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F. Bani-Ahmad

Department of Mathematics
Faculty of Science
Hashemite University
13115 Zarqa
Jordan

A.K. Alomari1

Department of Mathematics
Faculty of Science
Yarmouk University
211-63 Irbid
Jordan

A. Sami Bataineh

Department of Mathematics
Faculty of Science
Al-Balqa’ Applied University
19117 Al Salt
Jordan

J. Sulaiman

School of Science and Technology
Universiti Malaysia Sabah
88400 Kota Kinabalu, Sabah
Malaysia

I. Hashim

School of Mathematical Sciences
Universiti Kebangsaan Malaysia
43600 Bangi Selangor
Malaysia

Abstract. In this article, a general framework for solving system of ordinary differential
equations by implementing a relatively new numerical technique called the Legendre
operational matrix of differentiation is presented for the first time. This method can be
an effective procedure to obtain analytic and approximate solutions for different systems
of ordinary differential equations. Different from other numerical techniques, shifted
Legendre polynomials and their properties are employed for deriving a general procedure
for forming this matrix. Comparisons are made between approximate solutions, exact
solutions and numerical ones for several examples. Moreover, estimate error for the
given algorithm is presented.

1Corresponding author. Email: abdomari2008@yahoo.com



484 f.bani-ahmad, a.k.alomari, a.s.bataineh, j.sulaiman, i.hashim

Keywords: Legendre polynomials; Operational matrix of differentiation; System of
ordinary differential equations.

1. Introduction

Many real life phenomena can be modelled by systems of ordinary differential
equations (ODEs). For example, mathematical models of series of circuits and
mechanical systems involving several springs attached in series can lead to a sys-
tem of differential equations. Moreover, such systems are often encountered in
chemical, ecological, biological, and engineering applications [13]. Many phenom-
ena in chemical kinetics and engineering are modelled by stiff systems [7]. Stiff
problems pose special computational difficulties because explicit numerical meth-
ods cannot solve these problems without severe limitations on the step size [2].
In control theory, system of ODEs can also exhibit chaotic behaviours [11, 10].
As is well-known, a chaotic system is a nonlinear deterministic system having
complex and unpredictable behavior and exhibits sensitive dependence on initial
conditions. One such system is the so-called Genesio system [6]. It is one of the
paradigms of chaos since it captures many features of chaotic systems.

A system of ODEs can be expressed in the form:

y′i = fi(t, y1, . . . , yn), yi(t0) = y0,i, i = 1, 2, . . . , n,(1.1)

where fi are (linear or non-linear) real-valued functions, t0 and y0,i are real num-
bers. By a change of independent variable t → t + t0, systems of the form (1.1)
can always be translated to the origin, and so in this paper, we focus on finding
approximate solution to equations of the form

y′i = fi(t, y1, . . . , yn), yi(0) = y0,i, i = 1, 2, . . . , n.(1.2)

Various numerical integration algorithms (for example, Runge-Kutta algorithms)
for approximating solutions of the above of systems (1.2) have been presented in
the literature. However, these algorithms offer approximate solutions at discrete
points only thereby making it impossible to get continuous solutions. Approximate
analytic solutions of certain classes of systems of ODEs have been given in [8], [2].

Legendre operational matrix of differentiation (LOMD), first proposed by
Saadatmandi and Dehghan [12], is a powerful method for solving linear and non-
linear problems. They extended the application of Legendre polynomials to solve
fractional differential equations. Pandey et al. [9] employed LOMD to solve Lane-
Emden type equations. Recently, the method was applied for several modeled
[1], [3]. Different from the Taylor series the Legender series approximation can
update the all the previous coefficients when the new term is added. Moreover,
the Legender approximation is more rapidly than the Taylor approximation with
order of convergent 1/n! [5]. That leads to give more accurate solution. To the
best of the authors’ knowledge, the present work demonstrates for the first time
the applicability of LOMD for obtaining the approximate analytic solutions of the
system of the form (1.2). A general framework for solving system of ODEs via
LOMD is presented. Several examples are studied to demonstrate the accuracy
of the method.
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2. Legendre polynomials and operational matrix of differentiation

The mth-order Legendre polynomials, Lm(z), on the interval [−1, 1] are defined as

L0(z) = 1,

L1(z) = z,

Lm+1(z) =
2m + 1

m + 1
z Lm(z)− m

m + 1
z Lm−1(z), m = 1, 2, . . . .

These polynomials on the interval z ∈ [0, 1], so-called shifted Legendre poly-
nomials, can be defined by introducing the change of variable z = 2t − 1. The
shifted Legendre polynomials Lm(2t− 1) denoted by Pm(t) can be obtained as

Pm+1(t) =
(2m + 1)(2t− 1)

(m + 1)
Pm(t)− m

m + 1
Pm−1(t), m = 1, 2, . . . ,

where P0(t) = 1 and P1(t) = 2t − 1. The analytic form of the shifted Legendre
polynomial Pm(t) of degree m is given by

Pm(t) =
m∑

i=1

(−1)m+i (m + i) ! ti

(m− i) (i !)2
.(2.1)

Note that Pm(0) = (−1)m and Pm(1) = 1 satisfy the orthogonality condition

1∫

0

Pm(t)Pj(t) dt =

{
1

2m+1
for m = j,

0 for m 6= j.

A function y(t) square integrable in [0, 1], may be expressed in terms of shifted
Legendre polynomials as

y(t) =
∞∑

j=0

cjPj(t),(2.2)

where the coefficients cj are given by cj = (2j + 1)
1∫
0

y(t)Pj(t) dt, j = 1, 2, . . . .

In practice, we consider the (m+1)-term shifted Legendre polynomial so that

y(t) =
m∑

j=0

cjPj(t) = CTφ(t),(2.3)

where the shifted Legendre coefficient vector C and the shifted Legendre vector
φ(t) are given by

CT = [c0, c1, . . . , cm], φ(t) = [P0(t), P1(t), . . . , Pm(t)]T.

The derivative of the vector φ(t) can be expressed as

dφ(t)

dt
= D1φ(t),

d2φ(t)

dt2
= (D1)2φ(t), . . . ,

dnφ(t)

dtn
= (D1)nφ(t),(2.4)



486 f.bani-ahmad, a.k.alomari, a.s.bataineh, j.sulaiman, i.hashim

where D1 is the (m + 1) × (m + 1) operational matrix of derivative. A general
method of constructing such operational matrix of derivative could be presented
as follows:

1. Differentiate analytically some polynomials of first degree.
2. Express these derivatives as a linear combination of polynomials of lower degree.
3. Find a general formula.

Now, the general formula of the operational matrix of derivative D1 is given by

D1 = (dij) =





2(2j + 1), for j = i− k,

{
k = 1, 3, . . . , m, if m odd,
k = 1, 3, . . . , m− 1, if m even,

0 Otherwise.

For example, for odd m we have




0 0 0 0 . . . 0 0 0
2 0 0 0 . . . 0 0 0
0 6 0 0 . . . 0 0 0
...

...
...

...
...

...
...

...
2 0 10 0 . . . (2m− 3) 0 0
0 6 0 14 . . . 0 (2m− 1) 0




.(2.5)

3. Applications of the operational matrix of derivative

To solve (1.2) by means of the operational matrix of derivative [12, 4], we appro-
ximate (yi(t))

m and gi(t) by the shifted Legendre Polynomials as

(yi(t))
m ' (

CT
i φ(t)

)m
,(3.1)

gi(t) ' GT
i φ(t),(3.2)

where the vector GT = [g0(t), . . . , gm(x)]T represents the non-homogenous term.
By using equations (2.4), (3.1) and (3.2) we have

y′i(t) ' CT
i (D1)φ(t).(3.3)

Employing equation (3.1), the residual <(x) for equation (1.2) can be written as

<(t) ' CT
i (D1)φ(t)− f(t, CT

1 φ(t), . . . , CT
mφ(t))−GT

i φ(t).(3.4)

Now, to find the solution yi(t) given in equation (2.3), we first collocate equation
(3.4) at m points. For suitable collocation points we use the first m shifted Le-
gendre roots of Pm+1(x). These equations together with initial condition generate
(m+1) nonlinear equations which can be solved using Newton’s iterative method.
Consequently, yi(t) given in equation (2.3) can be calculated.
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3.1. Error estimate

In this section, we give an error estimate for the LOM solution. Firstly, we define
the exact and the approximate solution yi, ȳi respectively, and the error ei = yi−ȳi.
The residual error of the approximate solution given by

Ri = ȳi
′ − fi(t, ȳ1, ȳ2, . . . ȳn).(3.5)

If Ri = 0, then the solution is exact; else, taking (1.2)–(3.5) yields

e′i − fi(t, y1, y2, . . . yn) + fi(t, ȳ1, ȳ2, . . . ȳn) + Ri = 0,

which is differential equation with initial conditions yi(0) = 0 for i = 1, 2, . . . , n.

4. Numerical experiments

We demonstrate the efficiency of the present method through some illustrative
examples.

4.1. Example 1

Let us consider the following linear system of ODEs [8]:

y′1(t) = y1(t) + y2(t),(4.1)

y′2(t) = −y1(t) + y2(t),(4.2)

with initial condition

y1(0) = 0, y2(0) = 1.(4.3)

The exact solution is y1(t) = et sin(x), y2(t) = et cos(x).
First, we consider the solution of the form

y1(t) = CT
1 φ(t),(4.4)

y2(t) = CT
2 φ(t).(4.5)

Thus, the solution will be in the form

y1(t) = c0 P0(t) + c1 P1(t) + . . . + cm Pm(t) = CT
1 φ(t),(4.6)

y2(t) = h0 P0(t) + h1 P1(t) + . . . + hm Pm(t) = CT
2 φ(t).(4.7)

By applying the initial conditions, we have

c0 − c1 + . . . + cm = 1

h0 − h1 + . . . + cm = 0.

The residual error of the solution can be written as

<1 = CT
1 D1φ(t)− CT

1 φ(t)− CT
2 φ(t),(4.8)

<2 = CT
2 D1φ(t) + CT

1 φ(t)− CT
2 φ(t).(4.9)
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Now, taking the first m roots of m + 1 shifted Legendre polynomials and substi-
tuted in (4.8) and (4.9) which equal to zero. By this way, we can have 2m + 2
algebraic equations with 2m+2 constants which can be easily solved by Newton’s
iterative method. By taking m = 6, the values of C1 and C2 are

C1 =




0.9093308
1.134074
0.2363245

0.9902234× 10−2

−0.1957476× 10−2

−0.2967196× 10−3

−0.1815798× 10−4




, C2 =




1.378024
0.2720071
−0.1402875
−0.03758258

−0.3404238× 10−2

−0.8353643× 10−4

0.8351776× 10−5




.(4.10)

The computed and exact solutions for the case m = 6 are plotted on the same
graph in Figure 1.
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Figure 1: The LOMD solution with the exact one for Example 1 with m = 6.

Moreover, the absolute errors between the exact solution and the present ones
for m = 6 and m = 8 are given in Figure 2.

Clearly, the figure shows that increasing m decreases the absolute errors. The
estimate error can be given as

e′1 − e1 − e2 + R1 = 0,(4.11)

e′2 + e1 − e2 + R2 = 0.(4.12)

Subject to the initial conditions e1(0) = 0, e2(0) = 0.
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Figure 2: The absolute errors between the LOMD solutions and exact one for
Example 1.

4.2. Example 2

Consider the nonlinear stiff system of ODE [2]

y′1(t) = −1002y1(t) + 1000y2
2(t),(4.13)

y′2(t) = y1(t)− y2(t)− y2
2(t),(4.14)

subject to the initial conditions

y1(0) = 1, y2(0) = 1.(4.15)

The exact solution is

y1(t) = e−2t, y2(t) = e−t.

By assuming the solution of the form

y1(t) = c0 P0(t) + c1 P1(t) + . . . + cm Pm(t) = CT
1 φ(t),(4.16)

y2(t) = h0 P0(t) + h1 P1(t) + . . . + hm Pm(t) = CT
2 φ(t),(4.17)

and applying the initial conditions, we have

c0 − c1 + . . . + cm = 1

h0 − h1 + . . . + cm = 0.
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The residual errors are

<1 = CT
1 D1φ(t) + 1002CT

1 φ(t)− 1000(CT
2 φ(t))2,(4.18)

<2 = CT
2 D1φ(t)− CT

1 φ(t) + CT
2 φ(t) + (CT

2 φ(t))2.(4.19)

Using the same manner as in the previous example, we can create 2m+2 algebraic
equation with 2m + 2 constant, which can be easily solved via Newton’s iterative
method. By taking m = 8, the value of CT

1 and CT
2 are

C1 =




0.4323324
−0.4060059
0.1316326
−0.02591911

0.3665828× 10−2

−0.4044962× 10−3

0.3663535× 10−4

−0.2858631× 10−5

0.2868407× 10−6




, C2 =




0.6321206
−0.3109150
0.05145307

−0.5125022× 10−2

0.3650665× 10−3

−0.2024552× 10−4

0.1016656× 10−5

−0.3359670× 10−7

0.1173426× 10−8




.(4.20)

The given solution with exact one are presented in Figure 3. Moreover, the
absolute errors between the exact solution and the present one for m = 6 and
m = 8 are given in Figure 4. The estimate error equations given as

e′1 + 1002e1 − 1000(e2
2 + 2e2ȳ2) + R1 = 0(4.21)

e′2 − e1 + e2 + e2
2 + 2e2ȳ2 + R2 = 0(4.22)
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Figure 3: The LOMD solution with exact one for Example 2 with m = 8.
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Figure 4: The absolute error between the LOMD solution and exact one for
Example 2.

4.3. Example 3

Finally, we consider the nonlinear Genesio system [2]

y′1(t) = y2(t),(4.23)

y′2(t) = y3(t),(4.24)

y′3(t) = −cy1(t)− by2(t)− ay3(t) + y1(t)
2,(4.25)

subject to the initial conditions

y1(0) = 0.2 y2(0) = −0.3, y3(0) = 0.1,(4.26)

where a, b and c are positive constants, satisfying ab < c. The Genesio system
includes a simple square part and three simple ordinary differential equations that
depend on three positive real parameters [2].

According to the framework of the LOMD, the solution can be expanded as
series of shifted Legendre polynomials

y1(t) = c0 P0(t) + c1 P1(t) + . . . + cm Pm(t) = CT
1 φ(t),(4.27)

y2(t) = h0 P0(t) + h1 P1(t) + . . . + hm Pm(t) = CT
2 φ(t),(4.28)

y3(t) = s0 P0(t) + s1 P1(t) + . . . + sm Pm(t) = CT
3 φ(t).(4.29)



492 f.bani-ahmad, a.k.alomari, a.s.bataineh, j.sulaiman, i.hashim

Substituting (4.26) into (4.27–4.29) we have

c0 − c1 + . . . + cm = 0.2,

h0 − h1 + . . . + hm = −0.3,

s0 − s1 + . . . + sm = 0.1.

The residual errors are then given by

<1 = CT
1 D1φ(t)− CT

2 φ(t),(4.30)

<2 = CT
2 D1φ(t)− CT

3 φ(t),(4.31)

<3 = CT
3 D1φ(t) + cCT

1 φ(t) + bCT
2 φ(t) + aCT

3 φ(t)− (CT
1 φ(t))2.(4.32)

Now, taking the first m roots of m+1 shifted Legendre polynomials and substitut-
ing in (4.30) and (4.32) which equals to zero, we have 3m + 3 algebraic equations
with 3m + 3 constants which can be easily solved by Newton’s iterative method.

The values of C1, C2 and C3 with m = 8 are

C1 =




0.06305404
−0.1292413

0.9418267× 10−2

0.2318345× 10−2

0.5280416× 10−3

−0.7923437× 10−4

−0.2417998× 10−5

0.1845305× 10−6

0.2605319× 10−7




, C2 =




−0.2540041
0.05966350
0.02239294

0.7359095× 10−2

−0.1422908× 10−2

−0.5263004× 10−4

0.4794184× 10−5

0.7757259× 10−6

−0.2767657× 10−8




,(4.33)

C3 =




0.1339414
0.1258488
0.07307226
−0.01985379

−0.9335802× 10−3

0.1052177× 10−3

0.2000128× 10−4

−0.2154617× 10−6

−0.7247838× 10−7




.(4.34)

Both the LOMD and the numerical solutions obtained by the 4th-order Runge-
Kutta (RK4) method for Genesio system are plotted in Figure 5.
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Figure 5: The solution of Genesio system with RK4 solution when m = 10.

It is clear that the LOMD solutions agree well with that of the RK4 solutions
(see also Figure 6). The estimate error equations given as

e′1 − e1 + R1 = 0,(4.35)

e′2 − e3 + R2 = 0,(4.36)

e′3 − ce1 + be2 + ae3 − e2
1 − 2e1ȳ1 + R3 = 0.(4.37)
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0.004

0.003
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Figure 6: The absolute error between LOMD with m = 10 and the RK4 solution.

It is worth mentioning that the estimate error and the absolute error are
closed for this example.

5. Conclusions

The Legender polynomial operational matrix of differentiation has been applied
to solve linear and nonlinear systems of ordinary differential equations. The ad-
vantage of the method over others is that only small size operational matrix is
required to provide the solution of high accuracy. The obtained solutions for va-
rious examples demonstrate the validity and applicability of the method compared
to the other existing methods.
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