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Abstract 
 

In this article, we consider the numerical solution of two-dimensional Helmholtz equation. 
The four point Explicit Decoupled Group (EDG) iterative method together with 
Gauss-Seidel (GS) is applied to solve a linear system generated from discretization of the 
finite difference scheme using the second order central difference. In addition, the 
formulation and implementation of the proposed method to solve the problem also 
presented. Numerical result and comparisons with other existing method are given to 
illustrate the efficiency of the proposed method. 
 
Keywords: Helmholtz equation, Explicit Group Method, Explicit Decoupled Group 

Method, Gauss-Seidel Method, Finite Difference Scheme. 
 
 
1 Introduction 
 
   From previous studies, many researchers have investigated several numerical 
methods such as finite difference, finite element, finite volume and boundary 
element methods to gain approximate solutions in solving any partial differential  
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equations, which describes a certain problem in science and engineering [13,15]. 
In addition, the discovery on the half-sweep iterative method has been initiated by 
Abdullah [1]. However, the concept of this method is extension of the full-sweep 
iterative method, which is inspired by Evans [3] through Explicit Group iterative 
method to solve the two-dimensional Poisson equation. Following to that, further 
application of the full- and half-sweep iteration concepts have been extensively 
studied by many researchers; see Ibrahim and Abdullah [2]; Sulaiman et al. [7]; 
Akhir et al. [8,10,11]; Othman and Abdullah [14] and Yousif and Evans [17]. The 
basic idea of the half-sweep iterative methods is to reduce the computational 
complexities during iteration process, since the implementation of the half- sweep 
iterations will only consider nearly half of all interior node points in a solution 
domain respectively. 
 In this article, we study the effectiveness of using the four Point-EDGGS 
method by using second order finite difference approximate equation for solving 
problem (1). To show the capability of the four Point-EDGGS method, let us 
consider the following two-dimensional Helmholtz equation with dirichlet 
boundary conditions on [ ]20,1Ω = .  
 

( ) ( )
( ) ( ) ( )

2 2

2 2

, , ,

, , ,

,U x y G x y

U U U f x y x y
x y

x y

α

=

∂ ∂+ − = ∈Ω
∂ ∂

∈Ω                               (1)   

 
subject to the dirichlet boundary condition and statisfy the exact solution 
( ) ( ) ( ), , , ,U x y G x y x y D D= ∈ = ∂ . Where ( ),f x y is given function with suffi- 

icient smoothness and α  is the nonnegative constant.  
 The outline of this article is organized as follows. In Section 2, the formula- 
tion of the full- and half-sweep finite difference approximation equations will be 
elaborated. The latter section of this article will discuss the formulations and 
derivation of the four Point-EGGS as well as four Point-EDGGS, and some 
numerical results will be shown in fourth section to assert the performance of the 
proposed methods. Besides that, analysis on computational complexity is 
mentioned in Section 4. Meanwhile, conclusions and open problems are given in 
Section 5 and 6 respectively. 
  
 
2 Second Order finite difference approximations equations 
 

When Eq. (1) is solved by finite difference approximations equation, the 
most commonly used approximation is the standard full-sweep five points stencil 
can be written as, 

 

( )2 2
, ,1, 1, , 1 , 1 ,4 i j i ji j i j i j i jU U U U h U h fα− + − ++ + + − + =               

(2)
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Apart from Eq. (2), another type of approximation can be derived from the rotated 
finite difference approximation, which can be obtained by rotating x-y axis 
clockwise 45ο (Dahlquist and Bjorck, [16]). Thus the rotated finite difference 
approximation of Eq. (1) can be easily expressed as 
 

( )2 2
, ,1, 1 1, 1 1, 1 1, 1 ,4 2 2i j i ji j i j i j i jU U U U h U h fα+ + − − + − − ++ + + − + =

     (3) 
 

    
Now it can be clearly seen that application either Eq. (2) or (3) to each 

internal mesh point will result a large and sparse linear system where A and f are a 
square nonsingular matrix with a column matrix, respectively.  
 
        ,

~ ~
U fA =                        (4) 

where A and f are a square nonsingular matrix with a column matrix, respectively. 
While 

~
U  is a column matrix. The solution of Eq. (4) can be obtained by direct or 

iterative method. Since the equation is large and sparse, the iterative method is 
suitable to solve this type of problem and it can be solved by point block iterative 
methods; see Abdullah [1].  
 
 
3 Formulations of the GS Iterative Methods 
 
As mentioned above, four Point-EGGS and four Point-EDGGS iterative methods 
will be applied to solve linear system generated form discretization of the problem 
(1), as shown in Eq.(4). Let the coefficient matrix, A be decomposed into form of 
 
       A D L V= − −                        (5) 
 
where D, L and V are the diagonals, negative lower triangulation and negative 
upper triangulation matrices, respectively. The methods for solving Eq. (1) can be 
classified into two categories which are direct and iterative methods. Gauss 
elimination and LU factorization are some examples of the direct methods to 
solve system of linear algebraic equations. Meanwhile, in this article we are 
focusing on iterative linear system solvers. According to Young [5,6], the usage 
of the iterative methods has the advantage since the matrix A is not distorted 
during the computation and the problem of the accumulation of rounding errors is 
less staid than direct methods.  Based on Eq. (5), the general scheme for four 
Point-EGGS and four Point-EDGGS iterative methods can be written as 
 

      
( ) ( ) ( )11

~ ~ ~

k kU D L V U f−+ ⎛ ⎞= − +⎜ ⎟
⎝ ⎠                   (6) 
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Actually, the iterative methods attempt to find a solution to the system of linear 
equations by repeatedly solving the linear system using approximations to the 
vector 

~
U .  Iterations for four Point-EGGS and four Point-EDGGS iterative 

methods continue until the solution is within a predetermined acceptable bound on 
the error.  
 
 
3 Formulations of the Four point block iterative methods 

 
In general, implementation of this method will be imposed onto solid node points 
in Figure 1 and 2 till the convergence test criterion will be met. Afterward 
approximate values of the remaining node points at the finite difference networks 
as shown in Figures 2 will be also calculated directly by using the same steps in 
the finite difference scheme; see, e.g., (Abdullah [1]; Ibrahim and Abdullah [2]; 
Sulaiman et al. [7]; Akhir et al. [8,10,11,12]; Othman and Abdullah [14]; Yousif 
and Evans [17]) and the references therein. For comparison purpose, this paper 
will also consider other two point iterative methods such as FSGS and HSGS 
iterative methods. Again these two point iterative methods basically will be 
formulated by using the corresponding finite difference approximation equations 
in Eq. (2) till (3). 
 
3.1 Implementation of Four point-EGGS Iterative Method 
 

 
 

Figure 1: Implementation of the four point-EGGS iterative method at solution 
domain m=16. 
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For reason of formulation four Point-EDGGS iterative method, let consider a 
complete group of four points (4x4). By considering Eq. (1), this method can be 
generally expressed as  
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where, 
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Now by determining the inverse matrix of Eq. (7), the four point-EG method 

can be generally shown as 
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where, 
 

( )( ) ( )

( ) ( )

22 2 2

1 1 4 2 2 3

1 2 1 2

2 4 6 ,

, ,
2 , 2 .a b

h h r h

a S S a S S
S a a S a a

β α α= + + +

= + = +

= + = +

 

 
Generally, the 4 Point-EGGS algorithm to solve problem (1) on Ω  described as 
follows:  

1.  Divide the solution domain into one type as in Figure 1. Compute the 
values of h2. 

2.  Iterate the intermediate solution 
~
U  of point type ● using Eq. (3) 

   ( )2 2
, ,1, 1, , 1 , 1 4 i j i ji j i j i i jU U U U h U h fα− + − ++ + + − + =
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  3. Check the convergence. Otherwise repeat the iteration cycle (i.e., go to    

step 2)  
     4. Stop    
Further details of the method can be found in (Abdullah [1]; Evans [3]; Akhir et al. 
[9]) 
 
 
3.2 Implementation of Four Point-EDGGS Iterative Method 
 
 

 
 

 
Figure 1: Implementation of the four point-EDGGS iterative method at solution 
domain m=16. 
 
Let assume that the solution at any group of four points, (4x4). From Eq. (1), this 
method can be expressed in the following system of linear algebraic equations  
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where, 
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By splitting Eq. (6) this linear system can be written to a decoupled group of (2×2) 
linear systems, which are independently for each other. The four point-EDGGS 
iterative method can be easily shown as 
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2
24 2 1.hαβ ⎛ ⎞

⎜ ⎟
⎝ ⎠
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In this method, the Ω  is divided into two types of points (i.e. ● and ○) as shown 
in Figure 2. The solutions on any group of points (either ● or ○) can only be 
implemented by only involving the same type of point. The four point-EDGGS 
algorithm may be described as follows  

1. Divide the solution domain into two types as in Figure 2. Compute the 
values of 2h2. 

2.  Iterate the intermediate solution 
~
U  of point type ● using Eq. (3) 

( )2 2
, ,1, 1 1, 1 1, 1 1, 1 4 2 2i j i ji j i j i j i jU U U U h U h fα+ + − − + − − ++ + + − + =

 
 
3. Check the convergence. If converge evaluate the rest of points (i.e., ○)  
using, 
 

 

( )2 2
, ,1, 1, , 1 , 13.1 4 i j i ji j i j i i jU U U U h U h fα− + − ++ + + − + =

 

 
 respectively. Otherwise repeat the iteration cycle (i.e., go to step 2) 

   4. Stop  
The method was introduced by Abdullah [1] and the details of the method can be  
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found (Ibrahim and Abdullah [2]; Akhir et al. [10, 12]; Yousif and Evans [17]) 

 
 

4 Numerical Simulations 
 
In order to verify the effectiveness of the proposed methods, several numerical 
tests were carried out on the following two-dimensional Helmholtz equations 
problem. In comparison, the Full-Sweep Gauss-Seidel (FSGS) method acts as the 
control of comparison of numerical result. Three criteria such as number of 
iterations, execution time and maximum absolute error will be considered in 
comparison for FSGS. In the following examples, the convergence test for the 
implementation of the iterative methods considered the tolerance error, 1010−=ε .  
Example 1 (Evans [3]) 
 

 
( ) ( )

2 2
2 2

2 2 6 2 , , 0,1 0,1 .U U U x y x y D
x y

α α ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦
∂ ∂+ − = − + ∈ = ×
∂ ∂   

 
with the exact solution 
 

       ( ) 2 2, 2 .U x y x y= +  
 
Example 2 (Evans et al. [4]) 
 

 
( ) ( )

2 2
2 4

2 2 2 12 3 sin , , 0,1 0,2 .U U U x x y x y D
x y

π⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦
∂ ∂+ − = + ∈ = ×
∂ ∂   

 
with the exact solution  
 

        ( ) 4, sin .U x y x y=  
 
Result of numerical experiments, which were obtained from implementations of 
the FSGS, HSGS, four Point-EGGS and four point EDGGS methods for 
Examples 1 and 2, has been recorded in Tables 2-3.  
 
 
5 Computational Complexity Analysis 
 
The computational effort measured by number of computer operations needed to 
obtained a (sufficient accurate) solution by the three methods discussed for 
solving problem (1) can be estimated. Assume the solution domain is large with 

2m number of internal mesh points with 1m n= − . In their iterative process, the  
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four Point-EGGS and four point-EDGGS methods requires ( )21m − and 

( )21 2m −  internal mesh points respectively.  
 Note that our estimate on this computational complexity is based on the 
arithmetic operations performed per iteration and execution time for the 
additions/subtraction (ADD/SUB) and multiplications/divisions (MUL/DIV) 
operations. Hence the number of operations of operations required (excluding 
convergence test and direct solution) for four point-EGGS and four point-EDGGS 
methods as described in Section 3 are respectively given as follows in Table 1, 
 
 
Table 1: Total number of arithmetic operations per iteration for four point-EGGS 
and four point-EDGGS methods. 
 

Methods Iteration Direct 
  ADD/SUB MUL/DIV ADD/SUB MUL/DIV 

4-EG ( )28 4 2 1m k m+ −  ( )24 2 1m k m+ − - - 
4-EDG 22 2m k m+  22 2m k m+  22m  2 2m  

 
Note: k is the number of iterations and 2m  represents ( )1m −  

 
 
6 Conclusion 
 
In the previous section, we present formulation of full-, half, and quarter-sweep 
approximation equations based on the second orders finite difference method can 
easily generate a system of linear algebraic equations as shown in Eq. (4). From 
Tables 2 and 3, clearly show that by applying half-sweep approach can reduce the 
number of iterations compared to FSGS method. Table 4 shows decrement 
percentages number of iterations for four point-EGGS and four point-EDGGS 
methods. Through the surveillance in Tables 2 and 3, we found that application of 
the half-sweep concepts reduces the execution time of the iterative method. 
Meanwhile, decrement percentages of the execution time for HSGS, four 
point-EGGS and four point EDGGS methods compared with FSGS method have 
been summarized in Table 4. In addition, the accuracy approximate solutions for 
four point-EGGS and four point-EDGGS methods are in good agreement 
compared with the FSGS method. For future works, this study will be continued 
to investigate on the use and the development of Modified SOR iterative method 
as an alternative approach to speed up the execution time for solving 
two-dimensional Helmholtz equation (Akhir et. al [9,10]). 
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Table 2:  Comparison of a Number of Iterations, Execution Times (Seconds) and 
Maximum Absolute Error for the Iterative Methods (Example1) at .10=α

  

Mesh size Method 
Numbers of 
Iterations 

Execution Times 
(Seconds) 

Maximum Absolute 
Error 

FSGS 1326 0.26 6.8176e-10 
 32 4-EGGS 640 0.21 3.3181e-10 

4-EDGGS 354 0.09 1.60718e-9 
FSGS 4910 1.38 2.7407e-10 

 64 4-EGGS 2553 0.77 5.5044e-10 
4-EDGGS 1321 0.35 6.8224e-9 
FSGS 18085 15.43 1.1004e-10 

 128 4-EGGS 9426 7.44 1.3653e-10 
4-EDGGS 4902 3.74 2.7410e-9 
FSGS 66177 210.11 4.4067e-10 

256  4-EGGS 34618 107.09 2.2029e-10 
4-EDGGS 18071 56.48 1.1004e-9 

 
 
 
Table 3:  Comparison of a Number of Iterations, Execution Times (Seconds) and 
Maximum Absolute Error for the Iterative Methods (Example 2). 
 

Mesh size Method 
Numbers Of 

Iterations 
Execution Times 

(Seconds) 
Maximum Absolute 

Error 
FSGS 1694 0.34 9.7880e-3 

32 4-EGGS 886 0.28 9.7880e-3 
4-EDGGS 458 0.15 9.7889e-2 
FSGS 6175 1.56 9.7889e-3 

64 4-EGGS 3235 1.01 9.7889e-3 
4-EDGGS 1686 0.52 9.7888e-2 
FSGS 22340 16.8 9.7906e-3 

128 4-EGGS 11848 9.11 9.7906e-3 
4-EDGGS 6159 5.05 9.7888e-2 
FSGS 80028 225.82 9.7923e-3 

256 4-EGGS 42318 124.43 9.7922e-3 
4-EDGGS 23307 62.71 9.7922e-2 
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Table 4: Decrement percentages of the number of iterations and execution time 
for four point-EGGS and four point-EDGGS methods compared with the FSGS 
method. 
 
 
Example Methods Numbers of Iterations (%) Execution Time (%) 

1 4-EGGS 47.69 - 51.73 19.23 - 51.78 
4-EDGGS 72.69 - 73.30 65.38 - 75.76 

2 4-EGGS 46.97 - 47.70  17.64 - 45.77 
4-EDGGS 70.88 - 72.96 55.88 - 72.23 
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