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Abstract

Let Σ denote the class of bi-univalent functions inD = {z ∈ C : |z| < 1}.
In this paper, we consider two subclasses of Σ defined in the open unit
disk D which are denoted by S∗s,Σ(φ) and Cs,Σ(φ). Besides, we find up-
per bounds for the second and third coefficients for functions in these
subclasses.
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1 Introduction

Let A denote the class of functions f(z) normalized by the following Taylor-
Maclaurin series:

f(z) = z +
∞∑
n=2

anz
n, z ∈ D (1)

which are analytic in the open unit disk D = {z ∈ C : |z| < 1}. Further, let S
denote the subclass of functions in A which are univalent in D. Some of the
important and well-investigated subclasses of S include the class of starlike
functions and the class of convex functions which are denoted by S∗ and C
respectively. By definition, we have

S∗ =

{
f : f ∈ A and Re

(
zf ′(z)

f(z)

)
> 0, z ∈ D

}
(2)

and

C =

{
f : f ∈ A and Re

(
1 +

zf ′′(z)

f ′(z)

)
0, z ∈ D

}
(3)

It readily follows from definitions (2) and (3) that

f(z) ∈ C ⇐⇒ zf ′(z) ∈ S∗. (4)

The Koebe one-quarter theorem [4] states that the image of D under every
function f(z) from S contains a disk of radius 1

4
. Thus every function f(z) ∈ S

has an inverse f−1(f(z)) defined by f−1 (f(z)) = z (z ∈ D) and

f
(
f−1(w)

)
= w

(
|w| < r0(f); r0(f) ≥ 1

4

)
.

In fact, the inverse function f−1(w) is given by

f−1(w) = w − a2w
2 + (2a2

2 − a3)w3 − (5a3
2 − 5a2a3 + a4)w4 + · · · . (5)

A function f(z) ∈ A is said to be bi-univalent in D if both f(z) and f−1(w) are
univalent in D. Let Σ denote the class of bi-univalent functions given by the
Taylor-Maclaurin series expansion (1). Some examples of function in the class
Σ are z

1−z ,− log(1− z) and 1
2

log
(

1+z
1−z

)
. However, the familiar Koebe function

is not a member of Σ. Other examples of function in S such as z− z2

2
and 1

1−z2
are also not members of Σ.

Lewin [5] investigated the class Σ and showed that |a2| < 1.51. Subse-
quently, Brannan and Clunie [1] conjectured that |a2| ≤

√
2 for f ∈ Σ. Ne-

tanyahu [7], on the other hand, showed that maxf∈Σ |a2| = 4
3
. Brannan and

Taha [2] introduced certain subclasses of Σ similar to the familiar subclasses
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of S consisting of strongly starlike, starlike and convex functions. They intro-
duced bi-starlike functions and obtained estimates on the initial coefficients.
The coefficient estimate problem for each of the following Taylor-Maclaurin
coefficients:

|an| (n ∈ N\{1, 2};N := 1, 2, 3, . . .)

is still an open problem.

If the functions f(z) and g(z) are analytic in D then f(z) is said to be
subordinate to g(z) written as f(z) ≺ g(z), (z ∈ D) if there exists a Schwarz
function w(z), analytic in D, with w(0) = 0, |w(z)| < 1, (z ∈ D) such that
f(z) = g(w(z)), (z ∈ D).

In [6], the authors introduced the class S∗(φ) of Ma-Minda starlike func-
tions and the class C(φ) of Ma-Minda convex functions, unifying previously
studied classes related to starlike and convex functions. The class S∗(φ) con-

sists of all the functions f ∈ A satisfying the subordination zf ′(z)
f(z)

≺ φ(z)

whereas C(φ) is formed with functions f ∈ A for which the subordination

1+ zf ′′(z)
f ′(z)

≺ φ(z) holds. The function φ is analytic and univalent function with

positive real part in D with φ(0) = 0, φ′(0) > 0 and φ maps the unit disk D
onto a region starlike with respect to 1 and symmetric with respect to the real
axis. Taylor’s series expansion of such function is of the form

φ(z) = 1 +B1z +B2z
2 +B3z

3 + ... (6)

where all coefficients are real and B1 > 0.

In [10], Sakaguchi introduced the class S∗s of starlike functions with re-
spect to symmetric points in D, consisting of functions f ∈ A that satisfy the
condition

Re

(
zf ′(z)

f(z)− f(−z)

)
> 0, z ∈ D

and in [3], Das and Singh introduced the class Cs of convex functions with
respect to symmetric points in D, consisting of functions f ∈ A that satisfy
the condition

Re

(
(zf ′(z))′

(f(z)− f(−z))′

)
> 0, z ∈ D.

Motivated by the earlier works of [10], [3] and [6] and considering functions
f ∈ Σ, this paper introduce two subclasses of Σ and find estimates on the
coefficients |a2| and |a3| for functions in these subclasses.
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2 Preliminary Result and Definitions

In order to derive our main results, we need the following lemma.

Lemma 2.1. ([9]) If p(z) ∈ P then |pk| ≤ 2 for each k, where P is the
family of all functions p(z) analytic in D for which Re(p(z)) > 0, p(z) =
1 + p1z + p2z

2 + ... for z ∈ D.

Definition 2.1. A function f(z) ∈ Σ is said to be in class S∗s,Σ(φ) if the
following subordinations hold:

zf ′(z)

f(z)− f(−z)
≺ φ(z) (7)

and
wg′(w)

g(w)− g(−w)
≺ φ(w) (8)

where g(w) = f−1(w) is given by (5).

Definition 2.2. A function f(z) ∈ Σ is said to be in class Cs,Σ(φ) if the
following subordinations hold:

(zf ′(z))′

(f(z)− f(−z))′
≺ φ(z) (9)

and
(wg′(w))′

(g(w)− g(−w))′
≺ φ(w) (10)

where g(w) = f−1(w) is given by (5).

3 Main Results

For functions in the class S∗s,Σ(φ), the following result is obtained.

Theorem 3.1. If f ∈ S∗s,Σ(φ) is given by (1) then

|a2| ≤
B1

√
B1√

2 |B2
1 + 2(B1 −B2)|

(11)

and

|a3| ≤
1

2
B1

(
1 +

1

2
B1

)
. (12)
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Proof. Let f ∈ S∗s,Σ(φ) and g = f−1. Then there are analytic functions
u, v : D → D, with u(0) = v(0) = 0, satisfying

zf ′(z)

f(z)− f(−z)
= φ(u(z)) (13)

and
wg′(w)

g(w)− g(−w)
= φ(v(w)). (14)

Define the functions r1 and r2 by

r1(z) =
1 + u(z)

1− u(z)
= 1 + c1z + c2z

2 + ...

and

r2(z) =
1 + v(z)

1− v(z)
= 1 + b1z + b2z

2 + ...

or equivalently

u(z) =
r1(z)− 1

r1(z) + 1
=

1

2

(
c1z +

(
c2 −

c2
1

2

)
z2 + ...

)
(15)

and

v(z) =
r2(z)− 1

r2(z) + 1
=

1

2

(
b1z +

(
b2 −

b2
1

2

)
z2 + ...

)
. (16)

Then r1 and r2 are analytic in D with r1(0) = 1 = r2(0). Since u, v : D → D,
the functions r1 and r2 have a positive real part in D and |bi| ≤ 2 and |ci| ≤ 2.
In view of (13)-(16), clearly

zf ′(z)

f(z)− f(−z)
= φ

(
r1(z)− 1

r1(z) + 1

)
(17)

and
wg′(w)

g(w)− g(−w)
= φ

(
r2(w)− 1

r2(w) + 1

)
. (18)

Using (15) and (16) together with (6), it is evident that

φ

(
r1(z)− 1

r1(z) + 1

)
= 1 +

1

2
B1c1z +

(
1

2
B1

(
c2 −

c2
1

2

)
+

1

4
B2c

2
1

)
z2 + ... (19)

and

φ

(
r2(w)− 1

r2(w) + 1

)
= 1 +

1

2
B1b1w +

(
1

2
B1

(
b2 −

b2
1

2

)
+

1

4
B2b

2
1

)
w2 + ... (20)
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Since f ∈ Σ has the Maclaurin series given by (1), a computation shows that
its inverse g = f−1 has the expansion

g(w) = f−1(w) = w − a2w
2 + (2a2

2 − a3)w3 − (5a3
2 − 5a2a3 + a4)w4 + · · · .

Since
zf ′(z)

f(z)− f(−z)
= 1 + 2a2z + 2a3z

2 + ...

and
wg′(w)

g(w)− g(−w)
= 1− 2a2w + 2(2a2

2 − a3)w2 + ...

it follows from (17)-(20) that

2a2 =
1

2
B1c1 (21)

2a3 =
1

2
B1

(
c2 −

c2
1

2

)
+

1

4
B2c

2
1 (22)

−2a2 =
1

2
B1b1 (23)

and

2(2a2
2 − a3) =

1

2
B1

(
b2 −

b2
1

2

)
+

1

4
B2b

2
1 (24)

From (21) and (23), it follows that

c1 = −b1. (25)

Now (21)-(25) yield

a2
2 =

B3
1 (b2 + c2)

8 (B2
1 + 2 (B1 −B2))

which, in view of the inequalities |b2| ≤ 2 and |c2| ≤ 2 for functions with posi-
tive real part, gives us the estimate on |a2| as asserted in (11).

By subtracting (24) from (22), further computation using (21) and (25)
lead to

a3 =
B2

1 (c2
1 + b2

1)

32
+
B1 (c2 − b2)

8

and this yields the estimate given in (12). The proof of Theorem 3.1 is com-
pleted.

The result in Theorem 3.1 is similar to Theorem 2.3 in [8] if α = 0.

By using the similar approach as Theorem 3.1, we obtain the following re-
sult for functions f ∈ Cs,Σ(φ).
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Theorem 3.2. If f ∈ Cs,Σ(φ) is given by (1) then

|a2| ≤
B1

√
B1√

2 |3B2
1 + 8(B1 −B2)|

(26)

and

|a3| ≤
1

2
B1

(
1

3
+

1

8
B1

)
. (27)

Proof. Let f ∈ Cs,Σ(φ) and g = f−1. Then there are analytic functions
u, v : D, with u(0) = v(0) = 0, satisfying

(zf ′(z))′

(f(z)− f(−z))′
= φ(u(z)) (28)

and
(wg′(w))′

(g(w)− g(−w))′
= φ(v(w)). (29)

Since
(zf ′(z))′

(f(z)− f(−z)′)
= 1 + 4a2z + 6a3z

2 + ...

and
(wg′(w))′

(g(w)− g(−w))′
= 1− 4a2w + 6(2a2

2 − a3)w2 + ...

it follows from (19), (20), (28) and (29)that

4a2 =
1

2
B1c1 (30)

6a3 =
1

2
B1

(
c2 −

c2
1

2

)
+

1

4
B2c

2
1 (31)

−4a2 =
1

2
B1b1 (32)

and

6(2a2
2 − a3) =

1

2
B1

(
b2 −

b2
1

2

)
+

1

4
B2b

2
1 (33)

From (30) and (32), it follows that

c1 = −b1. (34)

Equations (30)-(34) yield

a2
2 =

B3
1 (b2 + c2)

8 (3B2
1 + 8 (B1 −B2))
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which, in view of the inequalities |b2| ≤ 2 and |c2| ≤ 2 for functions with posi-
tive real part, gives the estimate on |a2| as asserted in (26).

Further computation using (30)-(34) lead to

a3 =
B2

1 (b2
1 + c2

1)

128
+
B1 (c2 − b2)

24

and this yields the estimate given in (27). The proof of Theorem 3.2 is com-
pleted.

The result in Theorem 3.2 is similar to Theorem 2.3 in [8] if α = 1.

For functions in the class S∗s,Σ(φ), we obtained the result on Fekete-Szegö
inequalities as follows.

Theorem 3.3. Let f given by (1) be in the class S∗s,Σ(φ) and µ ∈ <. Then

∣∣a3 − µa2
2

∣∣ ≤


B1

2
, |µ− 1| ≤

∣∣∣1 + 2
(
B1−B2

B2
1

)∣∣∣
|1−µ|B3

1

2|B2
1+2(B1−B2)| , |µ− 1| ≥

∣∣∣1 + 2
(
B1−B2

B2
1

)∣∣∣
Finally, we give the result on Fekete-Szegö inequalities for functions in the

class Cs,Σ(φ).

Theorem 3.4. Let f given by (1) be in the class Cs,Σ(φ) and µ ∈ <. Then

∣∣a3 − µa2
2

∣∣ ≤


B1

6
, |µ− 1| ≤ 1

3

∣∣∣3 + 8
(
B1−B2

B2
1

)∣∣∣
|1−µ|B3

1

2|3B2
1+8(B1−B2)| , |µ− 1| ≥ 1

3

∣∣∣3 + 8
(
B1−B2

B2
1

)∣∣∣
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