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Abstract 
 

Over the last decade, various mobile robots have been developed and widely used in myriad sectors. 
However, the vast majority of mobile robots are manually designed where the designers must have the 
preliminary knowledge of the interaction between the robots with the environment. Additionally, the high 
complexity involved in the design of the kinematics and controllers of a mobile robot has always been the 
biggest challenge for the researchers and practitioners alike. Thus, the task of designing a robot can be 
considered very demanding and extremely challenging. In this research, an artificial evolution approach 
utilizing Single-Objective Evolutionary Algorithm (SOEA) and Multi-Objective Evolutionary Algorithm 
(MOEA) respectively are investigated in the automatic design and optimization of the morphology of a 
Six Articulated-Wheeled Robot (SAWR) with climbing ability. Results show that SOEA is able to 
produce optimized SAWR with climbing ability while MOEA is able to produce a set of Pareto optimal 
solutions which provide users with a choice of solutions for trade-off between the objectives of 
morphology size and climbing performance. The Pareto optimal set of solutions are the smallest SAWR 
with least climbing ability to biggest SAWR with the best climbing motion. The research continues by 
transferring the evolved solutions from simulation to the real world using 3D printing. The body, legs and 
wheels of the evolved robots are printed by a 3D printer and assembled with sensors, servos and motors 
for real world testing. Results show that the fabricated real world SAWRs are able to perform the 
climbing motion with the average accuracy of 85.8% in comparing to the performance in simulation. 

 

Keywords: Articulated-wheeled robot; evolutionary robotics; 3D printed robots; climbing robots;                   
hybrid mobile robots. 
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Abbreviations 
 
DOF : Degree of Freedom 
DC : Direct Current 
MEOA : Multi-objective Evolutionary Algorithm 
RPM : Rotation per Minute 
SAWR : Six Articulated-Wheeled Robot 
SOEA : Single-objective Evolutionary Algorithm 
 

1 Introduction  
 
Since the first implementation of mobile robots in World War II, mobile robotics has become an extremely 
popular research topic. Mobile robotics can be utilized in a wide range of applications. For example, service 
industry, military deployments, manufacturing, cleaning, entertainment and remote exploration, especially in 
search and rescue operations where human lives can be endangered. Mobile robot can be traditionally 
categorized into two categories which are wheeled and legged mobile robots. Wheeled robots have the 
characteristic that they can traverse a longer distance with a faster speed with their wheels than legged 
robots. Besides that, wheeled robots are more powerful in terms of load/weight ratio [1]. However, wheeled 
robots generally having difficulties when traversing over a rough terrain i.e. with obstacles, steps, 
discontinuous contact surface, among others. On the other hand, legged robots provide a flexible adaptive 
mobility in unstructured environment and a better performance while traversing over rough terrain. In terms 
of travelling speed and power efficiency, legged robots are still falling behind of wheeled robots 
achievement. 
 
A hybrid platform with the combination of leg and wheel has excellent maneuverability on flat ground and 
uneven terrain. Therefore, a hybrid platform is highly recommended for general indoor and outdoor 
environment operations as it is the trend for “future” mobile platforms [2]. In recent years, hybrid mobile 
robots have been designed for various functionality and purposes. For example, hybrid mobile robots 
designed for stairs climbing purposes, performing jumping behavior, in-situ reconfiguring robots posture and 
adapting to uneven terrain, among others. In general, hybrid mobile robots can carry out their mission better 
in rough terrain compared to traditional wheeled or legged mobile robots. Hybrid mobile robots utilize the 
advantages of both wheeled and legged mechanisms while compensating the downside of each other.  
 
There are many successful examples of hybrid mobile robots which are built and designed for wide range of 
operations [3-9]. A group of researchers from a few universities in Japan had developed a hybrid wheeled-
legged platform through a retracting mechanism inspired by the armadillo [10]. The idea of a retractable 
wheeled-legged module is that the specially-designed wheels can be transformed into a legs-like mechanism. 
Smith, Sharf and Trentini from McGill University proposed PAW, a four legs robot with wheels equipped at 
the end of each leg [11]. PAW is the first to combine wheeled mode locomotion with dynamically stable 
legged locomotion. The interested reader may refer to a more detailed review of hybrid mobile robots [12].  
 
Numerous types of hybrid mobile robots have been proposed and developed. However, as far as we aware, 
most of the hybrid mobile robots are manually designed where the designers must have the preliminary 
knowledge of the interaction between the robots with the environment. Besides that, the extremely 
complexity in the kinematic and controller designing of a hybrid mobile robot has always been the biggest 
challenge for the researchers. Planning is an important aspect of the effort to design robots that perform their 
task with some degree of flexibility and responsiveness to the environment [13]. According to Akerka, 
planning is a difficult problem for a number of reasons, not the least of which is the size of the space of 
possible sequences of moves [13]. Even a simple robot which can only move forward, backward, right or left 
has so many different ways that the robot can possibly move around in an environment. On the other hand, 
manually morphology designed on trial-and-error basis is not guaranteed to be optimal from the large design 
space [14]. Thus, the task of designing a robot can be considered demanding [15], especially in designing a 
hybrid mobile robot. Here raises the research question on the ability of obtaining an optimized morphology 
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of a climbing SAWR with evolution approach. The robot described in this paper is referred to as SAWR 
with the ability to climb over obstacles while travelling with wheeled locomotion.  
 
The use of artificial evolution for the automatic generation and synthesis of controllers and/or morphologies 
for robots is one of the more recent methods in developing robots [16-25]. By implementing evolutionary 
algorithms in designing a robot, an optimized controller and/or morphologies can be obtained where at 
times, these evolved solutions might be beyond the designers’ design capability. 
 
Successful examples of designing robots with artificial evolutionary approach, walking robots designed with 
evolutionary computation in optimizing the morphology and controller [26] and swarm robotics with their 
controllers designed by evolutionary algorithms with artificial neural networks [27]. Different from previous 
related researches, the morphology optimization of a climbing hybrid mobile robot, which is a six 
articulated-wheeled robot, is investigated in this research.  
 
In this research, an artificial evolution method with single-objective and multi-objective evolution algorithm 
is proposed to design and optimize the morphology of a six articulated-wheeled robot (SAWR) with 
climbing ability. Instead of stopping the research after obtaining results from simulation, evolved solutions 
from simulation are transferred intro real world SAWRs and their performance in real world environment are 
investigated. The contribution of this research is to open up the implementation of artificial evolution 
methods in designing robots to a new category where a climbing hybrid mobile robot is involved in this 
study. Besides that, the realization of simulation solutions to real world robots with 3D printing technology 
in this research is highly promising and can be applied in future related works. 
 
Section 2 describes the methodologies used in this research which includes the design of the SAWR with the 
climbing motion, evolutionary algorithms (SOEA and MOEA) and fabrication methodology. Section 3 
presents the experimental setup in this research which includes the evolution with SOEA and MOEA and 
real world testing for the fabricated SAWRs. Besides that, the results for all experiments are also presented 
in Section 3. Lastly, the conclusion and suggestion of future works are outlined in the last section, Section 4. 
 

2 Methodologies  
 
In this research, a Six Articulated-Wheeled Robot (SAWR) has been designed and served as test bed. The 
locomotion mechanism of the SAWR allows a traditional leg robot to overcome their complex and slow 
walking mechanism by attaching wheels at the end of each leg. On the other hand, articulated-wheel 
mechanism allowed a traditional wheeled robot to traverse through rough terrain and further enhance the 
robot with climbing capability. Thus, the SAWR in this research is designed to have the capability to 
perform climbing motion. 
 

2.1 SAWR and the Climbing Motion 
 
The SAWR has six one degree-of-freedom (DOF) legs and the range of each leg joint is 180 degrees. An 
active wheel is attached to each leg of the SAWR. The main traversing method of the SAWR is based on 
wheel locomotion. While with the support of legs, the robot can reconfigure itself to perform climbing 
motion in order to overcome obstacles. The SAWR is actuated with twelve independent actuators where six 
for the legs and six for the wheels. There are two sensors integrated to drive the SAWR autonomously 
especially in obstacle negotiation ability.  
 
Fig. 1 shows the front view and side of the SAWR. In the figure, s1 is representing the front sensor and s2 is 
representing the rear sensor. While b, l and w are the evolving parameters which are to be optimized in the 
evolution process in this research. The SAWR is designed to have the capability of climbing obstacles and 
steps in order to operate in a more complex environment. With two sensors and six active wheels where each 
are attached on one DOF legs, the SAWR can perform a sequence of reconfiguration motions to climb up 
and down from obstacles. 
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The original idea of the reconfiguration method for climbing upward and downward steps is obtained from 
Lu and Bu on their paper “Study on the Mobile Robot Reconfiguration Control Methods” [28]. They had 
proposed a series of reconfiguration method of a six legged-wheeled robot for ridges and channels 
negotiation. However, the reconfiguration method is enhanced in this research to sensors-based 
reconfiguration method. The robot with our proposed reconfiguration method can perform climbing motion 
autonomously based on the changes of values from the sensors onboard. 
 

 
Fig. 1. Morphology design of the SAWR 

 
The series of reconfiguration method of climbing upward step is shown in Fig. 2. Fig 2.1 shows the original 
marching position where the SAWR is moving forward. When the SAWR is approaching to obstacles, value 
from front sensor, s1 will be changed when the obstacle is detected by the sensor as shown in Fig. 2.2. The 
climbing reconfiguration method will be activated when obstacle is detected by sensor s1. Firstly, the SAWR 
will reconfigure itself as in Fig. 2.3 and continue move forward until the s1 sensor value is changed again as 
in Fig. 2.4. Then the SAWR is now ready to place both of the front legs down on the obstacle which can be 
seen in Fig. 2.5. After that, the SAWR will continue moving forward until the value of s2 sensor is changed 
as shown in Fig. 2.6. Then the SAWR will reconfigure itself by placing down the middle wheels on the 
obstacle as seen in Fig. 2.7. The SAWR will continue moving forward for a short duration and finally 
reconfigure itself back to the original marching position as shown in Fig. 2.8. 
 
Fig. 3.1 shows the original marching position where the SAWR is moving forward. By referring to the value 
changes of sensor s1, SAWR can determine a downward step is approaching as shown in Fig. 3.2. Firstly, 
the SAWR will reconfigure itself as in Fig. 3.3 and continue moving forward. The SAWR will move 
forward until the front wheels goes off from the step for a certain distance, this can be determined by 
referring to the value changes of s1 sensor as shown in Fig. 3.4. After that, the angle of the front leg will be 
adjusted as in Fig. 3.5 and the robot will continue moving forward. By inspecting the value changes of s2 as 
shown in Fig. 3.6, the SAWR can determine whether the middle wheels are going off from the step and 
ready to reconfigure itself as in Fig. 3.7. Lastly, the SAWR will put down the rear wheels onto the ground 
after moving forward for a short period and the robot is recovered to the original marching reconfiguration 
as shown in Fig. 3.8. 
 

 

 
                                                    (a) Front View of SAWR 

 
 

  

 b : Body length  

l : Leg length  
w : Wheel radius 
s1 : Front sensor 
s2 : Rare sensor 
   

                                         (b) Side View of SAWR 
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Fig. 2. Reconfiguration method of climbing upward step 
 

Thus, the controller design for the SAWR in this research is designed according to the climbing up and 
climbing down reconfiguration methods. The controller of SAWR is only designed to move forward and 
reconfiguration methods of climbing up or down will be triggered when approaching upward steps or 
downward steps while the controller for the climbing upward step and downward step is designed based on 
the reconfiguration methods described above.  
 

2.2 Evolutionary Algorithms 
 
In this research, two evolutionary algorithms had been proposed which is the evolution method with the 
integration of Single-Objective Evolutionary Algorithm (SOEA) and Multi-Objective Evolutionary 
Algorithm (MOEA). SOEA is able to produce fittest climbing SAWRs with optimized/minimized 
morphology while MOEA is able to produce Pareto-sets of optimal solutions which are different sizes of 
SAWRs with different achievement in performing climbing motion in the task environment. This can 
provide users a choice of solutions for trade-off between the two objectives which are the size of the SAWR 
and the ability in performing climbing motion. 
 
2.2.1 Single-objective evolutionary algorithm (SOEA) 
 
Fig. 4 shows the flowchart of the SOEA. The SOEA starts with initializing population with random 
parameters for the SAWR body length, leg length, and wheel radius. Then the individual will be simulated in 
simulation to perform climbing motion and the performance of the individual will be evaluated. A fitness 
score will be calculated based on a fitness function which will be described later. The fitness score will be 
compared with the parent’s fitness score. The parent will be abandoned and replace with the individual if the 
individual has better score than the parent. After that, parent will undergo mutation operation to produce 
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offspring for next generation if the maximum number of generation is not reached. New offspring will then 
be started again with the simulation to perform climbing motion and the process will repeat until the 
maximum number of generation is reached. 
 

 
 

Fig. 3. Reconfiguration method of climbing downward step 
 
Fitness function of the SOEA is shown in equation 1. The fitness function is designed as in the way that the 
lesser is the fitness score, the better it is. The first part of the fitness function is a direct addition of the 
SAWR body length with the SAWR leg length and the SAWR wheel radius to reflect the main objective of 
this research which is to obtain a smallest possible climbing SAWR. 
 

Fitness = (b + l + w) × (1 + d × 10) + (c ÷ mc)                                                     (1) 
 
b =  robot body length (mm); 
l =  robot leg length (mm); 
w =  robot wheel radius (mm); 
d =  robot final destination from target destination (m); 
c =  number of collision occurs during simulation; 
mc =  maximum number of collisions possible to occur during one simulation. 
 
Besides that, the capability of the SAWR to perform climbing motion is also an important criterion in 
determining the fitness of a robot as a small SAWR without the capability of climbing obstacle is not a 
desired solution. Thus, the second part of the fitness function is to ensure individuals with the capability to 
perform climbing motion must be credited with better score in comparing to smaller individuals without the 
climbing capability. This can be achieved by taking the distance of the individual final position from the 
goal destination to multiply with ten in order to increase the weight. Then the value will be added by one 
before multiplying with the first part of the fitness function which is the size of the SAWR.  
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The last part of the fitness function is to penalize individuals that have collision with the obstacles during the 
simulation. The total number of collisions occurs during the simulation is divided by the maximum number 
of collision that is possible to occur in a single run of simulation in order to scale the penalize score with the 
fitness function. The maximum number of collisions is obtained in a preliminary experiment where the 
SAWR is purposely set to collide with an obstacle throughout the run.  
 

 
 

Fig. 4. Flowchart of the SOEA 
 

Mutation is carried out after parent selection. The selected parent will undergo mutation operation in order to 
produce new offspring for next generation. In this research, a fixed, non-adaptive mutation operation is 
implemented. Mutation operation is an addition operation of the parent evolving parameters with Gaussian 
numbers (random numbers with mean of zero and standard deviation of one). Mutation operation will be 
done to the parent body length, parent leg length and parent wheel radius which are shown in Equations 2, 3 
and 4. 
 

Offspring Wheel Radius = PR + (G/3) × (Rmax - Rmin)                                                  (2) 
Offspring Leg Length= PL + (G/3) × (Lmax - Lmin)                                           (3) 
 
Offspring Body Length= PB + (G/3) × (Bmax - Bmin)                             (4) 
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G  =   Random Gaussian number; 
PR   =  Parent wheel radius; 
Rmax =  Maximum value of wheel radius (40 mm); 
Rmin  =  Minimum value of wheel radius (15 mm); 
PL  =  Parent Leg length; 
Lmax  =  Maximum value of leg length (100 mm); 
Lmin  =  Minimum value of leg length (35 mm); 
PB  =  Parent body length; 
Bmax  =  Maximum value of body size (350 mm); 
Bmin  =  Minimum value of body size (200 mm). 

 
2.2.2 Multi-objective evolutionary algorithm (MOEA) 
 
Multi-objective evolutionary algorithm (MOEA) is used to solve problems that involve optimizing multiple 
objective functions simultaneously. In this experiment, MOEA is implemented in attempting to produce a set 
of Pareto optimal solutions in a single run. In our case, the Pareto set optimal solutions are different sizes of 
SAWR with different achievement in performing climbing motion in the task environment. This can provide 
users a choice of solutions for trade-off between the two objectives which are the size of the SAWR and the 
ability in performing climbing motion. 
 
Fig. 5 shows the flowchart of the MOEA. The MOEA starts with initializing population with random 
parameters for the SAWR body length, leg length, and wheel radius. Then the individual will be simulated in 
Webots to perform climbing motion and the performance of the individual will be evaluated. There are two 
fitness functions in the MOEA which are the size fitness and performance fitness. Performance fitness will 
be scored by evaluating the performance of the individual in climbing obstacle while the size fitness will be 
scored based on the size of the morphology. 
 
After both of the fitness scores have been credited, the individual will be compared to each member from the 
archive. If the individual is non-dominated where either one of the fitness score is better, the archive will be 
updated by adding the individual as a new member and also removing all the other dominated solutions. A 
parent will be randomly selected from the archive if the maximum number of generation is not reached. 
Selected parent will undergo mutation operation to produce new offspring for next generation. New 
offspring will then be started again with the simulation to perform climbing motion and the process will 
repeat until the maximum number of generation is reached. 
 
In MOEA, distinct from SOEA, there are more than one fitness functions which are the objectives to be 
optimized simultaneously. In this research, there are two fitness functions in the MOEA which are the size 
fitness and performance fitness. Both of the fitness functions are designed as in the smallest is the value, the 
better is the score. 
 

Size Fitness = b + l + w                                                                                       (5) 
 

b  =  robot body length (mm); 
l  =  robot leg length (mm); 
w  =  robot wheel radius (mm). 
 

Performance Fitness = d2 + (c ÷ mc)                                                             (6) 
 

d  =  robot final destination from target destination (m); 
c  =  number of collision occurs during simulation; 
mc  =  maximum number of collisions possible to occur during one simulation. 
Equation 5 shows the first fitness function, size fitness. Size fitness is built up with the summation of three 
parameters which are the body length of SAWR, leg length of SAWR and wheel radius of SAWR. Thus, 
SAWR with bigger morphology will have higher value of fitness score which is poorer. On the other hand, 
smaller SAWR will be credited better fitness score which is score with lower value. 
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Fig. 5. Flowchart of the MOEA 
 
While for the second fitness function, the fitness score of the performance of the robot during the simulation 
will be evaluated. The main factor of the performance fitness is the evaluation of the travelled distance of 
each individual from the origin to the goal destination. The final distance of the individual from the goal 
destination is squared in order to increase the weight in the fitness function. Thus, the individual with shorter 
travelled distance will be severely penalized while successful individual that reaches goal will be greatly 
rewarded. The second part of the performance fitness is to penalize individuals that have collision with the 
obstacles during the simulation. The total number of collisions occurs during the simulation is divided by the 
maximum number of collision that is possible to occur in a single run of simulation in order to scale the 
penalize score with the fitness function. The mutation operation of the MOEA is similar with mutation 
operation of SOEA which has been described earlier. 
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2.3 Fabrication Methodology 
 
One of the critical issue in evolutionary robotics is to transfer the simulation results into real world. High 
cost and long turnaround time of fabricating the robot parts are hindering researchers in transferring the 
simulation results into real world. In this research, a recent technology is accessed in fabricating the robot 
parts, which is by 3D printing technology. Fabrication cost of fabricating robots is considered high as the 
cost of manufacturing robots has to be absorbed in mass production [29]. Fabrication cost can be reduced 
with 3D printing as parts of the selected results to be fabricated with different sizes can be easily obtained by 
3D printing. 
 
2.3.1 3D printing technology 
 
3D printing is a process of making three dimensional solid objects from a digital file. 3D printing may 
referred as Additive Manufacturing (AM). The creation of a 3D printed object is achieved using additive 
processes. In an additive process an object is created by laying down successive layers of material until the 
entire object is created. Each of these layers can be seen as a thinly sliced horizontal cross-section of the 
eventual object [30]. Difference from traditional ink-printing technology, 3D printing is capable to be done 
with a variety of materials. For example: plastics, glass, metal, polymers, wax, edible food, human tissue, 
sand & glue mixes, etc. 3D printing technology has been widely used in a lot of applications such as: design 
visualization, prototyping/computer-aided-design (CAD), architecture, metal casting, manufacturing, 
healthcare, entertainment and etc. 
 
2.3.2 STL file generation for robot parts 
 
Most of the available 3D printers required 3D model file in STL format to perform printing. Thus, robot 
parts that are needed to be fabricated have to be modeled and saved in STL file. There are three main parts of 
the robots that are needed to be fabricated by 3D printers which are the body, legs and wheels. A program 
has been designed in order to generate the STL file for 3D model of robot parts automatically.  
 
Fig. 6 shows the examples of printable 3D models generated for robot parts. The 3D models generated are 
according to the defined input parameters with sockets which are ready to assemble with servos and sensors. 
Fig. 7 shows the printed robot parts. 
 
2.3.3 Electronic components of real world SAWRs 
 
The designed SAWR in this research consists of three main electronic components which are the sensors, 
servos and DC geared motors. Two sensors are installed in the real world SAWR where one is placed in the 
front as s1 in Fig. 1b and the other one is placed in the rear bottom as s2 in Fig. 1b. Servos are installed in 
SAWR in order to control the angle of legs while DC geared motors are installed in driving the SAWR to 
move forward.  
 
There are two different sensors that have been chosen for the front sensor and rear sensor due to the 
difference in requirement of the measurement distance requirement for both sensors. The front sensor 
requires a longer distance for the maximum measurement distance while the back sensor requires a shorter 
distance for the minimum measurement distance. Therefore, the selected sensor for the front sensor is an 
infrared sensor with 4-30 cm sensing range and another infrared sensor with 2-8 cm sensing range for the 
rear sensor.  
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(a) Robot body 

 

 
(b) Robot leg 

 
(c) Robot wheel rim 

 

Fig. 6. 3D models generated for robot parts 
  

 
(a) Printed robot body 

 

 
(b) Printed robot legs 

 

 
(c)Printed robot wheels 

 

Fig. 7. Printed robot parts 
 

On the other hand, the selection of servos and DC geared motors are based on the torque required to drive 
the SAWRs. The maximum weight for the biggest possible evolved SAWR is first calculated, which is      
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950 g. After the consideration of the longest possible evolved leg which is 10 cm, the minimum torque 
required for servos is 9.5 kg/cm. Therefore, a servo with 180 degree rotational angle and torque of 17 kg/cm 
is selected.  
 
Since the original marching position of the SAWR is driven by six DC geared motors, the weight of the 
SAWR will be shared by all the motors. However, there are cases that the SAWR is moving forward with 
only four wheels during the climbing reconfiguration method. The total weight of the SAWR then is only 
divided by four and shared by four DC geared motors. Therefore, the minimum requirement of torque for 
each DC geared motor is 950 g divided by four, which is 0.238 kg. With the consideration of the largest 
possible evolved wheel radius, which is 40mm, the minimum torque required for each DC geared motor is 
1.0 kg/cm. Thus, the selected DC geared motor for the SAWR is 1.8 kg/cm in torque and 45 RPM in 
rotational speed.  
 

3 Experiment Setup and Results 
 
3.1 Task Environment and Simulation Parameters Setup 
 
Simulations of this research have been carried out with the Webots simulation software. Webots is a high 
fidelity physical-based robot simulation tool used to model, program and simulate mobile robots. Fig. 8 
shows the task environment for this research. As can be seen from Fig. 8, the task environment is a multi-
step environment. The first step is 50 mm in height, the stairs-like step is 55mm in height and the last step is 
80 mm in height. The task for the robot in the environment is to travel from origin to goal by climbing over 
all the obstacles. 
 
Each experiment is conducted with five runs in order to determine the efficiency of the algorithm in 
obtaining the optimized morphology of a climbing SAWR. Individuals are given 60 seconds to simulate for 
the simulation in multi-steps environment where the amount of time is obtained from preliminary 
experiments. The maximum number of generation for all experiments are 500 as preliminary experiments 
showed that optimized solutions are able to be obtained within 500 generations. Last but not least, the 
population size for each generation is one where one parent will produce one offspring for next generation. 
The summary of the simulation parameters setup are shown in Table 1. 
 

Besides the setup for the simulation parameters, the parameter of the evolving objects has to be set too which 
is the maximum value and minimum value for each evolving object. The evolving objects parameter setup is 
presented in Table 2. The minimum value set for wheel radius is 15 mm, leg length is 35 mm and body 
length is 200 mm. All these values are chosen as these are the minimum values for the parts to be fabricated 
with 3D printer later. While the maximum value for wheel radius is 40 mm, leg length is 100 mm and body 
length is 350 mm. The maximum values are chosen with the consideration of measurement for the highest 
step in the task environment. 
 

Table 1. Summary of simulation parameters setup 
 

Parameter Values 
Runs 5 
Simulation time (seconds) 60 
Maximum number of generation 500 
Population size 1 

 
Table 2. Evolving objects parameter setup 

 
Object Wheel radius Leg length Body length 
Minimum (mm) 15 35 200 
Maximum (mm) 40 100 350 
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Fig. 8. Multi-steps task environment 
 

3.2 Simulation Results 
 
3.2.1 SOEA results 
 
The results for the five runs of experiments with SOEA are shown in Table 3. From the results, each run of 
the experiment with SOEA is able to produce a climbing SAWR with optimized morphology. As can be 
seen from Table 3, solutions from the five runs of SOEA are approaching to optimum solutions as the fitness 
scores of the optimized solutions are closed to each other. Fig. 9 shows the optimized solutions which are 
climbing SAWRs with optimized morphology in simulation software. Fig. 10 shows the fitness score of 
fittest individual over generations for five runs of SOEA experiments.  

 

 
(a) Run 1 

 
(b) Run 2 

 
(c) Run3 

 
(d) Run4 

 
(e) Run 5 

 
Fig. 9. Optimized solutions for each run in simulation software 
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Table 3. Optimized solutions for five runs of SOEA 
 

 Run 1 Run 2 Run 3 Run 4 Run 5 
Fitness score 0.298 0.299 0.298 0.292 0.305 
Body length (mm) 206 200 209 200 216 
Leg length (mm) 52 64 49 54 57 
Wheel radius (mm) 40 35 40 38 32 
Distance from goal 0 0 0 0 0 
Collisions  0 0 0 0 0 

 

 
 

Fig. 10. Fitness scores vs. generation for five runs 
 
3.2.2 MOEA results 
 
From the experiments, each run of MOEA is able to produce a set of Pareto optimal solutions. In this paper, 
the result presentation is only presented for one run of MOEA experiment. The graph of the Pareto-set 
optimal solutions is presented in Fig. 11. The graph of Pareto-set optimal solutions is divided into few 
regions based on the achievement of the individual SAWR. For example, solutions in region one have the 
worst performance where they are not able to perform any climbing motion while solutions in region four 
are the best in performance fitness where they can complete the task environment by climbing all the steps. 
One solution from each region is selected for presentation. Detailed descriptions for each selected optimal 
solution are presented in Table 4. Fig. 12 shows the selected solutions of the Pareto set of optimal solutions 
in simulation. 
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Table 4. Detailed description of selected solutions from Pareto-set optimal solutions 
 

 Solution a Solution b Solution c Solution d 
Size fitness 0.25 0.257 0.264 0.312 
Body length (mm) 200 200 200 215 
Leg length (mm) 35 37 41 65 
Wheel radius (mm) 15 20 23 32 
Performance fitness 25.16 13.65 1.72 0 
Distance from goal 5.015912 3.693954 1.310031 0 
Collisions 0 0 0 0 

 

 
 

Fig. 11. Pareto-set optimal solutions 
 

3.3 Fabricated Real World SAWRs 
 
For the fabrication, an optimized solution from SOEA experiment and selected solutions from a Pareto-set 
optimal solution of MOEA experiment are chosen. In this research, optimized solution from Run 5 of SOEA 
and selected solutions from Pareto-set optimal solutions of MOEA which are Solution a, Solution b, 
Solution c and Solution d that are presented in previous section are selected to be fabricated. Fig. 13 shows 
the fabricated real world SAWRs based on the selected optimal solutions from SOEA and MOEA. 
 

3.4 Real World Testing of Fabricated SAWRs 
 
The accuracy of the fabricated real world SAWRs in comparing to the SAWRs in simulation are rated based 
on the performance of the fabricated real world SAWRS in performing climbing motion in real world 
environment. The accuracy is evaluated based on formula shown in equation 7. Since the main objective of 
this research is to obtain an optimized SAWR with climbing ability, thus higher percentage which is 70% of 
the accuracy is credited based on the climbing ability. While the remaining 30% is credited based on the 
overall performance evaluation of the fabricated real world SAWRs in performing the climbing motion and 
interacting with the environment.  
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(a) Solution a 

 
(b) Solution b 

 
(c) Solution c  

 
(d) Solution d 

  

Fig. 12. Selected solutions of pareto-set optimal solutions in simulation software 
 

 
(a) SOEA Run 5 

 
(b) MOEA Solution a 

 
(c) MOEA Solution b 

 
(d) MOEA Solution c 

 
(e) MOEA Solution d 

 
Fig. 13. Fabricated real world SAWRs 
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Accuracy = Climbing Ability (70%) +   Overall Performance (30%)                                   (7) 
 

Fig. 14 shows the example of fabricated real world SAWR (SOEA Run 5) performs climbing motion over 
stair-like steps. From the figure, fabricated real world SAWR is able to perform climbing motion over stair-
like steps as how the SAWR performs climbing motion in simulation.  

 
 

 
 

 
Fig. 14. Fabricated real world SAWR performing climbing motion 

 
Table 5 shows the accuracy of all the fabricated real world SAWRs compared to SAWRs in simulation. The 
accuracy calculation is based on Equation 7 which has been explained previously. From the results, each 
fabricated real world SAWR is able to climb over the obstacles that it is managed to climb over in the 
simulation. All the obstacles designed in the real world task environment are exactly the same in height with 
all the obstacles in the simulation task environment. Therefore, the climbing ability for all the fabricated real 
world SAWRs are credited with full score. For the overall performance, each fabricated real world SAWR is 
credited based on the degree of defect during the climbing performance. In general, defects of the climbing 
performance are caused by the distortion of direction of the fabricated real world SAWRs during the 
operation in real world environment. In the simulation, all the SAWRs are able to march forward in a 
straight line after performing climbing motion. The defection is speculated as the servos of fabricated real 
world SAWRs are not turning synchronously as in simulation. 
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Table 5. Accuracy of fabricated real world SAWRs compared to SAWRs in simulation 
 
SAWR Climbing ability (70%) Overall performance (30%) Accuracy (100%) 
SOEA run 5 70% 20% 90% 
MOEA solution a 70% 25% 95% 
MOEA solution b 70% 20% 90% 
MOEA solution c 70% 15% 85% 
MOEA solution d 70% 10% 80% 

 

4 Conclusions 
 
In this research, an artificial evolution method in designing and optimizing the morphology of a climbing 
SAWR has been proposed. Results show that the proposed evolution with SOEA in this research is able to 
produce climbing SAWRs with optimized which is smallest possible morphology. On the other hand, the 
proposed evolution with MOEA is able to produce a Pareto-set of optimal solutions which are different sizes 
of SAWR with different levels of achievement in performing the climbing motion. The optimal solutions 
obtained from the evolution are then transferred into real world SAWRs with 3D printing technology. 
Fabricated SAWRs are then assembled with servos and sensors and the ability of each fabricated real world 
SAWR in performing climbing motion is evaluated. Results show that overall accuracy of the fabricated real 
world SAWRs in comparing to the evolved solutions in simulation is rated at 85.8%. All the fabricated real 
world SAWRs are able to complete the task environment which are the climbing motion that is designed in 
the simulation.  
 
With the results finding from this research, future work should be focusing on looking for more opportunity 
to apply artificial evolution method in designing robots. Results from this research are again proven that 
artificial evolution method is able to help human designers in designing and optimizing morphology of 
robots. The artificial evolution method is not only limited in designing and optimizing the morphology of 
robots, future work can be done in co-evolving the morphology as well as the controller of the robots for a 
comprehensive evolution process. Besides that, investigation can be done on releasing the constraints of 
current research by evolving more objects. In this research, the evolution is only done on three objects which 
are the length of robot body, length of robot legs and radius of robot wheels. Suggested objects that can be 
involved in the evolution of future work are the coordinate of sensors and legs placement. The placement of 
sensors and legs in current research are fixed. Evolving the placement of sensors and legs is foreseen to 
produce different and might be better optimized solutions. On the other hand, the task environment for the 
evolution process can be further improved to a more challenging environment in the future work; which may 
include uneven terrain and steps. Last but not least, realization of real world robots from evolved solutions 
using 3D printing has been proven workable. In this research, selected evolved solutions are successfully 
fabricated into real world SAWRs by 3D printing technology with minimum fabrication cost and turnaround 
time. Therefore, the methodology of robot fabrication with 3D printing technology can be used or referred in 
the future. 
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