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Abstract. Solving two-point boundary value problems has become a scope of interest 

among many researchers due to its significant contributions in the field of science, engi-

neering, and economics which is evidently apparent in many previous literary publications. 

This present paper aims to discretize the two-point boundary value problems by using 

a quartic non-polynomial spline before finally solving them iteratively with Conjugate Gra-

dient (CG) method. Then, the performances of the proposed approach in terms of iteration 

number, execution time and maximum absolute error are compared with Gauss-Seidel (GS) 

and Successive Over-Relaxation (SOR) iterative methods. Based on the performances 

analysis, the two-point boundary value problems are found to have the most favorable 

results when solved using CG compared to GS and SOR methods. 
 
MSC 2010: 34B05 

Keywords: two-point boundary value problems, quartic non-polynomial spline, Conjugate 

Gradient, Successive Over-Relaxation, Gauss-Seidel 

1. Introduction 

Numerical methods have numerous significances in the field of sciences, 

economics, and engineering, and one of them when it comes to the solution of two-

point boundary value problems which involve finding an approximate solution 

iteratively, as it will be time-consuming to solve them with analytical method. 

Some of the contributions of numerical methods related to the two-point boundary 

value problems include the modelling of chemical reactions and the modelling 

of heat transfer, such as in rocket thrust chamber liners and in the fuel elements for 

nuclear reactors as discussed by Ozisik [1]. On the other hand, Goffe [2] mentioned 

the modelling of the growth theory, capital theory, investment theory, resource 

economics and labor economics in the field of economics. Prior to these, many 

researchers had attempted to initiate different methods in order to accelerate 

the approximate solution when solving the problems and this can be abundantly 



H. Justine, J.V.L. Chew, J. Sulaiman 42 

found in previous literary publications. Some of the methods that were readily 

apparent are the Newton-EGMSOR method [3], the EADM method [4], the shoot-

ing method [5], the PTI method [6], the nonlinear shooting method [7], the mean 

weight method [8], the finite difference, the finite element and the finite volume 

method [9] and the spline method [10, 11]. Despite all these methods, the solution 

in this paper was given focus based on the discretization of the quartic non-

polynomial spline together with the Conjugate Gradient (CG) iterative method. 

Moreover, there are many other iterative methods which are thoroughly dis-

cussed by Kelly [12], Burgerscentrum [13], Hestenes and Stiefel [14], Saad [15], 

Hackbush [16] and Young [17, 18]. According to Ibrahim and Abdullah [19], and 

Yousif and Evans [20], there are several numbers of the iterative methods family 

with a different concept, and they emphasized the concept of block iteration. 

In addition to that, Ul-Islam et al. [21], Ramadan et al. [22], Siddiqi et al. [23] have 

provided the basis for this paper at a different degree of splines to solve the two-

point boundary value problems. In regards to the advantages of the CG iterative 

method and the spline approach as highlighted in [14] and [21-23] respectively, 

this present paper aims to develop a solution for the problems by using a quartic 

non-polynomial spline together with the CG iterative method. As for comparison 

purposes, Successive Over-Relaxation (SOR) and Gauss-Seidel (GS) were set as 

control methods so that the performances of the CG method can be determined 

in respect to its iteration number, execution time and maximum absolute error. 

2. Two-point boundary value problems 

Generally, the two-point boundary value problems can be expressed as Eq. (1) 

and subject to boundary conditions (2) as follows: 

 ],,[),()(')('' baxxgyxqyxfy ∈=++  (1) 

 2
)(,)( AbyAay ==

1  (2) 

where ),(xf  )(xq  and )(xg  are known functions restricted by boundary ],[ ba  and 

,
i

A 2,1=i  is a constant. The solution for problem (1) cannot be obtained through 

a random selection of functions ),(xf  )(xq  and )(xg  due to the restrictions held 

by the boundary conditions (2). Furthermore, the process for discretization of prob-

lem (1) is made simpler by assuming positive integer ,2
p

m = 2≥p  and letting 

the solution domain, ],[ ba  be divided uniformly into a uniform separation of nodes 

set or subinterval, ,m  as shown in Figure 1. Then, the length of the uniform 

subintervals, x∆  can be defined as: 

 .1, −==
−

=∆ mnh
m

ab
x  (3) 
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Fig. 1. Distribution of node point for domain solution  m = 8 

Moreover, the solution domain in Figure 1 was used to develop a uniform grid 

of a/the network as shown in Figure 2 for the derivation of the spline function, and 

the grid points in the solution domain were labeled as ,ihax
i
+=  mi ,,2,1,0 K=  

with function )(xy  denoted as .)(
ii
yxy =  The formulation and implementation of 

the GS, SOR and CG iterative method were then conducted based on the interior 

grid points until the convergence test is satisfied. 
 

 

Fig. 2. Illustration of non-polynomial spline function for domain solution  m = 8 

3. Quartic non-polynomial spline approximation equation 

The general form of the non-polynomial spline can be expressed as follows: 

 ( ) ( ) [ ] ,,,2,1,0,,,
1

nixxxxQxS
iii

L=∈=
+

 (4) 

and it was used to discretize the problem (1) so that the approximation equation can 

be constructed as a system of linear equations in a matrix form. This discretization 

process was conducted by assuming )(xy  as the exact solution for problem (1) and 

i
S  as the quartic non-polynomial spline approximation to )(

ii
xyy =  obtained from 

the mixed splines )(xQ
i

 as shown in Figure 2 which passing through the points 

),(
ii

Sx  and ),(
11 ++ ii

Sx . Based on Eq. (4), the quartic non-polynomial spline can be 

expressed in ( )xQ
i

 as: 
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  ( ) ,)()()(sin)(cos
2

iiiiiiiiii
exxdxxcxxkbxxkaxQ +−+−+−+−=  (5) 

where 
iiii

dcba ,,,  and 
i
e  are constants for ni ,,2,1,0 K=  and k  is a free parame-

ter [19]. The function ( )xQ
i

 interpolates )(xy  at the points 
i
x  by depending on k  

and reducing to quartic spline in ],[ ba  as .0→k  

Then, in order to obtain the necessary conditions for all the constants 

iiii
dcba ,,,  and, ,

i
e  the function )(xQ

i
 has been satisfied at 

i
x  and ,

1+i
x  at boundary 

conditions (2) and at the continuity of the common nodes at ),(
ii
yx  of first, second 

and third derivatives. Before deriving the expression for all the coefficients of (6) 

in terms of 
iiiii

SDDFF ,,,,
11 ++

 and ,
1+i

S  we first define the function ( )xQ
i

 at second 

and fourth derivatives as: 
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After performing a straightforward calculation, all the values (7) of constant 

iiii
dcba ,,,  and, 

i
e  were obtained as follows: 
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where hk=θ  and .,..,2,1,0 Ni =  

Now that all the values of constant 
iiii

dcba ,,,  and, 
i
e  were obtained, we then 

use the continuity conditions (2) of the quartic spline 
i
S  at its first and third deriva-

tives at the point ),(
ii

Sx  where the two quartics )(
1
xQ

m

i-  and )(xQ
m

i
 join, and this 

relation can be written as: 

)()(
1

xQxQ
m

i

m

i
=

−
, 

where the degree of the derivative is .1,0=m  
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Based on Eqs. (5) and (7), the relation at the first derivative (8) and the third 

derivative (9) can be expressed in following form: 

11- +
++

iii
FFF 2   (8) 
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Upon subtraction of Eqs. (8) and (9), it yields the following equation: 

 S
hcos2h+2h

θsin 4k
S

hcos2h+2h

8k
   

S
hcos2h+2h

sinθ4k

cos2h 2h 

sinkhcos2hk2hk
   

cos2h2h

sinkhsin4kcos2 2
 

cos2h 2h 

sin2hsin8kcos44

1-i2

3

i2

3

1i2

3

1-

3222

32232

θθθθ

θ

θθθθ

θθθ

θθ

θθθ

θθ

θθθ

sinsin

sin

sinsin

sin4

sinsin

2

12

2

2

22

kk

k
D

kh

k

D
kh

hkhk
D

kh

khkhk

i

ii

+−

+

+−

−

+−

+

++−

−+−
−

++−

−+−
−

++−

−−+
=

+

+

 

Then, a system of linear equations is constructed based on (10) in the following 

form: 
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4. Algorithm of CG method 

The CG iterative method was first discussed by Hestenes and Stiefel [14] as 

mentioned earlier, and this iterative method will converge in less than or equal to 

the size of the matrix itself in the absence of round-off error, with the assumption 

that matrix A  in (11) is symmetric and positive definite. In fact, this method sur-

passed the Gauss elimination method. In addition to that, the CG method is much 

simpler to code when it comes to computer programming and requires less storage 

space due to its ability to maintain the particular matrix throughout the implemen-

tation and improvement which occur at each step of the estimations. In other 

words, the original data can be used to its maximum. Owing to these advantages of 

the CG method, the present paper aims to examine its performances in comparison 

with another two iterative methods which are Successive Over Relaxation (SOR) 

and Gauss-Seidel (GS) when solving the two-point boundary value problems using 

the quartic non-polynomial scheme. 

By referring to (11), the CG method can be formulated by computing the 

sequence of n  vectors 
110

,,,
−n

ppp K  which are elements of n

R  that satisfy the 

following conditions 

 
jipAp j

T
i ≠= ,0

 (12) 

and at the same time matrix A  is assumed as nn×  symmetrical matrix. As for 

method GS and SOR, the formulation begins by decomposing the matrix A  as 

 ULDA ++=  (13) 

where D  is a diagonal matrix, L  is a lower triangular matrix and U  is upper tri-

angular matrix. Upon imposing (13) onto (11), the formulation of GS and SOR 

methods can be written as (14) and (15) respectively. 

 







+−++−= −+

~

)(

~

1)(

~

)1(

~
)()1( FyULDyy

kkk
ωω  (14) 

 FDLyULDy
k 1

~

1)1(

~
)()(
−−+

+++−=  (15) 

To facilitate the convergence rate of the SOR method, the value of the parame-

ter ω  must be obtained first through several computer programs in the range of 

.21 ≤≤ω  The optimal value of the parameter ω  is selected based on the smallest 

iterations number. As for the GS method, the value of the parameter is equal to one 

if we reduce (14) to the GS method. Since both the GS and SOR methods are 

implemented for comparison purpose only, therefore only the algorithm for the CG 

method is presented. 
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The Algorithm of CG Method 

i. Initialize 
0
x . 

ii. Compute the residual 
00
xAfr −=  and choose a direction of 

000
xfArp −= . 

iii. Obtain the new 
i
x , 

ii
xAfr −=  and the direction 

i
p  then compute the new 

estimate 
1+i

x  and its residual 
1+i

r  by using the formulas 

i

T

i

i

T

i

i

pAp

rr
=α , 

iiii
pxx α+=

+1
,

iiii
pArr α−=

+1
 

iv. Next find the direction of 
1+i

p  by using the formulas and repeat step (iii) 

iiii
prp β−=

++ 11
 where 

i

T

i

i

T

i

i

rr

rr
11 ++

=β  

v. Check the convergence. If yes, go to step (vi). Otherwise go back to step (iii). 

vi. Display the approximate solutions. 

4. Numerical experiment 

In order to verify the performances of the CG iterative method, a numerical 

experiment is conducted by solving the following two-point boundary value prob-

lems [8]. 

 

Problem 1 

 ]1,0[),1cosh(44 ∈=−′′ xyy  (16) 

given that the exact solution for problem (16) is  

).1cosh()12cosh()( −−= xxy  

Problem 2 

 ]1,0[),3sin(9
2

2

∈=− xx
dx

yd
  (17) 

with its exact solution given by 

)3sin( x  

The analysis and results of the performances in terms of iterations number (Iter), 

execution time (Second) and maximum absolute error (MAE) for Problem 1 and 

Problem 2 are presented and discussed in the next section. 
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5. Result and discussion 

Based on the numerical experiment, the performances results of Problem 1 and 

Problem 2 are successfully tabulated in Table 1 and 2, respectively. Both tables 

show that as the matrix sizes increasing, the iterations number generated by the 

three iterative methods are also increasing. This is due to the accumulated round-

off error that occurred at every iteration. However, it can be observed that the CG 

iterative method performs better than SOR and GS iterative methods as the matrix 

sizes are being incremented, and this is evidently presented through the difference 

of iterations number, execution time and maximum absolute error at different 

matrix sizes (128, 256, 512, 1024 and 2048). 

Other than lesser iterations number, the CG iterative method also requires 

shorter execution time in order to iterate and converge to the exact solution, when 

solving the two-point boundary value problems. In fact, by going down the tables, 

the performances of the CG iterative method can be seen improving over SOR and 

GS methods for different matrix sizes especially the accuracy which given by 

maximum absolute error. This indicates that CG iterative method can cope with 

the accumulated round-off error better than SOR and GS method when solving 

the two-point boundary value problems together with the quartic non-polynomial 

spline scheme. Hence, it can be stated that CG iterative method has better perform-

ances compared to SOR and GS iterative methods when solving the problems. 

Table 1 

Comparison of GS, SOR and CG iterative methods in terms of iterations 

number (Iter), execution time (Seconds) and maximum 

absolute errors (MAE) for Problem 1 

Matrix 

Sizes 

Method 

128 256 512 1024 2048 

Iterations Number 

GS 

SOR 

CG 

18173 

382 

65 

66139 

807 

129 

238353 

1438 

257 

848604 

2821 

513 

2975185 

5367 

1025 

Execution Time 

GS 

SOR 

CG 

14.40 

1.52 

0.16 

49.09 

1.45 

0.54 

168.88 

3.95 

1.44 

662.96 

6.32 

2.31 

83318.09 

8.75 

2.62 

Maximum Absolute Error 

GS 

SOR 

CG 

1.1788e-07 

4.0171e-10 

1.1833e-10 

4.7242e-07 

5.8395e-09 

7.2046e-12 

1.8899e-06 

4.3379e-09 

1.8359e-13 

7.5601e-06 

9.6408e-09 

2.1296e-12 

3.0241-e05 

1.8447-e08 

8.1399e-12 
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Table 2 

Comparison of GS, SOR and CG iterative methods in terms of iterations 

number (Iter), execution time (Seconds) and maximum 

absolute errors (MAE) for Problem 2 

Matrix 

Sizes 

Method 

128  256 512 1024 2048 

Iterations Number 

GS 

SOR 

CG 

25950 

735 

128 

94591 

976 

256 

341534 

2703 

512 

 1218827 

5174 

1024 

4286118 

9181 

2048 

Execution Time 

GS 

SOR 

CG 

37.06 

1.68 

0.57 

88.40 

2.59 

1.14 

325.63 

4.12 

1.60 

1220.80 

7.35 

1.99 

6231.12 

13.76 

4.21 

Maximum Absolute Error 

GS 

SOR 

CG 

1.6485e-07 

2.6789e-09 

1.0363e-09 

6.6388e-07 

6.9686e-10 

6.4801e-11 

2.6560e-06 

1.4228e-08 

4.1241e-12 

1.0624e-05 

2.8422e-08 

1.1072e-13 

4.2498e-05 

5.1772e-08 

5.3167e-12 

6. Conclusion 

In conclusion, an approximate equation to solve two-point boundary value prob-

lems was successfully developed based on a quartic non-polynomial spline so that 

a system of linear equations can be constructed. Then, this linear system was 

solved by using three iterative methods which are the GS, SOR and CG iterative 

methods. Based on the results of performances experiment, the CG method was 

found to be superior compared to the GS and SOR method, and it is evidently 

proven through the comparison shown by the CG method in terms of iterations 

number, execution time and maximum absolute error at different respective matrix 

sizes. Therefore, it can be summarized that, the approximate solution obtained from 

the discretization of two-point boundary value problems by using the quartic non- 

-polynomial scheme to form a linear system is best solved with the CG iterative 

method. 
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