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ABSTRACT 

North Borneo, located in the Coral Triangle Region (CTR), the world's marine mega 
biodiversity, has an extremely rich source of marine life. The marine ecosystem is a 
fusion of complex interaction between the marine environment and marine 
organisms leading to predatory, competition for space or habitat, protection from 
disease or infection and directly imposing the pressure to survive among slow
moving, sessile soft bodied marine invertebrates. Thus, marine invertebrates 
biosynthesize secondary metabolites as a means of self defence. Recent 
development in drug discovery has revealed the potential of marine secondary 
metabolites as lead pharmaceutical drugs. This research focuses on two 
invertebrates; the sea hare Ap/ysia dactylomela Rang and Alcyonacean soft corals 
( Lobophytum pauciflorum, Sinularia flexibilis and Scleronephthea corymbosa) to 
investigate the structural diversity of secondary metabolites and its biological 
potentials. Populations of A. dactylomela from Dinawan Island yielded 10 
compounds, Sulug Island yielded 9 compounds and Mantanani Island yielded 12 
compounds, comprising of five new compounds with two new chemical skeletons. 
Compounds were mostly halogenated and comprised of acetogenins, charmigrane, 
cuparane, syndrean and bromoindoles. Three Alcyonacean soft coral species were 
analysed to contain 22 secondary metabolites; Lobophytum pauciflorum yielded 6 
compounds, Scleronephthya corymbosa yielded 6 compounds and Sinularia flexibilis 
yielded 10 compounds comprising of furanocembranoids, pregnane type strerols and 
cembrane diterpenes. Secondary metabolites from the soft corals yielded five new 
compounds. Structure elucidation of compounds was determined via 1D-NMR 
(proton and carbon), 2D-NMR (HSQC, COSY, HMBC and NOESY), HRMS and FTIR 
measurements. Sesquiterpenes (+)-elatol (16) and 2,3,5,6-tetrabromoindole (22) 
inhibited the growth of Escherichia co/i (HP0408) and Vibrio cholera (HP0908) at MIC 
5 µg/ml and 10 µg/ml. The syndrean 12-acetoxypalisadin B (0.02 %)(13) and 
pregnane sterol P3N-4 (0.01 %) (32) displayed cytotoxicity towards HL60 (13 
µg/ml) and B16F10 (17 µg/ml) cancer cell line respectively while the 
furanocembranoid SCl-8 (0.01 %) (28) best suppressed inflammation in LPS 
induced RAW 264. 7 cell and zebra fish embryo at 10 µg/ml concentration. As such, 
the adaptation of marine invertebrate in the marine environment caters to great 
potential as an important source of lead pharmaceutical metabolites. 
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ABSTRAK 

KEPELBAGAIAN STRUKTUR DAN CIRI-CIRI BIOLOGI METABOLIT KEDUA 

DARIPADA LINTAH LAUT(APLYSIA DACTYLOMELA) DAN BATU KARANG

LEMBUT ALCYONACEAN. 

Borneo Utara, yang terletak dalam Kawasan Segitiga Terumbu Karang (KSTK), 
merupakan biodiversiti mega dunia, mempunyai sumber hidupan marin yang kaya. 
Ekosistem marin merupakan satu gabungan interaksi antara persekitaran dengan 
organisma marin yang membawa kepada hungan mangsa pemangsa, persaingan 
untuk ruang atau habitat, perlindungan daripada penyakit atau Jangkitan dan 
mengakibatkan tekanan terhadap invertebrata yang lambat atau tidak bergerak. 
O/eh itu, invertebrata marin membentuk metabolit sekunder untuk beradaptasi dan 
melindungi diri secara kimia. Pemajuan dalam penemuan ubat-ubatan telah 
mendedahkan potensi metabolit sekunder marin sebagai berpotensi sebagai ubat
ubatan farmaseutikal. Kajian ini memberi tumpuan kepada dua invertebrata; lintah 
taut Aplysia dactylomela Rang dan karang lembut Alcyonacean (lobophytum 
pauciflorum, Scleronephthea corymbosa dan Sinularia flexibilis) untuk menyiasat 
kepe/bagaian struktur metabo/Jt sekunder dan potensi bio/ogin ya. Populasi A. 
dactylomela dari Pu/au Dinawan menghasi/kan 10 sebatian, Pu/au Su/ug 
menghasi/kan 9 sebatian dan Pu/au Mantanani menghasilkan 12 sebatian, yang 
terdiri daripada lima sebatian baru dengan dua rangka kimia baru. Sebatian yang 
dipencil kebanyakannya mengandungi unsur halogen dan terdiri daripada struktur 
acetogenin, charmigrane, cuparane, syndrean dan bromoindo/e. Tiga spesis karang 
lembut Alcyonacean diana/isis mengandungi 22 metabolit sekunder; Lobophytum 
pauciflorum menghasi!kan 6 sebatian, Scleronephthya corymbosa menghasi/kan 6 
sebatian dan Sinularia flexibilis menghasilkan 10 sebatian yang terdiri daripada 
furanocembranoids, strero/ jenis pregnane dan cembrane diterpene. Metabolit 
sekunder dari karang lembut menghas11kan lima sebatian baru. Penentuan struktur 
sebatian dilakukan melalui bacaan lD-NMR (proton dan karbon), 2D-NMR (HSQC, 
COS� HMBC dan NOESY), HRMS dan FTIR. Sesquiterpena (+}-elatol (16) dan 
2,3✓5,6 - tetrabromoindole (22) merencatkan pertumbuhan Escherichia coli 
{HP0408), Vibrio cholera {HP0908} pada kepekatan MIC 5 µg/ml dan 1 O µg/ml 
masing-masing. Syndrean 12-acetoxypalisadin B (0.02 %) (13) dan sterol pregnane 
P3N-4 (0.01 %} (32) menunjukkan sitotoksisiti arah sel kanser HL60 dan 816F10 
manaka/a furanocembranoid SCl-8 (28) merencatkan keradangan dalam sel RAW 
264.7 dan embrio ikan zebra yang dirawat dengan LPS. O/eh itu, melalui kajian ini 
adalah Jelas bahawa penyesuaian invertebrata marin dalam persekitaran ekstrim 
menyebabkan organism ini mengandungi kepentingan sebagai sumber bagi 
metabolit berpotensi farmaseutikal. 
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Figure 3.13: Structure of AC3 ( 11) with assigned chemical shifts and its 93 

1H-NMR chart.

Figure 3.14: Structure of AC4 (12) with assigned chemical shifts and its 96 

1H-NMR chart.

Figure 3.15: Selected 1H-1H COSY correlation (bold lines) and key HMBC 99 

correlations (arrow) for AC3 (11) and AC4 (12). 

Figure 3.16: Key NOESY correlations for AC3 (11) and AC4 (12) 99 

Figure 3.17: Secondary metabolites isolated from the digestive tract 101 

of the Sulug Island Aplysia dactylome/a Rang. 

Figure 3.18: Structure of 12-acetoxypalisadin B ( 13) with assigned 105 

chemical shifts and its 1H-NMR chart.

Figure 3.19: 1H-1H COSY and HMBC correlations of 12-acetoxypalisadin B (13). 105 

Figure 3.20: Secondary metabolites isolated from the digestive tract of the 107 

Dinawan Island Aplysia dactylomela Rang. 

Figure 3.21: Percentage chemical composition of Mantanani Sea Hare. 111 

Figure 3.22: Percentage chemical compositions of Sulug Island Sea Hare. 112 

Figure 3.23: Percentage chemical compositions of Dinawan Island Sea Hare. 114 
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Figure 4.1: Sampling location of soft corals from the East Coast of Sabah; 118 

I - Mantanani Island, II - Pulau Tiga (Survivor's Island). 

Figure 4.2: Photograph of analysed soft coral specimen; Lobophytum 123 

pauciflorum (Al, A2), Scleronephtya corymbosa (B1, B2), 

Sinularia flexibilis (Cl, C2). 

Figure 4.3: HPTLC Chemical fingerprint of soft coral crude extracts. 126 

(Top; A = 254 nm non-derivatized, Bottom = derivatized non 

UV; Left to right - Lpauciflorum (Hex), L.pauciflorum (MeOH), 

S. corymbosa (Hex), S. corymbosa (MeOH), 5. flexibilis (Hex),

S. flex1bilis (MeOH).

Figure 4.4: Crude HPLC profile for Lobophytum pauciflorum 127 

(Top - 90 % MeOH; Bottom - Hexane). 

Figure 4.5: Crude HPLC profile for Sc/eronephthya corymbosa 128 

(Top - 90 % MeOH; Bottom - Hexane). 

Figure 4.6: Crude HPLC profile for Sinularia flexibilis (Top - 90 % MeOH; 129 

Bottom - Hexane). 

Figure 4.7: Cembrane diterpenes isolated from Lobophytum pauciflorum 130 

from Mantanani Island. 

Figure 4.8: Structure of SCl-3 ( 25) with assigned chemical shifts. 133 

Figure 4.9: Key 1H-1H COSY, HMBC (left) and NOE (right) signals of 134 

SCl-3 (25). 

Figure 4.10: Structure of SCl-4 (26) with assigned che111ical shifts. 137 
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Figure 4.11: Key 1H- 1H COSY, HMBC (left) and NOE (right) signals of 138 

SCl-4 (26). 

Figure 4.12: Structure of SCl-5 (27) with assigned chemical shifts. 139 

Figure 4.13: Comparative diagram of SCl-5 (27) and sethukarailin (23). 141 

Figure 4.14: Key 1H-1H COSY, HMBC (left) and NOE (right) correlations of 142 

SCl-5 (27). 

Figure 4.15: Structure of SCl-8 (28) with assigned chemical shifts. 144 

Figure 4.16: Key HMBC, COSY and NOE correlations of SCl-8 (28). 145 

Figure 4.17: Chemical structures of the pregnane steroids from Pulau Tiga 146 

Sc/eronephtya corymbosa. 

Figure 4.18: Chemical structure of P3N-4 ( 32) with assigned chemical shifts 148 

and 1H-NMR chart. 

Figure 4.19: Key HMBC, COSY and NOE correlations of P3N-4 (32). 151 

Figure 4.20: Chemical structures of cembrane dterpenes of Sinularia flexibilis. 153 

Figure 4.21: Chemical structures of sethukarailin (23') and SCl-5 (27). 159 

Figure 4.22: Structure of pukalide ( 24) and compounds of similar chemical 160 

features. 

Figure 5.1 : Bacterial inhibition image for sea hare crude extracts against 171 

bacterial strains; Escherichia coli(HP0408- E.c)/ Staphylococcus 

aureus (ATCC 25923- S.a), Vibrio cholera (HP0908- V.c), 

Crytococus neoformans (HP1208- C.n) 
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Figure 5.2: Bacterial inhibition image for soft coral, Sinularia f/exibilis crude 173 

extracts against bacterial strains; Pseudomonas aurelis 

(HP0108- P.a), Escherichia coli (HP0408- E.c), Listeria 

monocytogenes (ATCC 12932- L.m), Staphylococcus aureus 

(ATCC 25923- S.a) 

Figure 5.3: Antimicrobial sinulariolide ( 41) and dihydrosinuflexolide ( 44) of 181 

S. flexibilis.

Figure 6.1: Chemical structure of SCl-8 ( 28) isolated from Lobophytum 193 

pauciflorum from Mantanani Island. 

Figure 6.2: Percentage of cell viability (top) and NO production (bottom) 194 

of LPS induced RAW 264.7 macrophage upon treatment 

of compound SC 1-8 at 5, 10 and 20 µg/ml concentrations. 

LPS untreated RAW 264.7 cells was used as control. 

Figure 6.3: Percentage of PGE2 production of LPS induced RAW 264.7 195 

macrophage upon treatment of compound SC 1-8 at 

5, 10 and 20 µg/ml concentrations. LPS untreated RAW 264. 7 

cells was used as control. 

Figure 6.4: iNOS and COX-2 protein band intensity of LPS-stimulated 196 

RAW 264.7 cell lysates treated with compound SC 1-8 (28) at 

5, 10 and 20 µg/ml concentrations. RAW 264.7 cells untreated 

with LPS was used as control. GAPDH was used as loading control 

Figure 6.5: Percentage of TNF-a production level of LPS-stimulated 197 

RAW 264.7 macrophage upon treatment of compound SC 1-8 

(28) at 5, 10 and 20 µg/ml concentrations. LPS untreated

RAW 264.7 cells was used as control. 
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Figure 6.6: 

Figure 6.7: 

Figure 6.8: 

Figure 6.9: 

Percentage of IL-6 production level of LPS-stimulated RAW 264.7 

macrophage upon treatment of compound SC 1-8 (28) at 5, 

10 and 20 µg/ml concentrations. LPS untreated RAW 264.7 

cells was used as control. 

Percentage of IL-1� production level of LPS-stimulated 

RAW 264. 7 macrophage upon treatment of compound 

SC 1-8 (28) at 5, 10 and 20 µg/ml concentrations. LPS 

untreated RAW 264.7 cells was used as control 

Percentage survival rate of LPS-stimulated zebra fish embryo 

upon treatment of compound SC 1-8 (28) at 2.5, 5, 10 and 20 

µg/ml concentrations. LPS untreated embryo was used as control. 

Microscopic images of acridine orange illuminated zebra fish 

embryo (top) and percentage cell death (bottom) of 

LPS-stimulated zebra fish embryo upon treatment of 

compound SC 1-8 (28) at 2.5, 5 and 10 µg/ml concentrations. 

LPS untreated embryo was used as control. 

198 

199 

200 

201 

Figure 6.10: Microscopic images of DCFH-DA illuminated zebra fish embryo 203 

(top) and percentage reactive oxygen species (bottom) of 

LPS-stimulated zebra fish embryo upon treatment of compound 

SC 1-8 (28) at 2.5, 5 and 10 µg/ml concentrations. LPS 

untreated embryo was used as control. 

Figure 6.11: Microscopic images of DAF-DC-DA illuminated zebra fish embryo 204 

(top) and percentage nitric oxide (bottom) of LPS-stimulated 

zebra fish embryo upon treatment of compound SC 1-8 ( 28) at 

2.5, 5 and 10 µg/ml concentrations. LPS untreated embryo 

was used as control. 
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Figure 7.1: Chemical structure of compound 12-acetoxypalisadin B (13). 220 

Figure 7.2: Viability of cancer cells upon compound treatment. 220 

Figure 7.3: Microscopic image of apoptotic bodies upon compound 222 

treatment. The arrows represents cell that is undergoing 

DNA defragmentation due to apoptosis. 

Figure 7.4: Sub-Gl region of HL60 cell lysates representing apoptotic cells. 223 

Figure 7.5: Percentage of Sub-Gl equivalent apoptotic cells. 223 

Figure 7.6: Western Blot analysis of HL-60 cell lines treated with 224 

compounds. 

Figure 7.7: Chemical structure of compound pregnane sterol P3N-4 ( 32) 226 

Figure 7.8: Viability of cancer cells upon treatment with P3N-4 (32). 226 

Figure 7.9: Microscopic image of apoptotic bodies upon treatment with 227 

P3N-4 ( 32). The arrows represents cell that is defragmentation 

due to apoptosis. 

Figure 7.10: Sub-Gl population of B16F10 cell lines after treatment of 228 

P3N-4 (32). 

Figure 7.11: Concentration of B16F10 apoptotic cells after treatment of 229 

P3N-4 (32). 

Figure 7.12: Western Blot analysis of HL-60 cell lines treated with 

compounds. 
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