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ABSTRACT

This paper deliberates the use of the Half-sweep Accelerated Overelaxation (HSAOR)
method to solve 2D Poisson equations by using the half-sweep triangle finite element
(FE) approximation equation based on the Galerkin scheme. In fact, formulations of the
full sweep successive over relaxation (FSSOR), half sweep successive over relaxation
(HSSOR), full-sweep accelerated over relaxation (FSAOR) and half-sweep accelerated
over relaxation (HSAOR) triangle finite element (FE) approaches are also shown. Some
numerical experiments are steered to show that the HSAOR method is loftier to the existing
FSAOR, HSSOR and FSSOR methods.

Keywords: Poisson, AOR method, Galerkin scheme (GS), Triangle Element (TE), half-
sweep approach.

2000 Mathematics Subject Classification: 62J12, 62G99.

Computing Classification System: I.4.

1 Introduction

The problem of deciphering partial differential equations ascends in many mathematical mod-
els of scientific and engineering applications. One of the most widely held and significant
research branches is FE method. Researchers has a broad application in several weighted
residual schemes such as the subdomain, collocation, least-square, moments and Galerkin
that can be used to setback approximate solutions (Fletcher, 1978; Fletcher, 1984; Belytschko,
Krongauz, Organ, Fleming and Krysl, 1996; Zhu, 1999; Yagawa and Furukawa, 2000). Using
the first order triangle FE approximation equation based on the Galerkin scheme, this paper
proposes the HSAOR for solving the 2D Poisson equation. In comparison, the Full-Sweep
Gauss–Seidel (FSGS) iterative methods act as control method. To investigate the effective-
ness of the HSAOR iterative method, let us consider the 2D Poisson equation defined as

∂2U

∂x2
+

∂2U

∂y2
= f(x, y), (x, y) ∈ [a, b]× [a, b] (1.1)
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(a) (b)

Figure 1: (a) and (b) show the solution domain Ω of triangle elements for the full- and half-
sweep cases at n = 8.

with the dirichlet boundary conditions

U(x, a) = g1(x), a ≤ x ≤ b, U(x, b) = g2(x), a ≤ x ≤ b,

U(a, y) = g3(y), a ≤ x ≤ b, U(b, y) = g4(x), a ≤ y ≤ b,

whereas, f(x, y) is a given function with sufficient smoothness. To facilitate in formulating the
half-sweep triangle element approximation equations for problem (1.1), our next confab will
focus on uniform node points only as shown in Figure. 1. Based on the Figure. 1, the solution
domain, need to be discretized uniformly in both x and y directions with a mesh size, h which
is defined as

h =
b− a

n
, m = n+ 1, (1.2)

where n is arbitrary positive integer. Based on Figure. 1, we also need to build the networks
of triangle FE as a guideline in order to derive triangle FE approximation equations for prob-
lem (1.1). Similarly using the same concept of the full-sweep approach applied to FD methods
(Abdullah, 1991; Othman and Abdullah, 1998; Sulaiman, Hasan and Othman, 2004), FE net-
works will consist of several TE in which each will involve three solid node points only of type
• as shown in Figure. 1. As a result, the implementation of the full- and half-sweep iterative
algorithms will be performed onto the node points of the same type until the iterative conver-
gence criterion will be satisfied. Then other approximate solutions at remaining node points
(points of the different type) will be calculated directly (Abdullah, 1991; Evans, 1997; Sulaiman
et al., 2004; Yousif and Martins, 2008; Aruchunan and Sulaiman, 2011; Muthuvalu and Su-
laiman, 2011; Akhir, Othman, Sulaiman, Majid and Suleiman, 2012).

The outline of this paper is organized in the following way. An implementation of the triangle
FE in discretizing problem (1.1) is presented in Section 2 followed by the formulation of the
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(a) (b)

Figure 2: (a) and (b) show the definition of the hat function Ri,j(x, y), of full- and half-sweep
triangle elements at the solution domain.

tested iterative methods in Section 3. Numerical results of the tested iterative methods and
concluding remarks are summarized in Section 4 and 5 respectively.

2 Half-Sweep Triangle Element Approximations

Without a loss of platitude, and for vulgarization purpose we will consider case of the FE
approximation equation based on the GS to solve 2D Poisson equations. By considering three
node points of type • only, the common approximation of the function U(x, y), in the form of
interpolation function for an arbitrary triangle element, e is given by (Fletcher, 1978; Fletcher,
1984; Lewis and Ward, 1991).

Ũ [e](x, y) = N1(x, y)U1 +N2(x, y)U2 +N3(x, y)U3 (2.1)

and the shape functions Nk(x, y), k = 1, 2, 3, can generally be shown as

detA = x1(y2 − y3) + x2(y3 − y1) + x3(y1 − y2), (2.2)

where, ⎡
⎢⎣
a1

a2

a3

⎤
⎥⎦ =

⎡
⎢⎣
x2y3 − x3y2

x3y1 − x1y3

x1y2 − x2y1

⎤
⎥⎦,

⎡
⎢⎣
b1

b2

b3

⎤
⎥⎦ =

⎡
⎢⎣
y2 − y3

y3 − y1

y1 − y2

⎤
⎥⎦,

⎡
⎢⎣
c1

c2

c3

⎤
⎥⎦ =

⎡
⎢⎣
x3 − x2

x1 − x3

x2 − x3

⎤
⎥⎦.

Adjacent to this, the first order partial derivatives of the shape functions towards x and y are
given respectively as

∂

∂x

(
Nk(x, y)

)
=

bk
detA

,

∂

∂y

(
Nk(x, y)

)
=

ck
detA

,

⎫⎪⎪⎬
⎪⎪⎭ , k = 1, 2, 3. (2.3)

In Figure. 2 (a) and (b), the definition of the hat function, Rr,s(x, y) in the solution domain is
easily to be shown. Then based on the distribution of the hat function, Rr,s(x, y) in the figure,
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the approximation of the functions, U(x, y) and f(x, y) in case of the full-sweep and half-sweep
cases for the intact domain will be well-defined respectively as (Vichnevetsky, 1981)

Ũ(x, y) =

m∑
r=0

m∑
s=0

Rr,s(x, y)Ur,s (2.4)

f̃(x, y) =
m∑
r=0

m∑
s=0

Rr,s(x, y)fr,s (2.5)

and

Ũ(x, y) =

m∑
r=0,2,4

m∑
s=0,2,4

Rr,s(x, y)Ur,s +

m−1∑
r=1,3,5

m−1∑
s=1,3,5

Rr,s(x, y)Ur,s (2.6)

f̃(x, y) =

m∑
r=0,2,4

m∑
s=0,2,4

Rr,s(x, y)fr,s +

m−1∑
r=1,3,5

m−1∑
s=1,3,5

Rr,s(x, y)fr,s (2.7)

Thus, Eqs. (2.4) and (2.6) are approximate solutions for problem (1.1). To construct the full-
sweep and half-sweep linear FE approximation equations for problem (1.1), this paper pro-
poses the Galerkin scheme. Therefore, let consider the GS (Fletcher, 1978; Fletcher, 1984;
Lewis and Ward, 1991) be defined as∫∫

D
Ri,j(x, y)Ei,j(x, y) = 0, i, j = 0, 1, 2, . . . ,m (2.8)

where, E(x, y) = ∂2U
∂x2 + ∂2U

∂y2
− f(x, y) is a residual function. By applying the Green theorem,

Eq. (2.5) can be shown in the subsequent form∫
λ

(
−Ri,j(x, y)

∂u

∂y
dx+Ri,j(x, y)

∂u

∂x
dy

)

−
∫ b

a

∫ b

a

(
∂Ri,j(x, y)

∂x

∂u

∂x
+

∂Ri,j(x, y)

∂y

∂u

∂y

)
dxdy = Fi,j (2.9)

where
−
∑∑

K∗
i,j,r,sUr,s =

∑∑
C∗
i,j,r,sfr,s (2.10)

where

K∗
i,j,r,s =

∫ b

a

∫ b

a

(
∂Ri,j

∂x

∂Rr,s

∂x

)
dxdy +

∫ b

a

∫ b

a

(
∂Ri,j

∂y

∂Rr,s

∂y

)
dxdy,

C∗
i,j,r,s =

∫ b

a

∫ b

a

(
Ri,j(x, y)Rr,s(x, y)

)
dxdy.

Actually the linear system in Eq. (2.6) for the full- and half-sweep cases can be easily expressed
in the stencil form respectively as follows

Full-sweep:

⎡
⎢⎣

1

1 −4 1

1

⎤
⎥⎦Ui,j =

h2

12

⎡
⎢⎣

1 1

1 6 1

1 1

⎤
⎥⎦ fi,j (2.11)

⎡
⎢⎣
1 1

−4 0

1 1

⎤
⎥⎦Ui,j =

h2

6

⎡
⎢⎣
1 1

5 1

1 1

⎤
⎥⎦ fi,j , i = 1
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Half-sweep:

⎡
⎢⎣

1 1

0 −4 0

1 1

⎤
⎥⎦Ui,j =

h2

6

⎡
⎢⎣

1 1

1 6 1

1 1

⎤
⎥⎦ fi,j , i �= 1, n

⎡
⎢⎣

1 1

0 −4

1 1

⎤
⎥⎦Ui,j =

h2

6

⎡
⎢⎣

1 1

1 5

1 1

⎤
⎥⎦ fi,j , i = n (2.12)

In fact, the stencil forms in Eqs. (2.11) till (2.12) forms consist of seven node points in for-
mulating their approximation equations. On the other hand, two of its coefficients are zero.
Apart of this, the form of the stencil forms for both triangle finite element schemes is the same
compared to the existing five points FD scheme, see (Young, 1971; Abdullah, 1991; Yousif and
Evans, 1995; Ibrahim and Abdullah, 1995; Evans, 1997; Akhir et al., 2012).

3 The AOR Method

The subsequent discussion can be found in (Hadjidimos, 1978; Evans and Martins, 1994).

3.1 FSAOR Method for Poisson Equation

The subsequent discussion can be found in (Yousif and Martins, 2008).

3.2 HSAOR Method for Poisson Equation

To derive the HSAOR iterative method, we use half-sweep approach, in which the domains are
divided into two type of points (i.e., • and ◦) as shown in Fig. 1(b). By applying AOR method
(Hadjidimos, 1978) into Eq. (2.12), we get the HSAOR method for 2D Poisson equation as

U
(k+1)
i,j =

r

4

(
U

(k+1)
i−1,j−1 − U

(k)
i−1,j−1 + U

(k+1)
i+1,j−1 − U

(k)
i+1,j−1

)
+

w

4

(
U

(k)
i+1,j+1 + U

(k+1)
i−1,j−1 + U

(k+1)
i+1,j−1 + U

(k)
i−1,j+1 − h2Fi,j

)
+ (1− w)U

(k)
i,j (3.1)

where

Fi,j =
1

12
(fi−2,j + fi+2,j + fi−1,j−1 + fi−1,j+1 + fi+1,j−1 + fi+1,j+1 + 6fi,j)

Eq. (3.1) allows us to iterate through half of the points, lying on the
√
2h-grid. Again, it can be

observed that Eq. (3.1) involves points of type • and ◦. Therefore the iteration can be carried
out autonomously involving only this type of point. The algorithm of HSAOR method is display
in Algorithm 3.2:

Algorithm 3.2. Discretize the solution domain into point of two types • and ◦ as shown in
Figure 1(b).

1. Perform iterations (using Eq. (3.1)) taking the values of r = w from the segment [1, 2).
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2. Within the interval ±0.1 from the value found in the step 2, define the optimal w opt with
precision 0.01 by choosing consecutive values for which k is minimal; r is taken the same
as w.

3. Perform experiments using the value of w opt and choosing consecutive values of r with
precision 0.01 within the interval ±0.1 from the w opt .

4. Define the value r opt for which k is minimal.

5. Evaluate the solutions at the remaining points (Abdullah, 1991; Evans, 1997; Sulaiman
et al., 2004; Yousif and Martins, 2008; Aruchunan and Sulaiman, 2011; Muthuvalu and
Sulaiman, 2011; Akhir et al., 2012) type ◦ (using Eq. (2.11)).

Ui,j =
1

4
(Ui−1,j + Ui+1,j + Ui,j−1 + Ui,j+1 − h2Fi,j)

where

Fi,j =
1

12
(fi−1,j + fi+1,j + fi,j−1 + fi,j+1 + fi−1,j−1 + fi+1,j+1 + 6fi,j)

6. Display approximate solutions.

4 Numerical Results

In this section, Algorithm 3.2 was tested on the following model following 2D Poisson equation:

∂U

∂x2
+

∂U

∂y2
= − cos(x+ y) + cos(x− y) (4.1)

where its boundary conditions are given as

U(x, 0) = cosx, U
(
x, π2

)
= 0,

U(0, y) = cos y, U(π, y) = − cos y.

Then exact solution of problem (4.1) is given by

U(x, y) = cos(x) cos(y).

Through the experiments, three parameters were observed, such as the number of iterations
(k), maximum absolute error (Abs. Error) and execution time, t (in seconds). Three iterative
methods such as Gauss–Seidel (GS), SOR and AOR were tested on several mesh sizes i.e
284, 308, 332 and 356. In the course of implementation the proposed iterative methods, the
value of the tolerance error, considered ε = 10−10. The computer language used for the
programming is C++, and the program performed on a personal PC Intel(R) Core (TM) i7 CPU
860@3.00 Ghz, 6.00 GB RAM. The operation system used was Windows 7 with the installation
Borland C++ compiler version 5.5. Based on the given example, all of the results of numerical
experiments are recorded through the implementation of three proposed iterative methods in
Table 1. Whereas Table 2 describes the depreciation percentage of the number of iterations
and execution time for AOR method compared to the SOR and GS methods.
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Table 1: Comparison of a number of iterations, execution time (seconds) and maximum abso-
lute error for the iterative methods.

n Methods Methods Methods
k

w r w

FSGS 115954 FSSOR 1.952 3428 FSAOR 1.989 1.979 1890

284 HSGS 60810 HSSOR 1.949 1820 HSAOR 1.961 1.960 1292

FSGS 134823 FSSOR 1.949 4288 FSAOR 1.989 1.987 1939

308 HSGS 70743 HSSOR 1.941 2528 HSAOR 1.982 1.969 1245

FSGS 154979 FSSOR 1.939 5960 FSAOR 1.986 1.991 2668

332 HSGS 81316 HSSOR 1.940 2988 HSAOR 1.981 1..986 1754

FSGS 176045 FSSOR 1.939 6815 FSAOR 1.987 1.993 3032

356 HSGS 92654 HSSOR 1.939 3488 HSAOR 1.980 1.989 2215

t

FSGS 267.61 FSSOR 1.952 11.97 FSAOR 1.989 1.979 9.43

284 HSGS 75.85 HSSOR 1.949 5.56 HSAOR 1.961 1.960 4.82

FSGS 366.50 FSSOR 1.949 17.69 FSAOR 1.989 1.987 11.75

308 HSGS 110.07 HSSOR 1.941 9.52 HSSOR 1.982 1.969 5.94

FSGS 490.68 FSSOR 1.939 28.58 FSAOR 1.986 1.991 18.84

332 HSGS 153.91 HSSOR 1.940 12.17 HSAOR 1.981 1.986 9.29

FSGS 638.22 FSSOR 1.939 37.63 FSAOR 1.987 1.993 24.70

356 HSGS 203.54 HSSOR 1.939 17.67 HSAOR 1.980 1.989 5.92

Abs. Error
FSGS 1.0913e−6 FSSOR 1.952 3.0217e−7 FSAOR 1.989 1.979 2.8268e−7

284 HSGS 4.0311e−6 HSSOR 1.949 4.0294e−6 HSAOR 1.961 1.960 4.0294e−6

FSGS 1.1936e−6 FSSOR 1.949 2.6481e−7 FSAOR 1.989 1.987 2.4128e−7

308 HSGS 3.4323e−6 HSSOR 1.941 3.4304e−6 HSAOR 1.982 1.969 3.4304e−6

FSGS 1.3165e−6 FSSOR 1.939 2.4124e−7 FSAOR 1.986 1.991 2.0723e−7

332 HSGS 2.9578e−6 HSSOR 1.940 2.9558e−6 HSAOR 1.981 1..986 2.9558e−6

FSGS 1.4576e−6 FSSOR 1.939 2.1950e−7 FSAOR 1.987 1.993 1.8023e−7

356 HSGS 2.5755e−6 HSSOR 1.939 2.5734e−6 HSAOR 1.980 1.989 4.0293e−6

k is the number of iterations, t is the computation time.

Table 2: Reduction percentages of the number of iterations and execution time for the iterative
methods compared with FSGS method.

Methods k t

HSGS 47.37–473.56 68.11–71.97
FSSOR 96.13–97.04 94.10–95.49
HSSOR 98.01–98.43 97.23–97.86
FSAOR 98.27–98.37 96.13–96.48
HSAOR 98.74–98.89 98.20–99.07

k is the number of iterations, t is the computation time.
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5 Discussion of Results

In the previous section, it can be seen that the half- and full-sweep triangle FE approximation
equations based on the Galerkin scheme can be easily represented in the stencil forms, see in
Eq. (2.11) till (2.12). Through numerical results observed in Table 1, clearly show that by apply-
ing the AOR methods can reduce number of iterations compared to the SOR and GS method.
Table 2 shows the decrement percentages number of iterations for FSAOR, HSAOR, FSSOR,
HSSOR, HSGS methods compared to the FSGS method in solving the proposed example.
Through the observation in Tables 1 and 2, found that applications of the half-sweep iteration
idea reduce the execution time of the iterative method. In the meantime, decrement percent-
ages of the execution time for FSAOR, HSAOR, FSSOR, HSSOR, HSG methods compared
with FSGS method have been summarized in Table 2. In terms of accuracy, approximate so-
lutions for the FSAOR and HSAOR methods are in good agreement compared to the FSSOR,
HSAOR, FSGS and HSGS methods.

Generally, the numerical results prove that the HSAOR iterative method is a better method
compared with the FSAOR, FSSOR, HSSOR, FSGS and HSGS methods in the sense of the
complexity and execution time. This is due to the computational complexity of the HSAOR
method is approximately 50% less than FSAOR and FSSOR methods.
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