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ABSTRACT 

A numerical solution involving two-point boundary value problems has vast contributions 
especially to formulate problems mathematically in fields such as science, engineering, 
and economics. In response to that, this study was conducted to solve for the second- 
and fourth-order two-point boundary value problems (BVPs) by using cubic and quartic 
non-polynomial spline discretization schemes for full-, half- and quarter-sweep cases. 
The derivation process based on the cubic and quartic non-polynomial spline functions 
were implemented to generate the full-, half- and quarter-sweep cases non-polynomial 
spline approximation equations. After that, the non-polynomial spline approximation 
equations were used to generate the corresponding systems of linear equations in a 
matrix form. Since the systems of linear equations have large and sparse coefficient 
matrices, therefore the linear systems were solved by using the family of Conjugate 
Gradient (CG) iterative method. In order to conduct the performances comparative 
analysis of the CG iterative method, there are two other iterative methods were 
considered which are Gauss-Seidel (GS) and Successive-Over-Relaxation (SOR) along 
with the full-, half- and quarter-sweep concepts. Furthermore, the numerical 
experiments were demonstrated by solving three examples of second- and fourth-order 
two-point BVPs in order to investigate the performance analysis in terms of the number 
of iterations, execution time and maximum absolute error. Based on the numerical 
results obtained from the implementation of the three iteration families together with 
the cubic and quartic non-polynomial spline schemes, the performance analysis of the 
CG iterative method was found to be superior to the GS and SOR iteration families in 
terms of the number of iteration, execution time and maximum absolute error when 
solving the two-point BVPs. Hence, it can be stated that the CG iteration family is more 
efficient and accurate than the GS and SOR iteration families when solving the second- 
order two-point BVPs based on the cubic and quartic non-polynomial spline schemes. 
However, for the fourth-order two-point BVPs, the numerical results have shown that 
the implementation of the CG iteration family over the reduced system of second-order 
two-point BVPs failed to satisfy the convergence iteration criteria. As a result, the SOR 
iteration family is superior to GS iteration family in terms of the number of iteration, 
execution time and maximum absolute error. 
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ABSTRAK 

ANALISIS PRESTASI FAMILI KAEDAH LELARAN KECERUNAN KONIUGAT 
DENGAN SKEMA SPUN TAK POLINOMIAL TERHADAP MASALAH NILAI 
SEMPADAN DUA-TITIKPADA PERINGKAT KEDUA DAN KEEMPA T 

Penye/esaian berangka yang melibatkan masa/ah Mai sempadan dua-t/tik mempunyai 
kepentingan yang melbas untuk merumuskan permasa/ahan tersebut secara matematik 
da/am pe/bagai bidang seperti sains, kejuruteraan dan ekonomi. Sehubungan dengan 
/tu, kajian /ni dija/ankan untuk menye%saikan masalah nilai sempadan dua-tltik dengan 
menggunakan skema Pend/skretan splln tak pollnom/a/ kubik dan kuart/k yang 
merangkumi kes sapuan penuh, separuh dan suku. Proses pendiskretan terhadap fungsi 
spl/n tak pol/nom/a/ kubik dan kuart/k telah dilaksanakan untuk menerb/tkan persamaan 
penghampiran splin bagi ket/ga-t/ga kes sapuan penuh, separuh dan suku. Seterusnya, 
persamaan penghampiran spl/n tersebut digunakan untuk menjana s/stem persamaan 
linear yang sepadanan da/am bentuk matr/k. Memandangkan s/stem persamaan linear 
tersebut mempunyai pekal/ matr/ks yang berska/a besar, maka s/stem persamaan linear 
tersebut d/se%saikan dengan menggunakan fam/l/ kaedah /e/aran Kecerunan Konjugat 
(KK). Bagi menja/ankan anal/s/s perbandingan prestasi terhadap famili kaedah /e/aran 
KK, terdapat dua famili kaedah lelaran lain yang turut dija/ankan /a/tu fam/l/ kaedah 
le/aran Gauss-Seidel (GS) dan Pengenduran Berlebihan Berturut--turut (PBB) bersama 
dengan konsep sapuan penuh, separuh dan suku. Selanjutnya, uj/an berangka to/ah 
d/demonstras/kan dengan menyelesa/kan tiga permasa/ahan Mai sempadan dua-t/tik 
bag/ setiap peringkat kedua dan keempat untuk mengkaji anal/s/s prestasi dar/ aspek 
Mangan lelaran, masa lelaran dan ra/at mutlak maks/mum. Berdasarkan keputusan 
ujian berangka ke alas permasalahan tersebut dengan menggunakan famili kaedah 
/e/aran GS, PBS dan KK, famili kaedah lelaran KK to/ah menunjukkan prestasi yang lebih 
ba/k dari aspek Mangan le/aran, masa le/aran dan ra/at mutlak maks/mum berbanding 
dengan prestasi famili kaedah /e/aran GS dan PBB. Justeru /tu, dapat d/nyatakan bahawa 
famili kaedah /e/aran KK ada/ah /eb/h efts/en dan j/tu berband/ng dengan famlll kaedah 
le/aran GS dan SOR da/am menye%sa/kan masalah Mai sempadan dua-tit/k pada 
per/ngkat kedua berdasarkan persamaan penghampiran splln tak pollnomlal kubik dan 
kuart/k. Walaubagaimanapun, da/am kes mass/ah nlla/ sempadan dua-tit/k peringkat 
keempat, keputusan uji berangka menunjukkan bahawa famill kaedah le/aran KK 
bersama dengan pendekatan spun tak polinom/a/ kubik dan kuart/k telah gagal 
memenuhi kr/ter/a penumpuan /e/aran da/am menye%sa/kan mass/ah Mai sempadan 
dua-t/tik peringkat kedua terturun. Sehubungan dengan /tu, d/dapat/ bahawa famlli 
kaedah /e/aran PBB adalah leb/h ba/k berband/ng dengan famili kaedah lelaran GS dar/ 
aspek Mangan le/aran, masa /e/aran dan ralat mutlak maksimum da/am menye%saikan 
masa/ah Mai sempadan dua-66k per/ngkat kedua terturun. 
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