to reduce labor costs and improve 
productivity [33–35]. Toward these, the primary task is to optimize cell sources (cells line) 
from specific explant and media compositions such as basal media, salts strength, carbon 
sources and plant growth regulators to enhance biomass yields and also to improve 
production of bioactive compounds [35]. Therefore, the objective of this work is to establish 
callus cultures from the leaf, stem and root explants of P. minima and to optimise their 
growth and physalin B production in callus cultures by manipulating the media components. 

2.0 MATERIALS AND METHODS 

2.1 Establishment of In-vitro Plant Cultures 

The mature seeds of P. minima obtained from plants growing wild in the vegetable farm at 
Universiti Putra Malaysia, Malaysia were sterilised by soaking them in 70% (v/v) of ethanol 
for 5 minutes and then agitated by dipping in 25% (v/v) of commercial Clorox® with 3 drops 
of Tween 20 for 30 minutes and finally, rinsed for five times with sterile distilled water. The 
surface-sterilised seeds were germinated at room temperature in the dark on petri dishes lined 
with sterile wet towel paper. The germinated seedlings were aseptically transferred into flasks 
containing MS basal medium [36] supplemented with B5 vitamins [37], 3% (w/v) of sucrose, 
1% (w/v) of casein hydrolysate and solidified with 0.25% (w/v) of Gelrite agar. The pH of 
the media was 5.7. The cultures were grown at 25 ± 2 °C with a photoperiod of 16 h 
fluorescent light and subcultured for every three weeks in medium containing 0.5 mg l-1 
BAP.  

2.2 Initiation of Callus 

Callus cultures were established from leaf, stem and root explants of three week old seedlings 
germinated in vitro. About 30 pieces of leaves (5x5 mm), stems (5 mm) and roots (10 mm) 
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were each subjected to 2,4-D (2.25 – 22.5 µM) and kinetin (0 – 9  µM) treatments on petri 
dishes containing MS salts, B5 vitamins, 3% (w/v) sucrose and 0.25% (w/v) Gelrite. The 
study was conducted in 7 replicates and cultures were grown at 25±2 0C with a photoperiod 
of 16 h with fluorescent light. Cultures were monitored daily to observe callus initiation. The 
percentage of callus induction (Cip) was observed after 3 weeks and measured according to 
Holme and Petersen [38]. Callus cultures were maintained in a fresh MS medium 
supplemented with 9.0:4.5 µM of 2,4-D: kinetin and subcultured for every 20 days. 

2.3 Growth Curves, the Cell Explant and Media Optimization 

The curves of growth and physalin B production in cells derived from leaf explant were 
monitored every 5 days for 35 days on a MS medium supplemented with 9.0:4.5 µM of 2,4-
D: kinetin. Callus growth and physalin B production were compared between the leaf, stem 
and root explants of similar culture conditions. To further optimise the production of physalin 
B, media compositions such as basal media and salt strength, carbon sources and plant 
growth regulators were subsequently determined. The four basal media tested were MS [36], 
B5 [37], SH [39] and WH [40]. Iron was supplied as FeNaEDTA. The best basal medium 
was further tested for different salts strength. The ¼, ½, 1, and 2 salts strength represents 
quarter, half, full (normal) and double strength of the salts concentration (macronutrients) 
from standard formulation of basal medium, respectively. Effect of sucrose (Merck) was 
determined at the concentrations between 2.0 to 3.5% (w/v). Optimum sucrose concentration 
was later compared with their monomers, glucose and fructose using a relatively similar 
carbon ratio. Auxins such as 2,4-dichlorophenoxyacetic acid (2,4-D), 1-naphthaleneacetic 
acid (NAA), 4-amino-2,5,6-trichloropicolinic acid (Picloram), and 2-metoxy-3,6-
dichlorobenzoic acid (Dicamba) were tested between 2.25 – 13.5 µM, and the best 
performance was further combined with 0 – 4.5 µM of 6-furfurylaminopurine (Kinetin), to 
optimize the callus biomass and physalin B production. All treatments were set-up in 
transparent glass tubes containing 10 mL basal medium at pH 5.7, supplemented with B5 
vitamins and solidified with 0.25% (w/v) Gelrite agar. A 0.5±0.1 g fresh weight calluses 
obtained from 20 days old culture was used as inoculum. The treatments in 7 replicates were 
incubated at 25 ± 2 0C with 16 hours of fluorescent light. 

2.4 Extraction Procedures and High Performance Liquid Chromatography Analysis 

Two-gram samples of dry powdered samples were extracted with methanol at room 
temperature under dark conditions. The crude methanolic extracts diluted with the same 
volume of distilled water were partitioned twice by hexane and chloroform. The chloroform 
partition was evaporated and dissolved in 65% (v/v) methanol (spectra grade) and finally 
filtered through a Sep-Pak Classic Cartridge (Waters Corp.; Milford, MA, USA) for analysis 
using high performance liquid chromatography (HPLC) [24]. HPLC was performed on a 
PerkinElmer Series 200 system equipped with Series 200 auto sampler, Series 200 column 
oven, PerkinElmer LC-250B pump and Series 200 UV/Vis detector. A 3.9 × 150 mm I.D. 
Nova Pak C18 60Å steel cartridge column, fitted at 4 µm (Waters Associates Inc.; Milford, 
MA, USA) containing dimethyloctadecylsilyl- bounded amorphous silica and methylalcohol 
was used as eluents in the mixtures of methanol-water (65:35, v/v) at a flow rate of 1.0 
mL.min-1. The mixtures consisted of methanol aqueous isocratic solvent (Uvasol, 
spectroscopy grade, Merck Group; Darmstadt, Germany) and double reverse-phase distilled 
water. Chromatogram of physalin B was detected at 220 nm and referred to as the authentic 
compound. 
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2.5 Statistical Analysis 

The results were analyzed using one-way analysis of variance and the mean values were 
compared at P < 0.05 via Duncan’s multiple range test (DMRT) to find the significant 
difference using the General Linear Model Procedure of the SAS version 9.1 (SAS Institute, 
NC, USA). 

3.0 RESULTS AND DISCUSSION 

3.1 Establishment of Callus Cultures 

Table 1 shows the initiation of callus from leaf, stem and root segments in different 
combinations of 2,4-D (2.25 to 22.5 µM) and kinetin (0 to 9.0 µM) on a MS basal medium. 
Treatment with 2,4-D alone is capable to induce callus  within 10-22 days for leaf; 10-23 
days for stem; and 13-21 days for root explants. The fastest callus induction (10-12 days) for 
all tested explants was observed in 22.5 µM of 2,4-D. The same concentration was required 
for higher Cip (41.5%) in leaf explant. However, stem (48.6%) and root (45.9%) explants 
produce higher Cip at concentrations of 13.5 and 18.0 µM 2,4-D, respectively. Meanwhile, 
the highest biomass dry wt. production for leaf (0.14 g per tube), stem (0.11 g per tube) and 
root (0.16 g per tube) explants were observed at 4.5 µM 2,4-D, respectively. Callus 
morphology obtained from 2,4-D treatments is commonly friable and yellowish in colour, 
except for the green-yellow colour in stem at 22.5 µM 2,4-D. 

The addition of kinetin in 2,4-D-containing treatment improved the Cip and callus growth, 
but appears to delay the callus formation, particularly at lower concentrations of 2,4-D 
combined with higher concentrations of kinetin. Cip and growth of the culture were reduced 
significantly in higher kinetin, (9.0 µM) concentration. The highest Cip (88.6-96.6%) and 
biomass dry wt. production (0.15-0.20 g per tube) for leaf, stem and root explants were 
observed at 9.00 µM 2,4-D and 4.50 µM kinetin combination, which gave better performance 
as compared to single 2,4-D and other 2,4-D – kinetin combinations. The time required for 
callus formation in this treatment was 12 days in leaf, 12 days in stem, and 15 days in root 
explant. The callus proliferated into an unorganised yellowish mass of cells with friable 
textures. Greenish or white friable callus derived from leaf and stem explants were also 
obtained in treatments with kinetin and lower concentration of 2,4-D (2.25-4.5 µM). 
However, higher concentrations of 2,4-D (22.5 µM) and kinetin (9.0 µM) combination tends 
to induce browning in all explants, which is in agreement with Murthy et al. [35]. Other 
PGRs such as 2,4-D (4.5 µM) and BA (4.4 µM), or NAA (2.7 µM), 2,4-D (2.3 µM) and BAP 
(2.2 µM) combinations have also successfully promoted callus induction in P. minima [31, 
41]. Both cytokinin and auxin play positive roles in regulating cell division, but the detailed 
mechanism is yet to be understood. However, both hormones can affect cell cycle 
progression into the S-phase through the cyclin-dependent kinase A/D-type cyclin (CYCD) 
pathway [42]. The specific response also depends on plant organ and the plant species due to 
its interaction between endogenous and exogenous hormones [35, 43]. 

3.2 Callus Growth and Physalin B Production Curves 

The growth and physalin B production curves of P. minima leaf-derived callus cultures are 
shown in Figure 1. The lag phase of the cultures is about 5 days before entering the 
exponential stage, where the cells actively proliferate and reach a stationary growth phase on 
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day 25. These values are within average values as reported in other plant species [44–45]. 
The biomass yield in the culture system is 0.23 g dry wt. per tube, i.e., an increase up to 7.6 
folds from the initial inoculums. The biosynthesis of physalin B is observed to be growth-
associated, which means that it is closely correlated to the increment of cell growth. An 
extensive physalin B biosynthesis started on day 10, where the cells were in it log or 
exponential growth phase and peaked (0.78 mg g-1 dry wt.) at initial stationary steady-state 
phase on day 25. This observation is consistent with the suggestion that plant secondary 
metabolites are produced at higher concentrations during the stationary phase [44]. 

Table 1: Effect of 2,4-D and kinetin on callus induction in different explants of P. minima 

 

 

 

Figure 1: Growth and physalin B production curves of leaf-derived callus grown on MS salts 
added with 2,4-D: kinetin (9.00:4.50 µM), 3% (w/v) sucrose and B5 vitamins. 

 

0

0.05

0.1

0.15

0.2

0.25

0.3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 5 10 15 20 25 30 35

D
ry

 w
t.

 (
g

)

Ph
ys

al
in

 B
 (

m
g/

g 
dr

y 
w

t.)

Time (days)

Physalin B

Dry wt.



            Journal of Advanced Research Design 
                                                                   ISSN (online): 2289-7984 | Vol. 6, No.1. Pages 21-36, 2015 

 
 

26 

 

Penerbit

Akademia Baru

3.3 Effect of Callus Explant on Growth and Physalin B Production 

The first step to enhance secondary metabolite production in cell cultures is by choosing the 
parent plants and specific organs that contain higher contents of the desired secondary 
metabolites for callus induction [34–35]. Hence, growth performance and physalin B 
production of leaf, stem and root-derived callus at the stationary growth phase were evaluated 
in this study (Figure 2). The callus growth performance of different explants was found to be 
insignificant and yielded 0.21 – 0.24 g dry wt. However, leaf-derived callus produced more 
physalin B (0.78 mg g-1 dry wt.) as compared to 0.71 (mg g-1 dry wt.) in stems and 0.64 (mg 
g-1 dry wt.) in roots.  This study is in agreement to Ramesha et al. [46] on the accumulation 
of camptothecin in different organs of Nothapodytes nimmoniana. Sivanandhan et al. [43] 
emphasized that the cell lines from different mother plants induced different biosynthetic 
activities and this may only be expressed in particular cell types within a specific plant organ 
or for certain time of the season. Biosynthesis of secondary metabolites in plants are 
restricted to several types of secretory structures, including translucent glands, dark glands or 
secretory canals that are mainly present in various tissues or may even be specific to certain 
tissues [47–48].  Hence, in general, organ cultures such as shoots/plantlets, and adventitious 
roots comparatively produce higher bioactive production than cell cultures [25]. 

 

Figure 2: Growth and physalin B production after 25 days in callus derived from leaf, stem 
and root explants grown on MS medium added with 2,4-D: kinetin (9.00:4.50 µM), 3% (w/v) 
sucrose and B5 vitamins. 
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3.4 Effect of Basal Media on Growth and Physalin B Production 

Figure 3 shows the growth performance and physalin B production in leaf derived-callus, 
cultured on MS, B5, SH and WH medium. The growth performance was found not 
significantly different after 25 d of cultures. However, physalin B production was observed 
higher in the MS medium (0.78 mg g-1 dry wt.) as compared to 0.43, 0.18 and 0.23 (mg g-1 
dry wt.) in B5, SH and WH media, respectively. Further analysis of different salts strength of 
MS medium (Figure 4) have shown that growth performance was best (0.22-0.23 g dry wt.) at 
½MS and full MS (1 MS), while growth on ¼MS and double MS (2 MS) are significantly 
lower (0.15 – 0.19 g dry wt.). Meanwhile, physalin B production is significantly increased in 
½MS (1.65 mg g-1 dry wt.) followed by ¼MS (1.10 mg g-1 dry wt.), 1 MS (0.78 mg g-1 dry 
wt.) and 2 MS (0.53 mg g-1 dry wt.). This is interpreted as an increment of 2.1 folds of 
physalin B production when MS salts (macronutrients) were reduced to half of the normal 
concentration, even if the growth performance was not affected. These results are in 
agreement with solasodine production of Solanum mauritianum [49] and Solanum aviculare 
[50] callus cultures. However, for compounds composing of similar structural framework, 
withanolide A, the production in W. somnifera preferred full-strength (1 MS) of MS medium 
[51]. 

   

 

Figure 3. Growth and physalin B productions after 25 days of leaf-derived callus cultured in 
different basal media added with 2,4-D: kinetin (9.00:4.50 µM) and 3% (w/v) sucrose. 
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role as counter-ions in the transport of ionized molecules, the osmotic regulation, and 
maintaining the electrochemical potential of plant cells. Nitrogen, phosphate and potassium, 
as well as the NH4+/NO3- ratio have been identified as main contributors [35, 52]. 
Therefore, it is important to find suitable nutrient compositions to support growth and 
secondary metabolite production. The appropriate concentration for the cells requires a fine-
tune because at lower concentrations, it may not be enough to support the cell metabolisms, 
while at higher concentrations it will become toxic and cause osmotic stress [35, 49, 51]. 

 

Figure 4. Growth and physalin B production after 25 days of leaf-derived callus cultured in 
different MS salts strength, added with 2,4-D: kinetin (9.00:4.50 µM), 3% (w/v) sucrose and 
B5 vitamins. 
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physalin B production in cultures supplemented with individual fructose or glucose indicates 
that callus cultures of P. minima prefers both fructose and glucose in the form of sucrose as a 
sole source of carbon for physalin B synthesis. These results are in agreement with 
Sivanandhan et al. [43] for withanolides, Karwasara and Dixit [44] for puerarin and Drewes 
et al. [49] for solasodine productions in cell cultures. Osmotic differences may also be an 
important factor that regulates the observed results. The osmotic effect should be higher in 
fructose or glucose treatments. Thus, medium supplemented with 2.5% (w/v) sucrose leads 
up to 24.1% physalin B content when compared to a mixture of 2.5% (w/v) fructose and 
2.5% (w/v) glucose. Osmotic changes in a medium caused by different carbon sources have 
also been reported to depress secondary metabolites production [35, 44]. 

 

Table 2: Growth performance and physalin B production after 25 days of leaf-derived callus 
cultured in different sucrose and its monomer concentrations. 

Carbon sources 
Concentration (%, 

w/v) 

Growth (g dry 

wt.) 

Specific physalin B content (mg g-1 dry 

wt.) 

Sucrose 

2.0 0.23 a 1.10 b 

2.5 0.23 a 1.75 a 

3.0 0.24 a 1.65 a 

3.5 0.23 a 1.35 ab 

Fructose 5.0 0.21 a 0.62 c 

Glucose 5.0 0.16 b 0.50 c 

Fructose + 

Glucose 
2.5 + 2.5 0.21 a 1.41 ab 

Note: The cultures were grown in ½MS basal medium added with 2,4-D: kinetin (9.0:4.5 µM) and B5 vitamins. In the same column, means 

denoted with the same letter are not significantly different at p<0.05 by DMRT (growth, n =7; physalin, n = 3). 

 

Generally, sucrose, glucose, fructose or a combination of any of them was frequently used to 
support growth and secondary metabolites of many plant cell culture systems. Sucrose is a 
balanced carbon source for cells by hydrolysis of invertase and sucrose synthase, and 
subsequently participates in glycolytic and pentose phosphate pathway. This means the 
exogenous supply of sucrose to plant cells is dramatically hydrolysed to glucose and fructose 
that are then taken up by an active or passive transport process and serve as carbon and 
energy sources [43]. Sucrose also affects the osmotic pressure of the medium, which 
stimulates mitochondrial activity and hence used for the formation of biomass, (by-) 
products, and energy generation [35, 51]. Due to the carbon sources used for both biomass 
formation and cells maintenance, the apparent yield of biomass and secondary metabolite 
production are diverse during a batch culture cycle. An important reason for this variation is 
the ability of plant cells to store a large part of the available carbon source, intracellular, 
mainly as starch and sucrose [35]. For this reason, in most cases, plant cell cultures prefer 
sucrose as the only sole carbon for both growth and secondary metabolite synthesis [35, 49, 
51].  
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3.6 Effects of Plant Growth Regulators on Growth and Physalin B Production  

From six different auxins tested, 2,4-D, picloram and dicamba at concentration of 4.5, 9.0, 
and 13.5 µM, respectively, produced higher callus biomass dry wt. (Table 3). Roots 
organogenesis was observed in cultures treated with IAA, NAA and IBA, especially when 
supplied at lower concentrations. The organogenesis development has been reported to 
disturb cell proliferation and reduce biomass production [35, 52]. Meanwhile, the response of 
those auxins is different for physalin B production. This observation supported the suggestion 
that the effect of natural or synthetic auxins are rarely specific in their ultimate influence on 
growth and development, and the responses of cells can vary with cultural conditions, type of 
explants and the genotypes used [35]. Physalin B production in 2.25 µM of 2,4-D (1.20 mg g-
1 dry wt.) and 4.5 µM of picloram (1.18 mg g-1 dry wt.) is significantly higher as compared 
to other treatments, which is in agreement with Kittipongpatana et al. [50] for solasodine 
production in callus cultures of Solanum aviculare. However, this finding is in disagreement 
with the biosynthesis of triterpenoids, steroids and sterols [53]. Generally, auxins are actively 
engaged in plant growth and development and its homeostasis in a cell is developed through 
accurate coordination of its metabolism, synthesis, conjugation, hydrolysis, oxidation and 
transport [35, 43, 48]. Auxins show the distinct effects on cell division, proliferation and 
further regeneration in plants and they act by inducing auxin-sensitive non-dividing cells, 
arrested in G, to re-enter S phase and mitosis. The timing of this process depends on the 
auxin type and the concentration applied [43]. The production of secondary metabolites is 
determined by cell proliferation and differentiation. Moreover, the level of secondary 
metabolites production and growth of cells that accumulated depend on the concentrations of 
plant growth regulators. High auxin concentration has been reported as detrimental to cell 
growth and withanolides production [43, 51, 54]. 

Physalin B production in culture supplemented with 9.0:4.5 µM of 2,4-D: kinetin is 
significantly higher than 2,4-D (2.25 µM) and picloram (4.5 µM) alone. Therefore, the 
response of kinetin (0 – 4.5 µM) to auxins-treated callus was further investigated. Auxin-
cytokinin interactions are usually considered as important for regulating growth by altering 
the cell division, promoting cells proliferation, and also the secondary metabolites 
biosynthesis [35, 43, 51]. The present study shown in Table 4 indicates that the kinetin 
combines with 2,4-D or picloram improved biomass production up to 1.4 – 2.8 folds. 
Physalin B production also increased significantly in 2,4-D added with kinetin, but not for 
picloram. The highest physalin B production was obtained in 2.25:2.25 µM of 2,4-D: kinetin 
(1.68 mg g-1 dry wt.). This proved that kinetin plays an important role in 2,4-D combination 
to regulate callus growth and physalin B production, which is in agreement to Nagella and 
Murthy [51] for the production of withanolide A in suspension cultures of W. somnifera. 
Sivanandhan et al. [43] stated that plant growth regulators in the medium produce free 
radicals and reactive oxygen species (ROS) due to decarboxylation of plant growth regulators 
and subsequently induce the cells or organs to enhance secondary metabolite production. 
Hence, the type of plant growth regulators and the concentration are often a crucial factor in 
secondary metabolites product accumulation. 

 

 



            Journal of Advanced Research Design 
                                                                   ISSN (online): 2289-7984 | Vol. 6, No.1. Pages 21-36, 2015 

 
 

31 

 

Penerbit

Akademia Baru

Table 3. Growth performance and physalin B production after 25 days of leaf-derived callus 
cultured in different auxins concentration on a ½MS medium added with 2.5% (w/v) sucrose 
and B5 vitamins. 

Auxins Concentration (µM) Growth (g dry wt.) Specific physalin B content (mg g-1 dry wt.) 

2,4-D 2.25 0.09 b 1.20 a 

 4.50 0.16 a 0.90 b 

 9.00 0.14 a 0.55 c 

 13.5 0.08 b 0.26 d 

IBA 2.25 0.03 c 0.10 d 

 4.50 0.05 c 0.11 d 

 9.00 0.07 b 0.23 d 

 13.5 0.07 b 0.04 e 

NAA 2.25 0.02 c 0.06 e 

 4.50 0.04 c 0.10 d 

 9.00 0.04 c 0.13 d 

 13.5 0.04 c 0.14 d 

Picloram 2.25 0.05 c 0.60 c 

 4.50 0.06 b 1.18 a 

 9.00 0.15 a 0.61 c 

 13.5 0.10 ab 0.38 cd 

IAA 2.25 0.03 c 0.23 d 

 4.50 0.04 c 0.39 cd 

 9.00 0.04 c 0.25 d 

 13.5 0.06 b 0.21 d 

Dicamba 2.25 0.06 b 0.43 cd 

 4.50 0.08 b 0.93 b 

 9.00 0.10 ab 0.73 bc 

 13.5 0.18 a 0.05 e 

Note: In the same column, means denoted with the same letter are not significantly different at p<0.05 by DMRT (growth, n =7; physalins, 

n = 3). Each tube contains 10 mL of basal medium. 

 

Table 4. Growth performance and physalin B production after 25 days of leaf-derived callus 
cultured in different combination of auxins and kinetin on a ½MS medium added with 2.5% 
(w/v) sucrose and B5 vitamins. 

Auxins Kinetin (µM) 
Growth (g dry 

wt.) 

Specific physalin B content (mg g-1 dry 

wt.) 

2,4-D (2.25 µM) 0 0.16 b 1.20 b 

 2.25 0.22 a 1.68 a 

 4.5 0.20 a 1.23 b 

Picloram (4.5 µM) 0 0.06 c 1.18 b 

 2.25 0.15 b 0.92 bc 

 4.5 0.17 b 0.52 c 

Control (2,4-D: kinetin (9.0:4.5µM)) 0.23 a 1.75 a 

Note: In the same column, means denoted with the same letter are not significantly different at p<0.05 by DMRT (growth, n =7; physalins, 

n = 3). Each tube contains 10 mL of basal medium. 
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4.0 CONCLUSION 

This study concludes that optimum growth and physalin B production of P. minima callus 
cultures have been obtained for callus derived from leaf; grown on half strength of MS salts 
(½MS) and supplemented with 2.5% (w/v) sucrose and 9.0:4.5 µM of 2,4-D: kinetin.  
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