STRUCTURAL DIVERSITY AND BIOLOGICAL PROPERTIES OF SECONDARY METABOLITES FROM SEA HARE (*APLYSIA DACTYLOMELA*) AND ALCYONACEAN SOFT CORALS

KISHNETH PALANIVELOO

PERPUSTAKAAN UNIVERSITI MALAYSIA SABAH

THESIS SUBMITTED IN FULFILLMENT FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

INSTITUTE FOR TROPICAL BIOLOGY AND CONSERVATION UNIVERSITI MALAYSIA SABAH

2015

UNIVERSITI MALAYSIA SABAH

BORANG PENGESAHAN STATUS TESIS

JUDUL : STRUCTURAL DIVERSITY AND BIOLOGICAL PROPERTIES OF SECONDARY METABOLITES FROM SEA HARE (*APLYSIA DACTYLOMELA* RANG) AND *ALCYONACEAN* SOFT CORALS

IJAZAH : DOKTOR FALSAFAH SAINS (Ph.D)

Saya <u>**KISHNETH PALANIVELOO**</u>, Sesi Pengajian <u>2011 – 2015</u>, mengaku membenarkan tesis Doktor Falsafah ini disimpan di Perpustakaan Universiti Malaysia Sabah dengan syarat-syarat kegunaan seperti berikut :-

- 1. Tesis adalah hakmilik Universiti Malaysia Sabah.
- 2. Perpustakaan Universiti Malaysia Sabah dibenarkan membuat salinan untuk tujuan pengajian sahaja.
- 3. Perpustakaan dibenarkan membuat salinan tesis ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. Sila tandakan (/)

(Mengandungi maklumat yang berdarjah keselamatan atau Kepentingan Malaysia seperti yang termaktub di dalam AKTA RAHSIA RASMI 1972)

(Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)

TIDAK TERHAD

KISHNETH PALANIVELOO PP20109098

ahkan Oleh, RULAIN BINTI ISMAIL BRARIAN MALAYSIA SABAH (TAŇDATANGAN PUSTAKAWAN)

CHÁRLES S. VAIRAPPAN

Tarikh: 14-08-2015

Tarikh: 14-08-2015

AUTHENTICATION

I hereby declare that the material in this thesis is my own except for quotations, excerpts, equations, summaries and references, which have been duly acknowledged.

14th August 2015

Kishneth Palaniveloo PP2010-9098

VERIFICATION

NAME : **KISHNETH PALANIVELOO**

- MATRIC NO : PP2010-9098
- : STRUCTURAL DIVERSITY AND BIOLOGICAL PROPERTIES TITLE OF SECONDARY METABOLITES FROM SEA HARE (APLYSIA DACTYLOMELA) AND ALCYONACEAN SOFT CORALS
- DEGREE : DOCTOR OF PHILOSOPHY

(ADVANCEMENT OF BIODIVERSITY)

: 21st JULY 2015 VIVA DATE

VERIFIED BY

1. SUPERVISOR

Prof. Dr. Charles S. Vairappan

Signature

The completion of this research thesis involved the support and contribution of several parties along the way. Firstly, I would like to express my heartfelt gratitude to my supervisor Professor Dr. Charles Santhanaraju Vairappan for his guidance in the field of natural product chemistry as well as creating avenues for me to embark on scientific investigations. I sincerely appreciate the exposure given, the priceless advice and time spent in nurturing me as a person.

Next, I wish to thank my parents, Dr. Palaniveloo Sinayah and Malarkodi Ganesan for their neverending support financial or morally both in person as well as spiritually while being away from home for the past 10 years of this academic journey at Universiti Malaysia Sabah. I would also convey my gratitude to the Ministry of Higher Education for the MyBrains15 (MyPhD) scholarship during my studies.

I would like to extend my gratitude to Institute of Tropical Biology and Conservation (ITBC) for the laboratory facilities and logistics made available for the completion of this research. Heartfelt thanks to its staffs Mdm Julianah Joseph, Mr. Rolinus Paolous, Mr. Azmi Karamah and others directly or indirectly involved during my research years at ITBC. My appreciation is also extended to the staffs of Borneo Marine Research Institute (BMRI) boat house, Mr. Ajahar and his team for their assistance during sampling trips. I extend my deepest appreciation to the Prof. Dr. Effendy Abdul Wahid of University Malaysia Terengganu (UMT) for providing facilities in to conduct anti-tumour screening, Prof. Dr. Jeon You-Jin from Jeju National University for his supervision in conducting anti-tumour and anti-inflammatory assays, Dr Toshiyuki Hamada for assisting in ATL cancer cell line assay. I express my appreciation to Assoc. Prof. Tatsufumi Okino of Hokkaido University, Japan for assistance in high resolution mass analysis, Prof Dr Minoru Suzuki, Assoc. Prof. Dr. Inderpal Singh from National Institute of Pharmaceutical Education and Research (NIPER), India and Dr. Takahiro Ishii from Ryukyu University, Japan for literature availability.

Finally, I would like to express a token of appreciation to Hanna Hazirah, R. Tulasiramanan, Thilahgavani Nagappan, Intan Irna Zanil, Steve Ng, Vivienti, Roxana, Danial Onn, Kim Eun-A, Kang Nalae, Chaminda Lakmal, Lee Won-woo, Ko Ju-young, all my lab mates throughout 2011 – 2015 or any names which did not cross my mind during the preparation of this text for any form of direct and indirect involvement during my studies.

All the wonderful moments and learning experience with all of you will be deeply engraved in my heart. Once again, THANKS! to all...

Kishneth Palaniveloo

3 March 2015

ABSTRACT

North Borneo, located in the Coral Triangle Region (CTR), the world's marine mega biodiversity, has an extremely rich source of marine life. The marine ecosystem is a fusion of complex interaction between the marine environment and marine organisms leading to predatory, competition for space or habitat, protection from disease or infection and directly imposing the pressure to survive among slowmoving, sessile soft bodied marine invertebrates. Thus, marine invertebrates biosynthesize secondary metabolites as a means of self defence. Recent development in drug discovery has revealed the potential of marine secondary metabolites as lead pharmaceutical drugs. This research focuses on two invertebrates; the sea hare Aplysia dactylomela Rang and Alcyonacean soft corals (Lobophytum pauciflorum, Sinularia flexibilis and Scleronephthea corymbosa) to investigate the structural diversity of secondary metabolites and its biological potentials. Populations of A. dactylomela from Dinawan Island yielded 10 compounds, Sulua Island vielded 9 compounds and Mantanani Island vielded 12 compounds, comprising of five new compounds with two new chemical skeletons. Compounds were mostly halogenated and comprised of acetogenins, charmigrane, cuparane, syndrean and bromoindoles. Three Alcvonacean soft coral species were analysed to contain 22 secondary metabolites; Lobophytum pauciflorum yielded 6 compounds, Scleronephthya corymbosa yielded 6 compounds and Sinularia flexibilis yielded 10 compounds comprising of furanocembranoids, pregnane type strerols and cembrane diterpenes. Secondary metabolites from the soft corals yielded five new compounds. Structure elucidation of compounds was determined via 1D-NMR (proton and carbon), 2D-NMR (HSQC, COSY, HMBC and NOESY), HRMS and FTIR measurements. Sesquiterpenes (+)-elatol (16) and 2,3,5,6-tetrabromoindole (22) inhibited the growth of Escherichia coli (HP0408) and Vibrio cholera (HP0908) at MIC 5 µg/mL and 10 µg/mL. The syndrean 12-acetoxypalisadin B (0.02 %)(13) and pregnane sterol P3N-4 (0.01 %) (32) displayed cytotoxicity towards HL60 (13 µg/mL) and B16F10 (17 µg/mL) cancer cell line respectively while the furanocembranoid SC1-8 (0.01 %) (28) best suppressed inflammation in LPS induced RAW 264.7 cell and zebra fish embryo at 10 µg/ml concentration. As such, the adaptation of marine invertebrate in the marine environment caters to great potential as an important source of lead pharmaceutical metabolites.

ABSTRAK

KEPELBAGAIAN STRUKTUR DAN CIRI-CIRI BIOLOGI METABOLIT KEDUA DARIPADA LINTAH LAUT (APLYSIA DACTYLOMELA) DAN BATU KARANG LEMBUT ALCYONACEAN.

Borneo Utara, vang terletak dalam Kawasan Segitiga Terumbu Karang (KSTK), merupakan biodiversiti mega dunia, mempunyai sumber hidupan marin yang kaya. Ekosistem marin merupakan satu gabungan interaksi antara persekitaran dengan organisma marin yang membawa kepada hungan mangsa pemangsa, persaingan untuk ruang atau habitat, perlindungan daripada penyakit atau jangkitan dan mengakibatkan tekanan terhadap invertebrata yang lambat atau tidak bergerak. Oleh itu, invertebrata marin membentuk metabolit sekunder untuk beradaptasi dan melindungi diri secara kimia. Pemajuan dalam penemuan ubat-ubatan telah mendedahkan potensi metabolit sekunder marin sebagai berpotensi sebagai ubatubatan farmaseutikal. Kajian ini memberi tumpuan kepada dua invertebrata: lintah laut Aplysia dactylomela Rang dan karang lembut Alcyonacean (Lobophytum pauciflorum, Scleronephthea corymbosa dan Sinularia flexibilis) untuk menyiasat kepelbagaian struktur metabolit sekunder dan potensi biologinya. Populasi A. dactylomela dari Pulau Dinawan menghasilkan 10 sebatian, Pulau Sulug menghasilkan 9 sebatian dan Pulau Mantanani menghasilkan 12 sebatian, yang terdiri daripada lima sebatian baru dengan dua rangka kimia baru. Sebatian yang dipencil kebanyakannya mengandungi unsur halogen dan terdiri daripada struktur acetogenin, charmigrane, cuparane, syndrean dan bromoindole. Tiga spesis karang lembut Alcyonacean dianalisis mengandungi 22 metabolit sekunder; Lobophytum pauciflorum menghasilkan 6 sebatian, Scleronephthya corymbosa menghasilkan 6 sebatian dan Sinularia flexibilis menghasilkan 10 sebatian yang terdiri daripada furanocembranoids, strevol jenis pregnane dan cembrane diterpene. Metabolit sekunder dari karang lembut menghasilkan lima sebatian baru. Penentuan struktur sebatian dilakukan melalui bacaan 1D-NMR (proton dan karbon), 2D-NMR (HSOC, COSY, HMBC dan NOESY), HRMS dan FTIR. Sesquiterpena (+)-elatol (16) dan 2,3,5,6 - tetrabromoindole (22) merencatkan pertumbuhan Escherichia coli (HP0408), Vibrio cholera (HP0908) pada kepekatan MIC 5 µg/mL dan 10 µg/mL masing-masing. Syndrean 12-acetoxypalisadin B (0.02 %) (13) dan sterol pregnane P3N-4 (0.01 %) (32) menunjukkan sitotoksisiti arah sel kanser HL60 dan B16F10 manakala furanocembranoid SC1-8 (28) merencatkan keradangan dalam sel RAW 264.7 dan embrio ikan zebra yang dirawat dengan LPS. Oleh itu, melalui kajian ini adalah jelas bahawa penyesuaian invertebrata marin dalam persekitaran ekstrim menyebabkan organism ini mengandungi kepentingan sebagai sumber bagi metabolit berpotensi farmaseutikal.

TABLE OF CONTENTS

		Page
VEDT	EICATION	
ACKN		iv
ACKI	DACT	v
ARST		vi
TARI	E OF CONTENTS	vii
ITST	OF TABLES	xi
IIST	OF FIGURES	xiii
LIST	OF ABBREVIATIONS	xxiii
LIST	OF APPENDIX	XXV
CHAP	PTER 1: INTRODUCTION	1
1.1	Marine Chemical Ecology	1
1.2	Aplysia dactylomela Rang	5
1.3	Soft Coral	6
1.4	Bioactive Lead Pharmaceutical Metabolite	7
1.5	Objective	9
СНАВ		11
2 1	Marine Chemical Ecology	11
2.1	Sea Hare (Anlycia dactylomola Pang)	12
2.2	2.2.1 Natural Products of Sea Hare	12
	i Monoternenes	13
	ii Sesquiternenes	14
	iii Diternene	25
	iv Triternene	27
	v. Biological properties of sea hare compounds	28
2.3	Soft Coral	30
	2.3.1 Alcvonacean Soft Coral	30
	2.3.2 Soft Coral Natural Products	31
	i Chemical diversity of the soft coral Sinularia flexibilis	33
	a. Sesquiterpene	33
	b. Diterpene	34
	c. Sterols	43
	d. Biological properties of Sinularia flexibilis	44
	compounds	
	ii. Chemical diversity of the soft coral <i>Lobophytum</i>	47
	a. Diterpene	48
	b. Bicembranoides	51
	c. Sterols	56
		50

		d. Biological properties of <i>Lobophytum</i>	56
		iii Chamical diversity of the coft coral Colorenent thus	50
		iii. Chemical diversity of the soft coral <i>Scieronephthya</i> corymbosa	58
		a. Pregnane Type Steroids	59
		b. Biological properties of Scleronephthya	65
		soft coral compounds	
2.4	Conclu	ision	66
CH/	APTER 3:	STRUCTURAL DIVERSITY OF SECONDARY	67
		METABOLITES FROM APLYSIA DACTYLOMELA RANG	
3.1	Introd	uction	67
3.2	Metho	dology	70
	3.2.1	Sampling	70
	3.2.2	Chemical Extraction	70
	323	Chemical Profiling	71
	5.2.5	i High Performance Thin Laver Chromatrography (HPTLC)	72
		ii Column Chromatography (CC)	72
		iii. High Derformance Liquid Chromatography (HDLC)	72
	224	In. The renormance Equily Chromatography (TFEC)	73
	5.2.4	isolation and Purilication of Compounds	75
		i. Preparative Thin Layer Chromatography (PTLC)	73
	225	II. High Performance Liquid Chromatography (HPLC)	/3
~ ~	3.2.5	Spectroscopic Data Measurement	74
3.3	Results a	ind Discussion	74
	3.3.1	Sample Extraction	74
	3.3.2	Chemical Profiling of Crude Extracts	//
	3.3.3	Chemical Diversity of Mantanani Island Sea Hare	81
	3.3.4	Chemical Diversity of Sulug Island Sea Hare	100
	3.3.5	Chemical Diversity of Dinawan Island Sea Hare	106
3.4	Discus	SION B VINIVERSITTIVIALATSIA SADAH	109
CHA	PTER 4:	STRUCTURAL DIVERSITY OF SECONDARY	116
		METABOLITES FROM ALCYONACEAN SOFT CORALS	
4.1	Introdu	uction	116
4.2	Method	dology	118
	4.2.1	Sampling	118
	4.2.2	Chemical Extraction	119
	4.2.3	Chemical Profiling	119
		i. High Performance Thin Layer Chromatrography (HPTLC)	119
		ii. Column Chromatography (CC)	120
		iii. High Performance Liquid Chromatography (HPLC)	120
	4.2.4	Isolation and Purification of Compounds	121
		i. Preparative Thin Layer Chromatography (PTLC)	121
		ii. High Performance Liquid Chromatography (HPLC)	121
	4.2.5	Spectroscopic Data Measurement	121
4.3	Results a	nd Discussion	122
	4.3.1	Sample Extraction	122
	4.3.2	Chemical Profiling of Crude Extracts	124
	433	Chemical Diversity of Soft Coral Population I – L pauciflorum	130
			100

	4.3.4 4.3.5	Chemical Diversity of Soft Coral Population II – <i>S. corymbosa</i> Chemical Diversity of Soft Coral Population III – <i>S. flexibilis</i>	145 152
4.4	Discus	sion	158
СНАР	TER 5:	ANTI-BACTERIAL PROPERTIES OF ISOLATED SECONDARY METABOLITES	165
5.1	Introdu	uction	165
5.2	Materia	als and Methods	166
	5.2.1	Sample Collection, Extraction, Isolation and Structure Elucidation	166
	5.2.2	Anti-bacterial Assay	166
		i. Anti-bacterial Assay Disc Technique	167
		ii. Micro-dilution Antibacterial Assay Disc Technique	167
		a. Determination of Minimal Inhibitory	16/
		concentration (MIC)	100
		Preparation of Stock Extract	168
		Preparing Inoculums Broth Migra dilution Suscentibility Test	100
		biotrimination of Minimal Ractoricidal	160
		D. Determination of Minimal Dattential	109
53	Poculto	and Discussion	169
5.5	5 3 1	Anti-bacterial Activity of Crude Extracts	169
	5.3.2	Minimum Inhibition Concentration (MIC) and Minimum	174
	U.U.L	Bactericidal Concentration (MBC) of Compounds from Sea Hare.	
		Aplysia dactylomela Rang	
	5.3.3	Minimum Inhibtion Concentration (MIC) and Minimum	177
		Bactericidal Concentration (MBC) of Compounds from	
		Alcyonacean soft corals	
5.4	Mechai	nism of Action	181
5.5	Conclu	UNIVERSITI MALAYSIA SABAH	183
CHAP	TER 6:	ANTI-INFLAMMATORY ACTIVITIES OF ISOLATED	184
<i>c</i> .		SECONDARY METABOLITES	
6.1	Introdu	JCCION	184
6.2	Materia	als and Methods Comple Collection Futuration Isolation and Chrystopher Flucidation	180
	0.2.1	Sample Collection, Extraction, Isolation and Structure Elucidation	180
	0.2.2	i Cell Culture	186
		ii LPS Stimulated Cell Viability Assay	186
		iii Determination of Nitric Oxide (NO) Production	187
		iv. Determination of Prostaglandin E ₂ (PGE ₂) Production	187
		v. Western Blot Analysis	187
		vi. Determination of Pro-inflammatory Cytokines	188
		(TNF-a, IL-1β and IL-6) Production	
6.3	Zebra F	Fish Assay	188
	6.3.1	Origin and maintenance of parental Zebra-fish	188
	6.3.2	Measurement of compound toxicity by cell death	189
		quantification	
	6.3.3	Estimation of oxidative stress-induced ROS generation	189
	6.3.4	Measurement of in vivo NO production	190

64	6.3.5 Statistical Analysis	190
0.1	 6.4.1 Anti-inflammation on LPS induced RAW 264.7 cell i. Effect of the compounds on cell viability and NO inhibition 	190 191
	 ii. Effect of SC1-8 (28) on NO and PGE₂ production in LPS-stimulated RAW 264.7 cells 	193
	iii. Effects of SC1-8 (28) on cyclooxygenase (COX)-2 protein levels in LPS-stimulated RAW 264.7 cells	195
	 iv. Effects of SC1-8 (28) on the production of pro-inflammatory cytokines (TNF-α, IL-1β, and IL-6) in LPS-stimulated RAW 264.7 cells 	197
	6.4.2 Anti-inflammation using animal model Zebra fish embryoi. Effect of SC1-8 (<i>28</i>) on survival rate and cell death	199 199
	in zebra fish embryo ii. Effect of SC1-8 (<i>28</i>) on stress-induced ROS generation iii. Effect of SC1-8 (<i>28</i>) on LPS-induced NO production	202 204
6.5 6.6	Discussion Conclusion	205 209
CHAP	TER 7: ANTI-CANCER PROPERTIES OF ISOLATED SECONDARY METABOLITES	210
7.1	Introduction	210
7.2	Materials and Methods	211
	7.2.1 Sample Collection, Extraction, Isolation and Structure Elucidation	211
	7.2.2 Anti-cancer Assay	212
	i. Cell Culture	212
	ii. Cell Growth Inhibitory Assay	212
	iii. Nuclear Staining with Hoechst 33342	213
	iv. Cell Cycle Analysis VERSITI MALAYSIA SABAH	213
	v. Western Blot Analysis	214
	vi. Statistical analysis	214
7.3	Results and Discussion	215
	7.3.1 Cytoprotective effect by MTT assay	215
	7.3.2 Cytotoxicity of 12-Acetoxypalisadin B (<i>13</i>) against HL60 cancer cell line	220
	7.3.3 Cytotoxicity of P3N-4 (<i>32</i>) against B16F10 cancer cell line	225
7.4	Discussion	231
7.5	Conclusion	232
CHAPT	TER 8: CONCLUSION	234
REFER	ENCES	239
APPEN	IDIX	260

LIST OF TABLES

			Page
Table	3.1:	Biomass of sea hare crude extract obtained	76
Table	3.2:	Biomass of Laurencia crude extract obtained	77
Table	3.3:	NMR Spectroscopic Data for SHB ($\boldsymbol{9}$) in CDCl ₃	88
Table	3.4:	NMR Spectroscopic Data for SHC (10) in CDCl ₃	91
Table	3.5:	^{13}C and ^1H NMR spectral data for acetogenins AC3 (11)	95
Table	3.6:	¹³ C and ¹ H NMR spectral data for acetogenins and AC4 (<i>12</i>)	97
Table	3.7:	¹³ C and ¹ H NMR spectral data for 12-acetoxypalisadin B (<i>13</i>)	106
Table	3.8:	Secondary metabolites of sea hare and its respective seaweed UNIVERSITI MALAYSIA SABAH	113
Table	4.1:	Biomass of sea hare crude extract obtained	124
Table	4.2:	NMR Spectroscopic Data for SC 1-3 (25) in $CDCI_3$	134
Table	4.3:	NMR Spectroscopic Data for SC 1-4 (26) in $CDCI_3$	136
Table	4.4:	NMR Spectroscopic Data for SC 1-5 (27) in $CDCI_3$	140
Table	4.5:	NMR Spectroscopic Data for SC 1-8 (28) in $CDCl_3$	143
Table	4.6:	NMR Spectroscopic Data for P3N-4 (<i>32</i>) in CDCl ₃	149

Table	4.7:	Secondary metabolites of the studied Alcyonacean soft corals	162
Table	5.1:	Antimicrobial activities of crude extracts via disc diffusion method.	170
Table	5.2:	The results of MIC, MBC and mechanism of antibiosis of active metabolites from the sea hare, <i>Aplysia dactylomela</i> screened against <i>Escherichia coli</i> (HP0408).	175
Table	5.3:	The results of MIC, MBC and mechanism of antibiosis of active metabolites from the sea hare, <i>Aplysia dactylomela</i> screened against <i>Vibrio cholera</i> (HP0908).	175
Table	5.4:	The results of MIC, MBC and mechanism of antibiosis of active metabolites from <i>Sinularia flexibilis</i> screened against <i>Listeria monocytogenes</i> (ATCC 12932).	179
Table	5.5:	The results of MIC, MBC and mechanism of antibiosis of active metabolites from <i>Sinularia flexibilis</i> screened against <i>Staphylococcus aureus</i> (ATCC 25923).	180
Table	6.1:	Cell viability and NO production of LPS-induced RAW 264.7 cell. RAW 264.7 cells untreated with LPS is control and compared with LPS induced macrophage.	192
Table	7.1:	IC ₅₀ values of sea hare (<i>Aplysia dactylomela</i>) derived secondary metabolites.	216
Table	7.2:	IC ₅₀ values of <i>Lobophythum pauciflorum</i> and <i>Scleronephthya corymbosa</i> derived secondary metabolites.	217
Table	7.3:	IC ₅₀ values of <i>Sinularia flexibilis</i> derived secondary metabolites	218

xii

LIST OF FIGURES

		Page
Figure 1.1:	The Coral Triangle Region (CTR) and the regions bordered by North Malaysian state, Sabah.	2
Figure 1.2:	Chemical diversity of marine derived secondary metabolites.	4
Figure 1.3:	Sea hare Aplysia dactylomela Rang and its defense mechanism.	5
Figure 2.1:	Chemical structures of monoterpenes from Aplysia dactylomela.	14
Figure 2.2:	Sesquiterpenes 4-13 isolated from Aplysia dactylomela Rang	15
Figure 2.3:	Acetylenic bromo-ethers and deodarone type metabolites from <i>Aplysia dactylomela</i> Rang.	18
Figure 2.4:	Charmigrane type metabolites from <i>Aplysia dactylomela</i> Rang.	19
Figure 2.5:	Diversity of C ₁₅ acetogenin type metabolites from <i>Aplysia</i> <i>dactylomela</i> Rang.	20
Figure 2.6:	Indole, chamigrane and cuparane type sesquiterpenes from <i>Aplysia dactylomela</i> Rang.	21
Figure 2.7:	Chamigrane and syndrean type sesquiterpenes from <i>Aplysia dactylomela</i> Rang.	22
Figure 2.8:	Chamigrane type sesquiterpenes from the Brazilian <i>Aplysia dactylomela</i> Rang.	23
Figure 2.9:	Diversity of metabolites from the <i>Aplysia dactylomela</i> Rang	24

Figure	2.10:	Diversity of diterpenes isolated from A. dactylomela Rang.	26
Figure	2.11:	Tryptophan derived diterpenes isolated from <i>Aplysia dactylomela</i> Rang.	27
Figure	2.12:	Diversity of triterpenes isolated from Aplysia dactylomela Rang.	28
Figure	2.13:	Diversity of skeletal pattern across <i>Alcyonacean</i> soft corals.	32
Figure	2.14:	Chemical structures of sesquiterpene from the genus Sinularia.	34
Figure	2.15:	Chemical structures of pukalide (133), sinulariolide (134), its derivatives and Sinuladiterpenes A (139) – I (147).	36
Figure	2.16:	Chemical structures cembrane diterpenes of the Indian Ocean <i>Sinularia flexibilis</i> and several other derivatives.	37
Figure	2.17:	Bicembranoids from <i>Sinularia flexibilis</i> .	38
Figure	2.18:	Chemical structures of sinulaflexiolides B (163) – K (172) and other metabolites from the Chinese <i>Sinularia flexibilis</i> .	40
Figure	2.19:	Chemical structures of flexibilin (179-182), flexibilisin (185-187) and flexibilisolide (183-193) derivatives from the Taiwan <i>Sinularia flexibilis</i> .	41
Figure	2.20:	Chemical structures of flexilarins A (194) – J (203) from the Taiwan <i>Sinularia flexibilis.</i>	42
Figure	2.21:	Lobane (204-205), quinine (206) and cladiellene (207-209) type diterpenes from <i>Sinularia flexibilis</i> .	43
Figure	2.22:	Chemical structures of sterols isolated from Sinularia flexibilis	45

xiv

Figure 2.23:	Lobane type diterpene and other derivatives isolated from Lobophytum pauciflorum.	50
Figure 2.24:	Bicembranoids Lobophytones A (243) - G (249) from <i>Lobophytum pauciflorum.</i>	52
Figure 2.25:	Bicembranoids Lobophytones H (250) - N (256) from <i>Lobophyton pauciflorum</i> .	53
Figure 2.26:	Bicembranoids Lobophytones O (257) – T (262) from Lobophytum pauciflorum.	54
Figure 2.27:	Bicembranoids Lobophytones U (263) - Z1 (269) from <i>Lobophytum pauciflorum</i> .	55
Figure 2.28:	Polyhydroxysteroids from <i>Lobophytum pauciflorum</i> .	58
Figure 2.29:	Nor-pregnane steroids and Ximaosteroids A (286) – D (289) from the soft coral genus <i>Scleronephthya</i> .	60
Figure 2.30:	Chemical structures of Sclerosteroids A (290) - N (303) of Scleronephthya gracillimum.	61
Figure 2.31:	Chemical structures of Stereonsteroids A (304) – I (312) of <i>Scleronephthya gracillimum.</i>	62
Figure 2.32:	Pregnane steroids and diterpene from Taiwanese <i>Scleronephthya</i> gracillimum.	64
Figure 3.1:	Halogenated syndrean-type sesquiterpene isolated from <i>Aplysia</i> dactylomela.	69

East Coast of Sabah; I – Mantanani Island, II – Sulug Island, III - Dinawan Island. The sea hare Aplysia dactylomela Rang photographed at Figure 3.3: 75 shallow waters waters feeding on red algae genus Laurencia. 76 Figure 3.4: Herbarium specimen of four major red algae Laurencia species in the sampling location; *L. snackeyi* (Weber-van Bosse) Masuda, L. majuscula (Harvey) Lucas, L. similis Nam et Saito, L. nangii Masuda. Figure 3.5: HPTLC Chemical fingerprint of sea hare and Laurencia 78 crude extracts. (Top; $\lambda = 254$ nm, Bottom $\lambda = 366$ nm; Left to right – Sea Hare Sulug, Sea Hare Dinawan, Sea Hare Mantanani, L. snackeyi, L. majuscula, L. similis, L. nangii). Figure 3.6: HPLC profile comparison of sea hare crude extracts 80 (top - Sulug, center - Dinawan, bottom - Mantanani). Figure 3.7: Secondary metabolites isolated from the digestive tract 82 of the Mantanani Island Aplysia dactylomela Rang. Figure 3.8: Structure of SHB (9) with assigned chemical shifts and its 87 ¹H-NMR chart. Figure 3.9: Chemical structures of debromolaurinterol and SHB (9), 88 SHC (10), with its acetates (9a, 10a). Figure 3.10: Key COSY and HMBC correlations for SHB (9) (left) 89 and SHC (*10*) (right).

Sampling location of *Aplysia dactylomela* Rang from the

71

Figure 3.2:

xvi

Figure	3.11:	Structure of SHC (<i>10</i>) with assigned chemical shifts and its ¹ H- NMR chart.	91
Figure	3.12:	NOE correlation for SHB (9) (left) and SHC (10) (right).	92
Figure	3.13:	Structure of AC3 (11) with assigned chemical shifts and its ¹ H-NMR chart.	93
Figure	3.14:	Structure of AC4 (<i>12</i>) with assigned chemical shifts and its ¹ H-NMR chart.	96
Figure	3.15:	Selected ¹ H- ¹ H COSY correlation (bold lines) and key HMBC correlations (arrow) for AC3 (11) and AC4 (12).	99
Figure	3.16:	Key NOESY correlations for AC3 (11) and AC4 (12)	99
Figure	3.17:	Secondary metabolites isolated from the digestive tract of the Sulug Island <i>Aplysia dactylomela</i> Rang.	101
Figure	3.18:	Structure of 12-acetoxypalisadin B (13) with assigned Chemical shifts and its ¹ H-NMR chart.	105
Figure	3.19:	¹ H- ¹ H COSY and HMBC correlations of 12-acetoxypalisadin B (<i>13</i>).	105
Figure	3.20:	Secondary metabolites isolated from the digestive tract of the Dinawan Island <i>Aplysia dactylomela</i> Rang.	107
Figure	3.21:	Percentage chemical composition of Mantanani Sea Hare.	111
Figure	3.22:	Percentage chemical compositions of Sulug Island Sea Hare.	112
Figure	3.23:	Percentage chemical compositions of Dinawan Island Sea Hare.	114

- Figure 4.1: Sampling location of soft corals from the East Coast of Sabah; 118 I – Mantanani Island, II – Pulau Tiga (Survivor's Island).
- Figure 4.2:Photograph of analysed soft coral specimen; Lobophytum123pauciflorum (A1, A2), Scleronephtya corymbosa (B1, B2),
Sinularia flexibilis (C1, C2).Sinularia flexibilis (C1, C2).
- Figure 4.3: HPTLC Chemical fingerprint of soft coral crude extracts. 126 (Top; λ = 254 nm non-derivatized, Bottom = derivatized non UV; Left to right *L.pauciflorum* (Hex), *L.pauciflorum* (MeOH), *S. corymbosa* (Hex), *S. corymbosa* (MeOH), *S. flexibilis* (Hex), *S. flexibilis* (MeOH).
- Figure 4.4:Crude HPLC profile for Lobophytum pauciflorum127(Top 90 % MeOH; Bottom Hexane).
- Figure 4.5:Crude HPLC profile for Scleronephthya corymbosa128(Top 90 % MeOH; Bottom Hexane).
- Figure 4.6: Crude HPLC profile for *Sinularia flexibilis* (Top 90 % MeOH; 129 Bottom – Hexane).
- Figure 4.7: Cembrane diterpenes isolated from *Lobophytum pauciflorum* 130 from Mantanani Island.
- Figure 4.8: Structure of SC1-3 (25) with assigned chemical shifts. 133
- Figure 4.9: Key ¹H-¹H COSY, HMBC (left) and NOE (right) signals of 134 SC1-3 (*25*).
- Figure 4.10: Structure of SC1-4 (26) with assigned chemical shifts.

Figure 4.11:	Key ¹ H- ¹ H COSY, HMBC (left) and NOE (right) signals of SC1-4 (<i>26</i>).	138
Figure 4.12:	Structure of SC1-5 (27) with assigned chemical shifts.	139
Figure 4.13:	Comparative diagram of SC1-5 (27) and sethukarailin (23).	141
Figure 4.14:	Key ¹ H- ¹ H COSY, HMBC (left) and NOE (right) correlations of SC1-5 (<i>27</i>).	142
Figure 4.15:	Structure of SC1-8 (28) with assigned chemical shifts.	144
Figure 4.16:	Key HMBC, COSY and NOE correlations of SC1-8 (28).	145
Figure 4.17:	Chemical structures of the pregnane steroids from Pulau Tiga Scleronephtya corymbosa.	146
Figure 4.18:	Chemical structure of P3N-4 (<i>32</i>) with assigned chemical shifts and ¹ H-NMR chart.	148
Figure 4.19:	Key HMBC, COSY and NOE correlations of P3N-4 (<i>32</i>).	151
Figure 4.20:	Chemical structures of cembrane dterpenes of <i>Sinularia flexibilis</i> .	153
Figure 4.21:	Chemical structures of sethukarailin (23) and SC1-5 (27).	159
Figure 4.22:	Structure of pukalide (24) and compounds of similar chemical features.	160
Figure 5.1 :	Bacterial inhibition image for sea hare crude extracts against bacterial strains; <i>Escherichia coli</i> (HP0408- E.c), <i>Staphylococcus</i> <i>aureus</i> (ATCC 25923- S.a), <i>Vibrio cholera</i> (HP0908- V.c), <i>Crytococus neoformans</i> (HP1208- C.n)	171

xix

- Figure 5.2 : Bacterial inhibition image for soft coral, *Sinularia flexibilis* crude 173 extracts against bacterial strains; *Pseudomonas aurelis* (HP0108- P.a), *Escherichia coli* (HP0408- E.c), *Listeria monocytogenes* (ATCC 12932- L.m), *Staphylococcus aureus* (ATCC 25923- S.a)
- Figure 5.3: Antimicrobial sinulariolide (**41**) and dihydrosinuflexolide (**44**) of 181 *S. flexibilis.*
- Figure 6.1: Chemical structure of SC1-8 (28) isolated from Lobophytum193pauciflorum from Mantanani Island.
- Figure 6.2: Percentage of cell viability (top) and NO production (bottom) 194 of LPS induced RAW 264.7 macrophage upon treatment of compound SC 1-8 at 5, 10 and 20 µg/mL concentrations. LPS untreated RAW 264.7 cells was used as control.
- Figure 6.3: Percentage of PGE₂ production of LPS induced RAW 264.7 195 macrophage upon treatment of compound SC 1-8 at 5, 10 and 20 µg/mL concentrations. LPS untreated RAW 264.7 cells was used as control.
- Figure 6.4: iNOS and COX-2 protein band intensity of LPS-stimulated 196 RAW 264.7 cell lysates treated with compound SC 1-8 (*28*) at 5, 10 and 20 µg/mL concentrations. RAW 264.7 cells untreated with LPS was used as control. GAPDH was used as loading control
- Figure 6.5: Percentage of TNF-a production level of LPS-stimulated 197 RAW 264.7 macrophage upon treatment of compound SC 1-8 (*28*) at 5, 10 and 20 µg/mL concentrations. LPS untreated RAW 264.7 cells was used as control.

- Figure 6.6: Percentage of IL-6 production level of LPS-stimulated RAW 264.7 198 macrophage upon treatment of compound SC 1-8 (*28*) at 5, 10 and 20 µg/mL concentrations. LPS untreated RAW 264.7 cells was used as control.
- Figure 6.7:Percentage of IL-1β production level of LPS-stimulated199RAW 264.7 macrophage upon treatment of compoundSC 1-8 (28) at 5, 10 and 20 µg/mL concentrations. LPSuntreated RAW 264.7 cells was used as control
- Figure 6.8: Percentage survival rate of LPS-stimulated zebra fish embryo 200 upon treatment of compound SC 1-8 (*28*) at 2.5, 5, 10 and 20 µg/mL concentrations. LPS untreated embryo was used as control.
- Figure 6.9: Microscopic images of acridine orange illuminated zebra fish 201 embryo (top) and percentage cell death (bottom) of LPS-stimulated zebra fish embryo upon treatment of compound SC 1-8 (*28*) at 2.5, 5 and 10 µg/mL concentrations. LPS untreated embryo was used as control.
- Figure 6.10: Microscopic images of DCFH-DA illuminated zebra fish embryo 203 (top) and percentage reactive oxygen species (bottom) of LPS-stimulated zebra fish embryo upon treatment of compound SC 1-8 (*28*) at 2.5, 5 and 10 μg/mL concentrations. LPS untreated embryo was used as control.
- Figure 6.11: Microscopic images of DAF-DC-DA illuminated zebra fish embryo 204 (top) and percentage nitric oxide (bottom) of LPS-stimulated zebra fish embryo upon treatment of compound SC 1-8 (*28*) at 2.5, 5 and 10 µg/mL concentrations. LPS untreated embryo was used as control.

Figure	7.1:	Chemical structure of compound 12-acetoxypalisadin B (13).	220
Figure	7.2:	Viability of cancer cells upon compound treatment.	220
Figure	7.3:	Microscopic image of apoptotic bodies upon compound treatment. The arrows represents cell that is undergoing DNA defragmentation due to apoptosis.	222
Figure	7.4:	Sub-G1 region of HL60 cell lysates representing apoptotic cells.	223
Figure	7.5:	Percentage of Sub-G1 equivalent apoptotic cells.	223
Figure	7.6:	Western Blot analysis of HL-60 cell lines treated with compounds.	224
Figure	7.7:	Chemical structure of compound pregnane sterol P3N-4 (32)	226
Figure	7.8:	Viability of cancer cells upon treatment with P3N-4 (<i>32</i>).	226
Figure	7.9:	Microscopic image of apoptotic bodies upon treatment with P3N-4 (<i>32</i>). The arrows represents cell that is defragmentation due to apoptosis.	227
Figure	7.10:	Sub-G1 population of B16F10 cell lines after treatment of P3N-4 (<i>32</i>).	228
Figure	7.11:	Concentration of B16F10 apoptotic cells after treatment of P3N-4 (<i>32</i>).	229
Figure	7.12:	Western Blot analysis of HL-60 cell lines treated with compounds.	230

LIST OF ABBREVATIONS AND SYMBOLS

MeOH	Methanol
H ₂ O	Water
dH ₂ O	Distilled water
Na ₂ SO ₄	Sodium sulphate anhydrous
EtOAc	Ethyl acetate
N ₂	Nitrogen
Hex	Hexane
CHCl ₃	Chloroform
CMW	Chloroform:Methanol:Water
R _f	Mobility relative to front
cc	Column Chromatography
HPLC	High Performance Liquid Chromatography
PTLC	Preparative Thin Layer Chromatography
HRMS	High Resolution Mass spectrometry
TLC	Thin Layer Chromatography
UV	Ultra violet
¹ H-NMR	Proton Nuclear Magnetic Resonance
¹³ C-NMR	Carbon-13 Nuclear Magnetic Resonance
2D-NMR	Two dimensional Nuclear Magnetic Resonance
НМВС	Heteronuclear multiband correlation
HSQC	Heteronuclear single-quantum coherence
NOESY	Nuclear Overhauser enhancement spectroscopy
EIMS	Electron Ionization Mass Spectrometry