PERFORMANCE ANALYSIS OF THE FAMILY OF CONJUGATE GRADIENT ITERATIVE METHODS WITH NON-POLYNOMIAL SPLINE SCHEME FOR SOLVING SECOND- AND FOURTH-ORDER TWOPOINT BOUNDARY VALUE PROBLEMS

PERTHEMAR
UREVERGITI MIGLAYSIA SABRA

HYNICHEARRY JUSTINE

FACULTY OF SCIENCE AND NATURAL RESOURCES UNIVERSITI MALAYSIA SABAH
 2018

UNIVERSITI MALAYSIA SABAH

BORANG PENGESAHAN STATUS TESIS

JUDUL:

PERFORMANCE ANALYSIS OF THE FAMILY OF CONJUGATE GRADIENT ITERATIVE METHODS WITH NON-POL YNOMIAL SPLINE SCHEME FOR SOLVING SECOND-AND FOURTH-ORDER TWO-POINT BOUNDARY VALUE PROBLEMS

IJAZAH: IJAZAH SARJANA SAINS (MATEMATIK)

Saya HYNICHEARRY JUSIINE, Sesi 2016-2018, mengaku membenarkan tesis [jazah Sarjana ini disimpan di Perpustakaan Universiti Malaysia Sabah dengan syarat-syarat kegunaan seperti berikut:-

1. Tesis ini adalah hak milik Universiti Malaysia Sabah.
2. Perpustakaan Universiti Malaysia Sabah dibenarkan membuat salinan untuk tujuan pengajian sahaja.
3. Perpustakaan dibenarkan membuat salinan tesis ini sebagai bahan pertukaran antara institusi pengajian tinggi.
4. Sila tandakan (/):

(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia seperti yang termaktub di dalam AKTA RAHSIA 1972)

(Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)

TIDAK TERHAD

HYNICHEARRY JUSTINE MS1521009T

Tarikh: 17 April 2018

(Prof. Madya Dr. Jumat Sulaiman) Penyelia

UNIVERSITI MALAYSIA SABAI

DECLARATION

I hereby declare that the material in this thesis is my own, except for the quotations, excerpts, equations, summaries and references, which have been duly acknowledged.

30 August 2017

Hynichearry Justine
MS1521009T

CERTIFICATION

NAME	$:$ HYNICHEARRY JUSTINE
MATRIC NO.	$:$ MS1521009T
TITLE	$:$ PERFORMANCE ANALYSIS OF THE FAMILY OF
	CONJUGATE GRADIENT ITERATIVE METHODS WITH
	NON-POLYNOMIAL SPLINE SCHEME FOR SOLVING
	SECOND- AND FOURTH-ORDER TWO-POINT
	BOUNDARY VALUE PROBLEMS

FIELD : MASTER OF SCIENCE (MATHEMATICS)
DATE OF VIVA : 17 ${ }^{\text {th }}$ January 2018

CERTIFIED BY

SUPERVISOR

Assoc. Prof. Dr. Jumat Sulaiman

ACKNOWLEDGEMENT

I thank the almighty Lord for giving me assurance and perishing me through thick and thin. I could not thank for more for the strength and guidance He has showered unto me throughout my endeavor upon the completion of this thesis.

I respectfully express my deepest gratitude to my supervisor, Assoc. Prof. Dr. Jumat Sulaiman, whose expertise, understanding, and patience, added considerably to my postgraduate experience. I appreciate his vast knowledge and skill in many areas and his assistance in writing this thesis.

A very special thanks goes to my family and relatives especially my father Justine Gosbin for the unendingly financial support. I would also like to use this opportunity to express my gratitude to all my beloved friends for their motivational supports through my entire life. Without their love, motivation and encouragement I would not be able to finish this thesis and reach this stage. It was under their supports that I developed a focus and became interested in this field.

I would also like to extend my sincere thanks to my closest friend Clestus Philip who had supported me thoroughly. I am thankful for his aspiring guidance, invaluably constructive criticism and friendly advice. I am sincerely grateful to him for sharing his truthful and illuminating views on a number of issues related to this thesis. He also provided me with direction, technical support and became more of a mentor and friend, than a professor.

It was though their understanding and kindness that I completed my thesis. I doubt that I will ever be able to convey my appreciation fully, but I owe them my eternal gratitude.

Hynichearry Justine
30 August 2017

Abstract

A numerical solution involving two-point boundary value problems has vast contributions especially to formulate problems mathematically in fields such as science, engineering, and economics. In response to that, this study was conducted to solve for the secondand fourth-order two-point boundary value problems (BVPs) by using cubic and quartic non-polynomial spline discretization schemes for full-, half- and quarter-sweep cases. The derivation process based on the cubic and quartic non-polynomial spline functions were implemented to generate the full-, half- and quarter-sweep cases non-polynomial spline approximation equations. After that, the non-polynomial spline approximation equations were used to generate the corresponding systems of linear equations in a matrix form. Since the systems of linear equations have large and sparse coefficient matrices, therefore the linear systems were solved by using the family of Conjugate Gradient (CG) iterative method. In order to conduct the performances comparative analysis of the CG iterative method, there are two other iterative methods were considered which are Gauss-Seidel (GS) and Successive-Over-Relaxation (SOR) along with the full-, half- and quarter-sweep concepts. Furthermore, the numerical experiments were demonstrated by solving three examples of second-and fourth-order two-point BVPs in order to investigate the performance analysis in terms of the number of iterations, execution time and maximum absolute error. Based on the numerical results obtained from the implementation of the three iteration families together with the cubic and quartic non-polynomial spline schemes, the performance analysis of the CG iterative method was found to be superior to the GS and SOR iteration families in terms of the number of iteration, execution time and maximum absolute error when solving the two-point BVPs. Hence, it can be stated that the CG iteration family is more efficient and accurate than the GS and SOR iteration families when solving the secondorder two-point BVPs based on the cubic and quartic non-polynomial spline schemes. However, for the fourth-order two-point BVPs, the numerical results have shown that the implementation of the CG iteration family over the reduced system of second-order two-point BVPs failed to satisfy the convergence iteration criteria. As a result, the SOR iteration family is superior to GS iteration family in terms of the number of iteration, execution time and maximum absolute error.

Abstract

ABSTRAK

\section*{ANALISIS PRESTASI FAMILI KAEDAH LELARAN KECERUNAN KONJUGAT DENGAN SKEMA SPLIN TAK POLINOMIAL TERHADAP MASALAH NILAI SEMPADAN DUA-TITIK PADA PERINGKAT KEDUA DAN KEEMPAT}

Penyelesaian berangka yang melibatkan masalah nilai sempadan dua-titik mempunyai kepentingan yang meluas untuk merumuskan permasalahan tersebut secara matematik dalam pelbagai bidang seperti sains, kejuruteraan dan ekonomi. Sehubungan dengan itu, kajian ini dijalankan untuk menyelesaikan masalah nilai sempadan dua-titik dengan menggunakan skema pendiskretan splin tak polinomial kubik dan kuartik yang merangkumi kes sapuan penuh, separuh dan suku. Proses pendiskretan terhadap fungsi splin tak polinomial kubik dan kuartik telah dilaksanakan untuk menerbitkan persamaan penghampiran splin bagi ketiga-tiga kes sapuan penuh, separuh dan suku. Seterusnya, persamaan penghampiran splin tersebut digunakan untuk menjana sistem persamaan linear yang sepadanan dalam bentuk matrik. Memandangkan sistem persamaan linear tersebut mempunyai pekali matriks yang berskala besar, maka sistem persamaan linear tersebut diselesaikan dengan menggunakan famili kaedah lelaran Kecerunan Konjugat (KK). Bagi menjalankan analisis perbandingan prestasi terhadap famili kaedah lelaran KK, terdapat dua famili kaedah lelaran lain yang turut dijalankan iaitu famili kaedah lelaran Gauss-Seidel (GS) dan Pengenduran Berlebihan Berturut-turut (PBB) bersama dengan konsep sapuan penuh, separuh dan suku. Selanjutnya, ujian berangka telah didemonstrasikan dengan menyelesaikan tiga permasalahan nilai sempadan dua-titik bagi setiap peringkat kedua dan keempat untuk mengkaji analisis prestasi dari aspek bilangan lelaran, masa lelaran dan ralat mutlak maksimum. Berdasarkan keputusan ujian berangka ke atas permasalahan tersebut dengan menggunakan famili kaedah lelaran GS, PBB dan KK, famili kaedah lelaran KK telah menunjukkan prestasi yang lebih baik dari aspek bilangan lelaran, masa lelaran dan ralat mutlak maksimum berbanding dengan prestasi famili kaedah lelaran GS dan PBB. Justeru itu, dapat dinyatakan bahawa famili kaedah lelaran KK adalah lebih efisien dan jitu berbanding dengan famili kaedah lelaran GS dan SOR dalam menyelesaikan masalah nilai sempadan dua-titik pada peringkat kedua berdasarkan persamaan penghampiran splin tak polinomial kubik dan kuartik. Walaubagaimanapun, dalam kes masalah nilai sempadan dua-titik peringkat keempat, keputusan uji berangka menunjukkan bahawa famili kaedah lelaran KK bersama dengan pendekatan splin tak polinomial kubik dan kuartik telah gagal memenuhi kriteria penumpuan lelaran dalam menyelesaikan masalah nilai sempadan dua-titik peringkat kedua terturun. Sehubungan dengan itu, didapati bahawa famili kaedah lelaran PBB adalah lebih baik berbanding dengan famili kaedah lelaran GS dari aspek bilangan lelaran, masa lelaran dan ralat mutlak maksimum dalam menyelesaikan masalah nilai sempadan dua-titik peringkat kedua terturun.

TABLE OF CONTENTS

Page
TITLE i
DECLARATION ii
CERTIFICATION iii
ACKNOWLEDGEMENT iv
ABSTRACT v
ABSTRAK vi
CONTENT vii
LIST OF TABLES xiii
LIST OF FIGURES xvi
LIST OF ALGORITHMS XX
LIST OF ABBREVIATIONS xxi
LIST OF SYMBOLS xxiii
CHAPTER 1: INTRODUCTION 1
1.1 Introduction 1
1.2 Two-Point Boundary Value Problems 4
1.3 Basic Concept of the Spline Discretization Scheme 7
1.3.1 Polynomial Spline 9
1.3.2 Non-Polynomial Spline 10
1.4 System of Linear Equations 11
1.4.1 Direct Method 13
1.4.2 Iterative Method 14
1.5 Problem Statement 14
1.6 Objectives 17
1.7 Scope of Study 17
1.8 Chapter Outline 19
CHAPTER 2: LITERATURE REVIEW 21
2.1 Introduction 21
2.2 History of Numerical Analysis 21
2.3 Overview of Computation 25
2.4 Development of Discretization Scheme for Two-Point BVPs 27
2.4.1 Development of Approximation Equation Derivation Without Spline 28 Discretization Scheme
2.4.2 Development of Approximation Equation Derivation With Spline 31 Discretization Scheme
A. The Polynomial Spline Discretization Scheme 31
B. The Non- Polynomial Spline Discretization Scheme 31
2.5 Development of Iterative Methods 37
2.5.1 One-Step Iteration Families 38
2.5.2 Two-Step Iteration Families 40
2.6 Development of Non-Polynomial Spline Approach 42
2.7 Development of CG Iteration Family 45
2.6.1 Variation of CG Iterative Method 45
2.6.2 Application of CG Iterative Method 47
2.8 Concluding Remark 49
CHAPTER 3: FORMULATION OF NON-POLYNOMIAL SPLINE SCHEME 51 FOR TWO-POINT BOUNDARY VALUE PROBLEMS
3.1 Introduction 51
3.2 Polynomial Spline Interpolation 51
3.2.1 Concept Formulation of Linear Spline Interpolation 52
3.2.2 Concept of Quadratic Spline Interpolation 53
3.2.3 Concept of Cubic Spline Interpolation 54
3.2.4 Concept of Quartic Spline Interpolation 55
3.3 Non-Polynomial Spline Interpolation 56
3.4 Construction of Grid Network for the Solution Domain 57
3.4.1 Concept of Full-Sweep Iteration 57
3.4.2 Concept of Half-Sweep Iteration 58
3.4.3 Concept of Quarter-Sweep Iteration 59
3.5 Formulation of Non-Polynomial Spline Function 60
3.5.1 Derivation of Cubic Non-Polynomial Spline Function 63
A. Derivation of Full-Sweep Cubic Non-Polynomial Spline Scheme 64
B. Derivation of Half-Sweep Cubic Non-Polynomial Spline Scheme 65
C. Derivation of Quarter-Sweep Cubic Non-Polynomial Spline 66 Scheme
3.5.2 Derivation of Quartic Non-Polynomial Spline Function 67
A. Derivation of Full-Sweep Quartic Non-Polynomial Spline 68 Scheme
B. Derivation of Half-Sweep Quartic Non-Polynomial Spline 69 Scheme
C. Derivation of Quarter-Sweep Quartic Non-Polynomial Spline 69 Scheme
3.6 Discretization of Second-Order Two-Point BVPs Based on Non-Polynomial 70 Spline Schemes
3.6.1 Cubic Spline Approximation Equation Over the Second-Order Two- 71 Point BVPs
A. Derivation of Full-Sweep Cubic Approximation Equation 71
B. Derivation of Half-Sweep Cubic Approximation Equation 73
C. Derivation of Quarter-Sweep Cubic Approximation Equation 75
3.6.2 Quartic Spline Approximation Equation Over the Second-Order 76 Two-Point BVPs
A. Derivation of Full-Sweep Quartic Approximation Equation 76
B. Derivation of Half-Sweep Quartic Approximation Equation 77
C. Derivation of Quarter-Sweep Quartic Approximation Equation 78
3.7 Discretization of Fourth-Order Two-Point BVPs Based on Non-Polynomial 79 Spline Schemes
3.7.1 Cubic Spline Approximation Equation Over the Fourth-Order Two- 81 Point BVPs
A. Derivation of Full-Sweep Cubic Approximation Equation 81
B. Derivation of Half-Sweep Cubic Approximation Equation 84
C. Derivation of Quarter-Sweep Cubic Approximation Equation 88
3.7.2 Quartic Spline Approximation Equation Over the Fourth-Order 91
Two-Point BVPs
A. Derivation of Full-Sweep Quartic Approximation Equation 92
B. Derivation of Half-Sweep Quartic Approximation Equation 94
C. Derivation of Quarter-Sweep Quartic Approximation Equation 95
3.8 Formulation of the GS, SOR and CG Iteration Families 97
3.8.1 Formulation of the GS Iteration Family 101
3.8.2 Formulation of the SOR Iteration Family 107
3.8.3 Formulation of the CG Iteration Family 112
3.9 Improvement of the Performance in Percentage of Decrease 121
CHAPTER 4: NON-POLYNOMIAL SPLINE SOLUTION FOR SECOND- 122 ORDER TWO-POINT BOUNDARY VALUE PROBLEMS
4.1 Introduction 122
4.2 Numerical Examples for Second-Order Two-Point BVPs 122
4.3 Implementation of the Iterative Methods Based on the Cubic Non- 123Polynomial Spline Scheme
4.3.1 Cubic Non-Polynomial Spline Discretization Scheme with GS, SOR 123 and CG Iteration Families
4.3.2 Results of Numerical Experiments 124
4.3.3 Discussion for the Approximate Solutions Based on the Cubic Non- 135
Polynomial Spline Scheme
4.4 Implementation of the Iterative Methods Based on the Quartic Non- 136 Polynomial Spline Scheme
4.4.1 Quartic Non-Polynomial Spline Discretization Scheme with GS, 136 SOR and CG Iteration Families
4.4.2 Results of Numerical Experiments 137
4.4.3 Discussion for the Approximate Solutions Based on the Quartic 148 Non-Polynomial Spline Scheme
4.5 Complexity Analysis of the Generated Linear Systems 148
4.6 Summarization for the Performances of the Cubic and Quartic Non- 150 Polynomial Spline Schemes
CHAPTER 5: NON-POLYNOMIAL SPLINE SOLUTION FOR FOURTH- 152 ORDER TWO-POINT BOUNDARY VALUE PROBLEMS
5.1 Introduction 152
5.2 Numerical Examples for Fourth-Order Two-Point BVPs 152
5.3 Implementation of the Iterative Methods Based on the Cubic Non- 153 Polynomial Spline Scheme
5.3.1 Cubic Non-Polynomial Spline Discretization Scheme with GS, SOR, 153 and CG Iteration Families
5.3.2 Results of Numerical Experiments 155
5.3.3 Discussion for the Approximate Solutions Based on the Cubic Non- 164 Polynomial Spline Scheme
5.4 Implementation of the Iterative Methods Based on the Quartic Non- 165 Polynomial Spline Scheme
5.4.1 Quartic Non-Polynomial Spline Discretization Scheme with GS, 165 SOR, and CG Iteration Families
5.4.2 Results of Numerical Experiments 166
5.4.3 Discussion for the Approximate Solutions Based on the Quartic 175 Non-Polynomial Spline Scheme
5.5 Complexity Analysis of the Generated Linear Systems 175
5.6 Summarization for the Performances of the Cubic and Quartic Non- 177 polynomial Spline Schemes
CHAPTER 6: CONCLUSION AND RECOMMENDATION 179
6.1 Summarization of Findings 179
6.2 Contributions of Research 181
6.3 Recommendation for Future Study 181
REFERENCES 183
APPENDIX 201

LIST OF TABLES

		Page
Table 1.1	The past studies for the cases of full-, half- and quartersweep iterative methods	15
Table 4.1	Comparison of the number of iterations, execution time and maximum absolute error for Problem 4.1 based on the cubic non-polynomial spline scheme and the family of GS, SOR, and CG methods	131
Table 4.2	Comparison of the number of iterations, execution time and maximum absolute error for Problem 4.2 based on the cubic non-polynomial spline scheme and the family of GS, SOR, and CG methods	132
Table 4.3	Comparison of the number of iterations, execution time and maximum absolute error for Problem 4.3 based on the cubic non-polynomial spline scheme and the family of GS, SOR, and CG methods	133
Table 4.4	Percentage of decrease in the number of iterations and execution time based on the cubic non-polynomial spline scheme for the family of SOR and CG methods as compared to the FSGS method	134
Table 4.5	Comparison of the number of iterations, execution time and maximum absolute error for Problem 4.1 based on the quartic non-polynomial spline scheme and the family of GS, SOR, and CG methods	144
Table 4.6	Comparison of the number of iterations, execution time and maximum absolute error for Problem 4.2 based on the quartic non-polynomial spline scheme and the family of GS, SOR, and CG methods	145

Table 4.7 Comparison of the number of iterations, execution time 146 and maximum absolute error for Problem 4.3 based on the quartic non-polynomial spline scheme and the family of GS, SOR, and CG methods
Table 4.8 Percentage of decrease in the number of iterations and 147 execution time based on the quartic non-polynomial spline scheme for the family of SOR and CG methods as compared to the GS method
Table 4.9 The number of arithmetic operations per iteration at solid 149 interior node points for non-polynomial spline discretization schemes over the Problems (4.1), (4.2), and (4.3)
Table 5.1 Comparison of the number of iterations, execution time 160 and maximum absolute error for Problem 5.1 based on the cubic non-polynomial spline scheme and the family of GS, SOR, and CG methods
Table 5.2 Comparison of the number of iterations, execution time 161
and maximum absolute error for Problem 5.2 based on the cubic non-polynomial spline scheme and the family of GS, SOR, and CG methods
Table 5.3 Comparison of the number of iterations, execution time 162 and maximum absolute error for Problem 5.3 based on the cubic non-polynomial spline scheme and the family of GS, SOR, and CG methods
Table 5.4 Percentage of decrease in the number of iterations and 163 execution time based on the quartic non-polynomial spline scheme for the family of SOR and CG methods as compared to the GS method
Table 5.5 Comparison of the number of iterations, execution time171 and maximum absolute error for Problem 5.1 based on the cubic non-polynomial spline scheme and the family of GS, SOR, and CG methods
Table 5.6 Comparison of the number of iterations, execution time 172
and maximum absolute error for Problem 5.2 based on
the cubic non-polynomial spline scheme and the families
of GS, SOR, and CG methods
Table 5.7 Comparison of the number of iterations, execution time 173
and maximum absolute error for Problem 5.3 based on
the cubic non-polynomial spline scheme and the families
of GS, SOR, and CG methods
Table 5.8 Percentage of decrease in the number of iterations and 174
execution time based on the quartic non-polynomial
spline scheme for the family of SOR and CG methods as
compared to the GS method
Table 5.9 The number of arithmetic operations per iteration at solid 176
interior node points for non-polynomial spline
discretization schemes over the Problems (5.1), (5.2),
and (5.3)

LIST OF FIGURES

Page
Figure 1.1 The proposed family of iterative methods 18
Figure 1.2 Research design for solving two-point BVPs by using non- 19 polynomial spline discretization scheme
Figure 2.1 Illustration of grade-school algorithm for multiplication 27
Figure 3.1 Distribution of uniform solid node points of type for 57one-dimensional full-sweep iteration case
Figure 3.2 Distribution of uniform solid node points of type for 58 two-dimensional full-sweep iteration case
Figure 3.3 Distribution of uniform solid node points of type for 59 one-dimensional full-sweep iteration case
Figure 3.4 Distribution of uniform solid node points of type for 59 two-dimensional half-sweep iteration case
Figure 3.5 Distribution of uniform solid node points of type for 60 one-dimensional case quarter-sweep iteration case
Figure 3.6 Distribution of uniform solid node points of type for 60 two-dimensional case quarter-sweep iteration case
Figure 3.7 Illustration of non-polynomial spline interpolation function 61
Figure 3.8 Implementation of the GS iterative method over the 105second-order two-point BVPs
Figure 3.9 Implementation of the GS iterative method over the 106 reduced fourth-order two-point BVPs
Figure 3.10 Implementation of the SOR iterative method over the 110 second-order two-point BVPs
Figure 3.11 Implementation of the SOR iterative method over the 111 reduced fourth-order two-point BVPs
Figure 3.12 Implementation of the CG iterative method over the 119 second-order two-point BVPs

Figure 3.13 Implementation of the CG iterative method over the reduced fourth-order two-point BVPs
Figure 4.1 (a), (b) and (c) shows the comparison of the GS iteration family for Problems (4.1), (4.2) and (4.3), respectively in terms of the number of iterations based on the cubic nonpolynomial spline scheme
Figure 4.2 (a), (b) and (c) shows the comparison of the GS iteration family for Problems (4.1), (4.2), and (4.3), respectively in terms of the execution time (seconds) based on the cubic non-polynomial spline scheme
Figure 4.3 (a), (b) and (c) shows the comparison of the SOR iteration family for Problems (4.1), (4.2) and (4.3), respectively in terms of the number of iterations based on the cubic nonpolynomial spline scheme
Figure 4.4 (a), (b) and (c) shows the comparison of the SOR iteration family for Problems (4.1), (4.2), and (4.3), respectively in terms of the execution time (seconds) based on the cubic non-polynomial spline scheme
Figure 4.5 (a), (b) and (c) shows the comparison of the CG iteration family for Problems (4.1), (4.2) and (4.3), respectively in terms of the number of iterations based on the cubic nonpolynomial spline scheme
Figure 4.6 (a), (b) and (c) shows the comparison of the CG iteration 130 family for Problems (4.1), (4.2), and (4.3), respectively in terms of the execution time (seconds) based on the cubic non-polynomial spline scheme
Figure 4.7 (a), (b) and (c) shows the comparison of the GS iteration family for Problems (4.1), (4.2) and (4.3), respectively in terms of the number of iterations based on the quartic non-polynomial spline scheme

Figure 4.8 (a), (b) and (c) shows the comparison of the GS iteration family for Problems (4.1), (4.2), and (4.3), respectively in terms of the execution time (seconds) based on the quartic non-polynomial spline scheme
Figure 4.9 (a), (b) and (c) shows the comparison of the SOR iteration family for Problems (4.1), (4.2) and (4.3), respectively in terms of the number of iterations based on the quartic non-polynomial spline scheme
Figure 4.10 (a), (b) and (c) shows the comparison of the SOR iteration family for Problems (4.1), (4.2), and (4.3), respectively in terms of the execution time (seconds) based on the quartic non-polynomial spline scheme
Figure 4.11 (a), (b) and (c) shows the comparison of the CG iteration family for Problems (4.1), (4.2) and (4.3), respectively in terms of the number of iterations based on the quartic non-polynomial spline scheme
Figure 4.12 (a), (b) and (c) shows the comparison of the CG iteration family for Problems (4.1), (4.2), and (4.3), respectively in terms of the execution time (seconds) based on the quartic non-polynomial spline scheme
Figure 5.1 (a), (b) and (c) shows the comparison of the GS iteration family for Problems (5.1), (5.2) and (5.3), respectively in terms of the number of iterations based on the cubic nonpolynomial spline scheme
Figure 5.2 (a), (b) and (c) shows the comparison of the GS iteration family for Problems (5.1), (5.2), and (5.3), respectively in terms of the execution time (seconds) based on the cubic non-polynomial spline scheme

Figure 5.3 (a), (b) and (c) shows the comparison of the SOR iteration family for Problems (5.1), (5.2) and (5.3), respectively in
terms of the number of iterations based on the cubic nonpolynomial spline scheme
Figure 5.4 (a), (b) and (c) shows the comparison of the SOR iteration family for Problems (5.1), (5.2), and (5.3), respectively in terms of the execution time (seconds) based on the cubic non-polynomial spline scheme
Figure 5.5 (a), (b) and (c) shows the comparison of the GS iteration family for Problems (5.1), (5.2) and (5.3), respectively in terms of the number of iterations based on the cubic nonpolynomial spline scheme
Figure 5.6 (a), (b) and (c) shows the comparison of the GS iteration family for Problems (5.1), (5.2), and (5.3), respectively in terms of the execution time (seconds) based on the cubic non-polynomial spline scheme
Figure 5.7 (a), (b) and (c) shows the comparison of the SOR iteration family for Problems (5.1), (5.2) and (5.3), respectively in terms of the number of iterations based on the cubic nonpolynomial spline scheme
Figure 5.8 (a), (b) and (c) shows the comparison of the SOR iteration 170 family for Problems (5.1), (5.2), and (5.3), respectively in terms of the execution time (seconds) based on the cubic non-polynomial spline scheme

LIST OF ALGORITHMS

Page
Algorithm 3.1 FSGS, HSGS, and QSGS schemes for Second-Order 103 BVPs
Algorithm 3.2 FSGS, HSGS, and QSGS schemes for Fourth-Order 104 BVPs
Algorithm 3.3 FSSOR, HSSOR, and QSSOR schemes for second- 108 order BVPs
Algorithm 3.4 FSSOR, HSSOR, and QSSOR schemes for fourth-order 109BVPs
Algorithm 3.5 FSCG, HSCG and QSCG schemes for second-order 116BVPs
Algorithm 3.6 FSCG, HSCG and QSCG schemes for fourth-order 117 BVPs

LIST OF ABBREVIATIONS

ADM	Adomian Decomposition Method
AGE	Alternating Group Explicit
AM	Arithmetic Mean
AOR	Accelerated Over-Relaxation
BGS	Backward Gauss-Seidel
BVPS	Boundary Value Problems
CG	Conjugate Gradient
CGNR	Conjugate Gradient Normal Residual
EDG	Explicit Decoupled Group
EG	Explicit Group
EGSOR	Explicit Group Successive Over-Relaxation
EGMSOR	Explicit Group Modified Successive Over-Relaxation
FCGNR	Full-Sweep Conjugate Gradient Normal Residual
FGS	Forward Gauss-Seidel
FSAOR	Full-Sweep Accelerated Over-Relaxation
FSAM	Full-Sweep Arithmetic Mean
FSGM	Full-Sweep Geometric Mean
FSGS	Full-Sweep Gauss-Seidel
FSSOR	Full-Sweep Successive Over-Relaxation
GMRES	Generalized Minimal Residual
GS	Gauss-Seidel
HCGNR	Half-Sweep Conjugate Gradient Normal Residual
HSAGE	Half-Sweep Alternating Group Explicit
HSAM	Half-Sweep Arithmetic Mean
HSAOR	Half-Sweep Accelerated Over-Relaxation
HSCG	Half-Sweep Conjugate Gradient
HSGM	Half-Sweep Geometric Mean
HSGS	Half-Sweep Gauss-Seidel
HSIADE	Half-Sweep Iterative Alternating Decomposition Explicit

HSSOR	Half-Sweep Successive Over-Relaxation
HSSOR9L	Half-Sweep Successive Over-Relaxation via Nine-Point Laplacian
HSMSOR	Half-Sweep Modified Successive Over-Relaxation
IDE	Integro-Differential Equation
IVP	Initial Value Problem
MEDG	Modified Explicit Decoupled Group
MEG	Modified Explicit Group
MINERS	Minimal Residual method
MSOR	Modified Successive Over-Relaxation
Newton-AGE	Newton Alternating Group Explicit
Newton-SOR	Newton Successive Over-Relaxation
ODES	Ordinary Differential Equations
PTI	Precise Time Integration
QSAGE	Quarter Sweep Alternating Group Explicit
QSAOR	Quarter-Sweep Accelerated Over-Relaxation
QSAM	Quarter-Sweep Arithmetic Mean
QSCG	Quarter-Sweep Conjugate Gradient
QSCGNR	Quarter-Sweep Conjugate Gradient Normal Residual
QSCN	Quarter-Sweep Crank-Nicolson
QSGM	Quarter-Sweep Geometric Mean
QSGS	Quarter-Sweep Gauss-Seidel
QSSOR	Quarter Sweep Successive Over-Relaxation
RKM	Reproducing Kernel Method
SOR	Successive Over-Relaxation

LIST OF SYMBOLS

σ_{i}	- Coefficient matrix for second-order two-point BVPs based on cubic non-polynomial spline
ϕ	- Coefficient matrix for second-order two-point BVPs based on cubic non-polynomial spline
δi	- Coefficient matrix for second-order two-point BVPs based on cubic non-polynomial spline
σ^{*}	- Coefficient matrix for second-order two-point BVPs based on quartic non-polynomial spline
$\phi_{i}{ }^{\text {H }}$	- Coefficient matrix for second-order two-point BVPs based on quartic non-polynomial spline
δ_{i}	- Coefficient matrix for second-order two-point BVPs based on quartic non-polynomial spline
σ_{i}^{*}	- Coefficient matrix for first linear system of reduced fourth-order two-point BVPs based on cubic non-polynomial spline
$\dot{\phi}_{i}$	- Coefficient matrix for first linear system of reduced fourth-order two-point BVPs based on cubic non-polynomial spline
δ_{i}^{*}	- Coefficient matrix for first linear system of reduced fourth-order two-point BVPs based on cubic non-polynomial spline
$\sigma_{i}^{* *}$	- Coefficient matrix for first linear system of reduced fourth-order two-point BVPs based on cubic non-polynomial spline
$\phi_{1}^{* *}$	- Coefficient matrix for first linear system of reduced fourth-order two-point BVPs based on cubic non-polynomial spline
$\delta_{i}^{* *}$	- Coefficient matrix for first linear system of reduced fourth-order two-point BVPs based on cubic non-polynomial spline
$\sigma^{* *}$	- Coefficient matrix for first linear system of reduced fourth-order two-point BVPs based on quartic non-polynomial spline
$\phi_{i}^{* *}$	- Coefficient matrix for first linear system of reduced fourth-order two-point BVPs based on quartic non-polynomial spline
δ_{i}^{*}	- Coefficient matrix for first linear system of reduced fourth-order two-point BVPs based on quartic non-polynomial spline
$\sigma_{1}^{* *}$	- Coefficient matrix for second linear system of reduced fourthorder two-point BVPs based on quartic non-polynomial spline
$\phi_{i}^{* * *}$	- Coefficient matrix for second linear system of reduced fourthorder two-point BVPs based on quartic non-polynomial spline
$\delta_{i}^{* *}$	- Coefficient matrix for second linear system of reduced fourthorder two-point BVPs based on quartic non-polynomial spline
A_{i}	- Coefficient matrix for second-order two-point BVPs based on cu non-polynomial spline

REFERENCES

Abdullah, A. R. 1991. The Four Point Explicit Decoupled Group (EDG) method: A Fast Poisson Solver. International Journal of Computer Mathematics. 38(1-2):61-70.

Akram, G. \& Siddiqi, S. S. 2006. Solutions of Sixth Order Boundary-Value Problems Using Non-Polynomial Spline Technique. Applied Mathematics and Computation. 181:708-720.

Akram, G. \& Tariq, H. 2017. Cubic Polynomial Spline Scheme for Fractional Boundary Value Problems with Left and Right Fractional Operators. International Journal of Applied and Computational Mathematics. 3(2):937-946.

Al-Said, E. A., Noor, M. A. \& Khalifa, A. K. 1996. Finite difference scheme for variational inequalities. Journal of Optimization Theory and Applications. 89(2):453-459.
Al-Said, E. A. 2001a. Numerical Solutions of Third-Order Boundary-Value Problems, International Journal of Computer Mathematics. 78(1):111-121.

Al-Said, E. A. 2001b. The Use of Cubic Splines in the Numerical Solution of a System of Second-Order Boundary Value Problems. Computers \& Mathematics with Applications. 42(6-7): 861-869.

Al-Said, E. A. \& Noor, M. A. 2002. Quartic Spline Method for Solving Fourth Order Obstacle Boundary Value Problems. Journal of Computational and applied Mathematics. 143(1): 107-116.

Al-Said, E. A. \& Noor, M. A. 2003. Cubic Splines Method for a System of Third-Order Boundary-Value Problems. Journal of Applied Mathematics and Computation. 142(2-3):195-204.

Al-Said, E. A., Noor, M. A., Almualim, A. H., Kokkinis, B. \& John, C. 2011. Quartic Spline Method for Solving Second-Order Boundary Value Problems. International Journal of the Physical Sciences. 6(17):4208-4212.

Albasiny, E. L. \& Hoskins, W. D. 1969. Cubic Spline Solutions to Two-Point Boundary Value Problems. The computer journal. 12(2):151-153.

Ahmad, S. \& Khan, L. 2017. Performance Analysis of Conjugate Gradient Algorithms Applied to the Neuro-Fuzzy Feedback Linearization-Based Adaptive Control Paradigm for Multiple HVDC Links in AC/DC Power System. Energies, 10(6):819.
Akhir, M. K. M., Othman, M. Y. H. M., Sulaiman, J., Majid, Z. A. \& Suleiman, M. 2011. Half-Sweep Modified Successive Over Relaxation for Solving Two-Dimensional Helmholtz Equations. Australian Journal of Basic and Applied
Sciences. 5(12):3033-3039.

Akhir, M. K. M., Othman, M., Sulaiman, J., Majid, Z. A. \& Suleiman, M. 2012. Half Sweep Iterative Method for Solving Two-Dimensional Helmholtz Equations. International Journal of Applied Mathematics and Statistics. 29(5):101-109.

Akhir, M. K. M. \& Sulaiman, J. 2015. HSAOR Iterative Method for the Finite Element Solution of 2D Poisson Equations. International Journal of Mathematics \& Computation. 27(2):46-54.

Akhir, M. K. M., Sulaiman, J., Othman, M. \& Muthuvalu, M. S. 2016. An Implementation of QSAOR Iterative Method for Non-Homogeneous Helmholtz Equations. International Journal of Contemporary Mathematical Sciences. 11(2):85-96.

Alibubin, M. U., Sunarto, A. and Sulaiman, J. 2016. Quarter-sweep Nonlocal Discretization Scheme with QSSOR Iteration for Nonlinear Two-point Boundary Value Problems. Journal of Physics: Conference Series. IOP Publishing. 710(1): 012-013.

Arora, S. \& Barak, B. 2009. Computational Complexity: A Modern Approach. New York: Cambridge University Press.

Aruchunan, E. \& Sulaiman, J. 2011 a. Half-Sweep Conjugate Gradient Method for Solving First Order Linear Fredholm Integro-Differential Equations. Australian Journal of Basic and Applied Sciences. 5(3):38-43.

Aruchunan, E. \& Sulaiman, J. 2011b. Quarter-Sweep Gauss-Seidel Method for Solving First Order Linear Fredholm Integro-differential Equations. Matematika. 27:199208.

Aruchunan, E., Muthuvalu, M. S., \& Sulaiman, J. 2013. Application of Quarter-Sweep Iteration for First Order Linear Fredholm Integro-Differential Equations. In AIP Conference Proceedings. 1522(1):168-175).

Aruchunan, E., Muthuvalu, M. S. \& Sulaiman, J. 2015. Quarter-Sweep Iteration Concept on Conjugate Gradient Normal Residual Method via Second Order QuadratureFinite Difference Schemes for Solving Fredholm Integro-Differential Equations. Sains Malaysiana. 44(1):139-146.

Ascher, U. M., Mattheij, R. M. \& Russell, R. D. 1995. Numerical Solution of Boundary Value Problems for Ordinary Differential Equations. Philadelphia: SIAM.

Axelsson, O. \& Barker, V. A. 2001. Finite Element Solution of Boundary Value Problems: Theory and Computation. Philadelphia: SIAM.

Bank, R. E. \& Chan, T. F. 1994. A Composite Step Bi-Conjugate Gradient Algorithm for Nonsymmetric Linear Systems. Numerical Algorithms. 7(1):1-16.

Barbeau, E. J. 2003. Polynomials. New York: Springer-Verlag.
Barrodale, I. \& Young, A. 1966. A Note on Numerical Procedures for Approximation by Spline Functions. The Computer Journal. 9(3):318-320.

Bartels, R. H., Beatty, J. C. \& Barsky, B. A. 1987. An Introduction to Splines for Use In Computer Graphics and Geometric Modeling. USA: Morgan Kaufmann.

Barrett, R., Berry, M., Chan, T. F., Demmel, J., Donato, J., Dongarra, J. \& Van der Vorst, H. 1994. Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods. Philadelphia: SIAM.

Benzi, M. 2009. The Early History of Matrix Iterations: With a Focus on the Italian Contribution. In SIAM Conference on Applied Linear Algebra, Monterey Bay, Seaside, California, volume 26, pp. 1-36.

Bica, A. M., Curila, M. \& Curila, S. 2016. Two-Point Boundary Value Problems Associated to Functional Differential Equations of Even Order Solved by Iterated Splines. Applied Numerical Mathematics. 110:128-147.

Bickley, W. G. 1968. Piecewise Cubic Interpolation and Two-Point Boundary Problems. The computer journal. 11(2):206-208.

Bisshopp, K. E. \& Drucker, D. C. 1945. Large Deflection of Cantilever Beams. Quarterly of Applied Mathematics. 3(3):272-375.

Bittner, K. \& Brachtendorf, H. G. 2012, April. Trigonometric Splines for Oscillator Simulation. In Radioelektronika (RADIOELEKTRONIKA), 2012 22nd International Conference, pp. 1-4. IEEE.

Bodewig, E. 1956. Matrix calculus. Amsterdam: CERN Publisher.
Burden, R. L. \& Faires, J. D. 1989. Numerical Analysis. Boston: PWS-Kent.
Burden, R. L. \& Faires, J. D. 2011. Numerical Analysis. $9^{\text {th }}$ ed. Boston: Brooks/Cole.
Brezinski, C. \& Wuytack, L. 2001. Numerical Analysis in the Twentieth Century. Numerical Analysis: Historical Developments in the 20th Century. Amsterdam: Elsevier.

Caglar, H., Caglar, N. \& Akkoyunlu, C. 2010. Non-Polynomial Spline Method of a NonLinear System of Second-Order Boundary Value Problems. Journal of Computational Analysis \& Applications. 12(2):544-559.

Cesari, L. 1937. On the Functions of Two Variables Limited to Variation According Tonelli and Convergence of its Fourier Series Doubles, National Research Council.

Cesari, L. 1966. Existence Theorems for Weak and Usual Optimal Solutions in Lagrange Problems With Unilateral Constraints. Transactions of the American Mathematical Society. 124(3): 369-412.

Chan, T. F. \& Szeto, T. 1994. A Composite Step Conjugate Gradients Squared Algorithm for Solving Nonsymmetric Linear Systems. Numerical Algorithms. 7(1):17-32.

Cheng, A. \& Cheng, D. T. 2005. Heritage and Early History of the Boundary Element Method. Engineering Analysis with Boundary Elements. 29(3):268-302.

Chen, B., Tong, L. \& Gu, Y. 2006. Precise Time Integration for Linear Two-Point Boundary Value Problems. Applied Mathematics and Computation. 175:182211.

Chew, J. V. L. \& Sulaiman, J. 2016. Half-Sweep Newton-Gauss-Seidel for Implicit Finite Difference Solution of 1D Nonlinear Porous Medium Equations. Global Journal of Pure and Applied Mathematics. 12(3):2745-2752.

Concus, P., Golub, G. H. and O'Leary, D. P. 1976. A generalized conjugate gradient method for the numerical solution of elliptic partial differential equations. Computer Science Department, School of Humanities and Sciences, Stanford University. 309-332.

Conte, S. D. \& Boor, C. W. D. 1980. Elementary Numerical Analysis: An Algorithmic Approach. Tokyo: Mcgraw-Hill Higher Education.

Courant, R. 1928. On the Partial Difference Equations of Mathematical Physics. Mathematische Annalen. 100:32-74.

Courant, R. 1943. Variational Methods for the Solution of Problems of Equilibrium and Vibrations. Bulletin of the American mathematical Society. 49(1):1-23.

Curtiss, J. H. 1951. The Institute for Numerical Analysis of the National Bureau of Standards. The American Mathematical Monthly. 58(6):372-379.

Dahalan, A. A., Muthuvalu, M. S. \& Sulaiman, J. 2013 . Numerical solutions of two-point fuzzy boundary value problem using half-sweep alternating group explicit method. In AIP Conference Proceedings. 1557(1): 103-107.

David, M. S. 2005. Iterative Methods for Solving [I]Ax[/I] = [I]B[/I]-Gauss-Seidel Method Convergence. Journal of Online Mathematics and its Applications.

Datta, B. N. 2010. Numerical Linear Algebra and Applications. Philadelphia: SIAM.
De Boor, C., De Boor, C., Mathématicien, E. U., De Boor, C. \& De Boor, C. 1978. A Practical Guide to Splines, volume 27, p. 325. New York: Springer-Verlag.

Devore, R. \& Ron, A. 2005. Developing a Computation-Friendly Mathematical Foundation for Spline Functions. SIAM News. 38(4).

Edmonds, J. 1965. Paths, Trees, and Flowers. Canadian Journal of Mathematics. 17(3):449-467.

Eisenstat, S. C. 1981. Efficient Implementation of a Class of Preconditioned Conjugate Gradient Methods. SIAM Journal on Scientific and Statistical Computing. 2(1):14.
el-Gamel, M. 2007. A Comparison Between the Sinc-Galerkin and the Modified Decomposition Methods for Solving Two-Point Boundary-Value Problems. Journal of Computational Physics. 223: 369-383.

Epperson, J. 1998. History of Splines. NA Digest. 98(26).
Evans, D. J. \& Yousif, W. S. 1990. The Implementation of the Explicit Block Iterative Methods on the Balance 8000 Parallel Computer. Parallel Computing. 16(1): 8197.

Evans, D. J. \& Yousif, W. S. 1991. A Note on Solving the Fourth Order Parabolic Equation by the AGE Method. International journal of computer mathematics. 40(1-

Fang, Q. Tsuchiya. T. \& Yamamoto, T. 2002. Finite Difference, Finite Element and Finite Volume Methods Applied to Two-Point Boundary Value Problems. Journal of Computational and Applied Mathematics. 139: 9-19.

Fauzi, N. I. M. \& Sulaiman, I. 2012a. The Solution of Second Order Two-point Boundary Value Problems. Journal of Applied Sciences. 12(17):1817-1824.

Fauzi, N. I. M. \& Sulaiman, J. 2012b. Half-Sweep Modified Successive Over Relaxation method for Solving Second Order Two-Point Boundary Value Problems Using Cubic Spline. International Journal of Contemporary Mathematical Science. 7(32):1579-1589.

Fauzi, N. I. M. \& Sulaiman, J. 2012c. Cubic Spline Solutions for Two-Point Boundary Value Problems Using Quarter-Sweep SOR Method. International Journal of Open Problems in Computer Science and Mathematics, 5(4):112-123.
Faddeev, D. K. \& Faddeeva, V. N. 1963. Computational Methods of Linear Algebra. San Francisco: W. H. Freeman.

Fan, J. \& Yao, Q. 2005. "Spline Methods". Nonlinear Time Series-Nonparametric and Parametric Methods Springer. New York: Berlin-Heidelberg.

Fischer, B. \& Golub, G. H. 1994. On the Error Computation for Polynomial Based Iteration Methods. IMA Volumes in Mathematics and its Applications. 60:59-59.

Fortnow, L. \& Homer, S. 2003. A Short History of Computational Complexity. Boston University Computer Science Department.

Gao, F., \& Chi, C. M. 2006. Solving third-order obstacle problems with quartic Bsplines. Applied Mathematics and Computation. 180(1):270-274.

Gilbert, J. C. \& Nocedal, J. 1992. Global Convergence Properties of Conjugate Gradient Methods for Optimization. SIAM Journal on optimization. 2(1):21-42.

Gladwell, I. 2008. Boundary value problem. Scholarpedia. 3(1):2853.
Goodman, T. R. \& Lance, G. N. 1956. The Numerical Integration of Two-Point Boundary Value Problems. Mathematical Tables and Other Aids to Computation. 10(54):82-86.

Goffe, W. L. 1993. A User's Guide to The Numerical Solution of Two-Point Boundary Value Problems Arising in Continuous Time Dynamic Economic Models. Computational Economics. 6(3-4):249-55.

Greengard, L. 1991. Spectral Integration and Two-Point Boundary Value Problems. SIAM Journal on Numerical Analysis. 28(4):1071-1080.

Guoqiang, H., Jiong, W., Hayami, K. \& Yuesheng, X. 2000. Correction Method and Extrapolation Method for Singular Two-Point Boundary Value Problems. Journal of Computational and Applied Mathematics. 126(1):145-157.

Von Neumann, J. \& Goldstine, H. H. 1947. Numerical Inverting of Matrices of High Order. Bulletin of the American Mathematical Society. 53(11):1021-1099.

Goldstine, H. H. 1980. The computer from Pascal to von Neumann. New Jersey: Princeton University Press.

Goldstine, H. H. 2012. A History of Numerical Analysis from the 16th through the 19th Century, volume 12. New York: Springer Science and Business Media.

Golub, G. H. 1959. The use of Chebyshev matrix polynomials in the iterative solution of linear equations compared to the method of successive overrelaxation. Doctoral Dissertation. University of Illinois at Urbana-Champaign.

Golub, G. H. \& Varga, R. S. 1961 . Chebyshev Semi-Iterative Methods, Successive Overrelaxation Iterative Methods, and Second Order Richardson Iterative Methods. Numerische Mathematik. 3(1):157-168.

Golub, G. H. \& OLeary, D. P. 1989. Some History of the Conjugate Gradient and Lanczos Algorithms: 1948-1976. SIAM review. 31(1):50-102.

Golub, G. H. \& Van Loan, C. F. 1996. Matrix computations. $3^{\text {rd }}$ edition, pp. 374-
426. Baltimore: Johns Hopkins.

Golub, G. H. \& Ye, Q. 1999. Inexact Preconditioned Conjugate Gradient Method with Inner-Outer Iteration. SIAM Journal on Scientific Computing. 21(4):1305-1320.

Gonze, X. 1997. First-Principles Responses of Solids to Atomic Displacements and Homogeneous Electric Fields: Implementation of a Conjugate-Gradient Algorithm. Physical Review B. 55(16):10337.

Greenbaum, A. 1997. Iterative Methods for Solving Linear Systems. Philadelphia: SIAM.
Gutknecht, M. H. 2007. A Brief Introduction to Krylov Space Methods for Solving Linear Systems. In Frontiers of Computational Science: Proceedings of the International Symposium on Frontiers of Computational Science 2005. Springer Science \& Business Media. 53.

Hackbusch, W. 1994. Iterative solution of large sparse systems of equations. $1^{\text {st }}$ edition. New York: Springer-Verlag.

Harpinder, K. \& Khushpreet, K. 2012. Convergence of Jacobi and Gauss-Seidel Method and Error Reduction Factor. IOSR Journal of Mathematics. 2(2):20-23.

Hartmanis, J. \& Stearns, R. E. 1965. On the computational complexity of algorithms. Transactions of the American Mathematical Society. 117:285-306.

Hestenes, M. R. \& Stiefel, E. 1952. Methods of Conjugate Gradients for Solving Linear Systems. Journal of Research of the National Bureau of Standards. 49(6):409436.

Hestenes, M. R., Todd, J. \& Iverson, K. E. 1995. Mathematicians Learning to Use Computers. Annals of the History of Computing. 17(1):73.

Hou, J. \& Symes, W. W. 2016. Accelerating Extended Least-Squares Migration with Weighted Conjugate Gradient Iteration. Society of Exploration Geophysics. 81:165-179.

Huang, C. H., Ozisik, M. N. \& Sawaf, B. 1992. Conjugate Gradient Method for Determining Unknown Contact Conductance during Metal Casting. International Journal of Heat and Mass Transfer. 35(7):1779-1786.

Hussain, M. Z., Abbas, S. \& Irshad, M. 2017. Quadratic Trigonometric B-Spline for Image Interpolation Using GA. PLOS ONE. 12(6):e0179721.

Iftikhar, M., Rehman, H. U. \& Younis, M. 2013. Solution of Thirteenth Order Boundary Value Problems by Differential Transformation Method. Asian Journal of Mathematics and Applications. 2014:1-11.

Ibrahim, A. \& Abdullah, A. R. 1995. Solving the Two Dimensional Diffusion Equation by the Four Point Explicit Decoupled Group (EDG) Iterative Method. International journal of computer mathematics. 58(3-4):253-63.
ul-Islam, S., Khan, M. A., Tirmizi, I. A. \& Twizell, E. H. 2005. Non Polynomial Spline Approach to the Solution of a System of Third-Order Boundary-Value Problems. Applied Mathematics and Computation. 168:152-163.
ul-Islam, S. \& Tirmizi, I.A. 2006a. Nonpolynomial Spline Approach to the Solution of a System of Second-Order Boundary-Value Problems. Applied Mathematics and Computation. 137(2):1208-1218.
ul-Islam, S. U. \& Tirmizi, I. A. 2006b. A Smooth Approximation for the Solution of Special Non-Linear Third-Order Boundary-Value Problems Based on Non-Polynomial Splines. International Journal of Computer Mathematics, 83(4):397-407.

Ul-Islam, S., Tirmizi, I. A. \& Khan, M. A. 2007. Quartic Non-Polynomial Spline Approach to the Solution of a System of Third-Order Boundary-Value Problems. Journal of Mathematical Analysis and Applications. 335:1095-1104.

Tirmizi, I. A. \& Khan, M. A. 2008. Non-Polynomial Splines Approach to the Solution of Sixth-Order Boundary-Value Problems. Applied Mathematics and Computation. 195(1):270-284.

Jang, B. 2008. Two-Point Boundary Value Problems by the Extended Adomian Decomposition Method. Journal of Computational and Applied Mathematics. 219(1):253-262.

Jha, N. 2010. The Application of Sixth Order Accurate Parallel Quarter Sweep Alternating Group Explicit Algorithm for Nonlinear Boundary Value Problems with Singularity. In Methods and Models in Computer Science (ICM2CS), 2010 International Conference on IEEE. 76-80.

Johansson, E. M., Dowla, F. U. \& Goodman, D. M. 1991. Backpropagation Learning for Multilayer Feed-Forward Neural Networks using the Conjugate Gradient Method. International Journal of Neural Systems. 2(4):291-301.
Keller, H. B. 1968. Numerical Methods for Two-Point Boundary-Value Problems. New York: Blaisdell.

Keller, H. H. \& Holdredge, E. S. 1970. Radiation Heat Transfer for Annular Fins of Trapezoidal Profile. Journal of Heat Transfer. 92(1):113-6.
Kelley, C. T. 1995. Iterative Methods for Linear and Nonlinear Equations. Philadelphia: SIAM.

Kershaw, D. S. 1978. The Incomplete Cholesky-Conjugate Gradient Method for the Iterative Solution of Systems of Linear Equations. Journal of Computational Physics. 26(1):43-65.

Khan, A., Khan, I. \& Aziz, T. 2006. Sextic Spline Solution of a Singularly Perturbed Boundary-Value Problems. Applied Mathematics and Computation. 181(1):432439.

Kincaid, D. \& Cheney, W. 1991. Numerical Analysis. Volume 20, pp. 10-13. Brooks: Cole Publishing Company.

Khan, A., \& Khandelwal, P. 2011. Non-Polynomial Sextic Spline Approach for the Solution of Fourth-Order Boundary Value Problems. Applied Mathematics and Computation. 218(7): 3320-3329.

Koh, S. W., Sulaiman, J. \& Mail, R. 2010. Quarter-Sweep Projected Modified GaussSeidel Algorithm Applied to Linear Complementarity Problem. American Journal of Applied Sciences. 7(6):790-794.

Khan, A. \& Aziz, T. 2003. The Numerical Solution of Third-Order Boundary-Value Problems Using Quintic Splines. Applied Mathematics and Computation. 137(2):253-260.

Khan, A. \& Aziz, T. 2003. Parametric Cubic Spline Approach to the Solution of a System of Second-Order Boundary-Value Problems. Journal of Optimization Theory and Applications. 118(1):45-54.

Khan, M. A., Tirmizi, I. A., Twizell, E. H. \& Ashraf, S. 2006. A Class of Methods Based on Non-Polynomial Sextic Spline Functions for the Solution of a Special FifthOrder Boundary-Value Problems. Journal of Mathematical Analysis and Applications. 321(2):651-660.

Khan, A. and Khandelwal, P. 2011. Non-polynomial sextic spline approach for the solution of fourth-order boundary value problems. Applied Mathematics and Computation. 218(7):3320-3329.

Khaleghi, M., Babolian, E. \& Abbasbandy, S. 2017. Chebyshev Reproducing Kernel Method: Application to Two-Point Boundary Value Problems. Advances in Difference Equations. 2017(1):26.

Kincaid, D. \& Cheney, W. 1991. Numerical Analysis. Brooks: Cole Publishing Company. 20:10-13.

Knyazev, A. 2017. Recent Implementations, Applications, and Extensions of the Locally Optimal Block Preconditioned Conjugate Gradient Method LOBPCG. Householder Symposium on Numerical Linear Algebra. Mitsubishi Electric Research Laboratories, Inc. Massachusetts: Cambridge.
Kress, R. 1998. Numerical Analysis. New York: Springer-Verlag.

Kumar, M. \& Srivastava, P. K. 2008. Computational Techniques for Solving Differential Equations by Quadratic, Quartic and Octic Spline. Advances in Engineering Software. 39(8):646-653.

Kumar, M. \& Srivastava, P. K. 2009. Computational Techniques for Solving Differential Equations by Cubic, Quintic and Sextic Spline. International Journal for Computational Methods in Engineering Science and Mechanics. 10(1):108-115.

Lamnii, A., Mraoui, H., Sbibih, D. \& Tijini, A. 2008. Sextic Spline Solution of Fifth-Order Boundary Value Problems. Mathematics and Computers In Simulation. 77(2):237-246.

Lay, D. C. 2003. Linear Algebra and its Applications. New York: Addison-Wesley.
Liu, L. B., Liu, H. W. \& Chen, Y. 2011. Polynomial Spline Approach for Solving SecondOrder Boundary-Value Problems with Neumann Conditions. Applied Mathematics and Computation. 217(16):6872-6882.

Liu, J. \& Hou, G. 2011. Numerical Solutions of the Space- and Time-Fractional Coupled Burgers Equations by Generalized Differential Transform Method. Applied Mathematics and Computation. 217:7001-7008.

Liu, Z., Zhu, S., Ge, Y., Shan, F., Zeng, L. \& Liu, W. 2017. Geometry Optimization of Two-Stage Thermoelectric Generators using Simplified Conjugate-Gradient Method. Applied Energy. 190:540-552.

Liebmann, G. 1950. Solution of Partial Differential Equations with a Resistance Network Analogue. British Journal of Applied Physics. 1(4):92.

London, R. A. \& Flannery, B. P. 1982. Hydrodynamics of X-Ray Induced Stellar Winds. The Astrophysical Journal. 258:260-269.

Lyche, T. \& Schumaker, L. L. 1973. On the Convergence of Cubic Interpolating Splines. In Spline functions and approximation theory. 169-189.

Lyche, T., Schumaker, L. L. \& Stanley, S. 1998. Quasi-Interpolants Based on Trigonometric Splines. Journal of Approximation Theory. 95(2):280-309.

Lyche, T. \& Winther, R. 1979. A Stable Recurrence Relation for Trigonometric BSplines. Journal of Approximation Theory. 25(3):266-279.

Luenberger, D. G. 1973. Introduction to Linear and Nonlinear Programming. Volume 28. Massachusetts: Addison-Wesley.

Meijerink, J. A. \& van der Vorst, H. A. 1977. An Iterative Solution Method for Linear Systems of which the Coefficient Matrix is a Symmetric M-Matrix. Mathematics of Computation. 31(137):148-162.

Micula, G. 1973. Approximate Solution of the Differential Equation $y^{\wedge}\left\{{ }^{\prime \prime}\right\}=f(x, y)$ with Spline Functions. Mathematics of Computation. 27(124):807-816.

Micula, G. 2002. A Variational Approach to Spline Functions Theory. General Mathematics. 10(12):21-50.

Mikic, Z. \& Morse, E. C. 1985. The use of a Preconditioned Bi-Conjugate Gradient Method for Hybrid Plasma Stability Analysis. Journal of Computational Physics. 61(1):154-185.

Mohammadi, R. 2014. An Exponential Spline Solution of Nonlinear Schrodinger Equations with Constant and Variable Coefficients. Computer Physics Communications. 185(3):917-932.

Mohebbi, A. 2013. A Fourth-Order Finite Difference Scheme for the Numerical Solution of 1D Linear Hyperbolic Equation. Community of Numerical Analysis. 11.

Morrison, D. D., Riley, J. D. \& Zancanaro, J. F. 1962. Multiple Shooting Method for TwoPoint Boundary Value Problems. Communications of the ACM. 5(12):613-614.

Mohsen, A. \& el-Gamel, M. 2008. On the Galerkin and Collocation Methods for TwoPoint Boundary Value Problems using Sinc Bases. Computers and Mathematics with Applications. 56:930-941.

Muthuvalu, M. S. \& Sulaiman, J. 2010. Quarter-Sweep Arithmetic Mean (QSAM) Iterative Method for Second Kind Linear Fredholm Integral Equations. Applied Mathematics and Science. 4:2943-2953.

Muthuvalu, M. S. \& Sulaiman, J. 2011. Half-Sweep Arithmetic Mean Method with Composite Trapezoidal Scheme for Solving Linear Fredholm Integral Equations. Applied Mathematics and Computation. 217(12):5442-5448.

Muthuvalu, M. S. \& Sulaiman, J. 2011. Numerical Solution of Second Kind Linear Fredholm Integral Equations using QSGS Iterative Method with High-Order Newton-Cotes Quadrature Schemes. Malaysian Journal of Mathematical Sciences. 5(1):85-100.

Muthuvalu, M. S. \& Sulaiman, J. 2013. The Quarter-Sweep Geometric Mean Method for Solving Second Kind Linear Fredholm Integral Equations. Bulletin of Malaysia Mathematics and Science Society. 36:1009-1026.

Muthuvalu, M. S., \& Sulaiman, J. 2017. Numerical Performance of Half-Sweep Geometric Mean (HSGM) Iterative Method for Solving Third Order Newton-Cotes Quadrature System. Lobachevskii Journal of Mathematics, 38(1):73-81.

Nagai, Y., Shinohara, Y., Futamura, Y. \& Sakurai, T. 2016. Reduced-Shifted ConjugateGradient Method for a Green's Function: Efficient Numerical Approach in a Nano-

Structured Superconductor. Journal of the Physical Society of Japan. 86(1):014708.

Na, T. Y. 1979. Computational Methods in Engineering Boundary Value Problems Academic Volume 145. New York: Academic Press.

Nash, S. G. 1990. A History of Scientific Computing. New York: ACM Press and AddisonWesley Publishing.

Ng, Y. H. \& Hasan, M. K. 2013. Steady State Simulator using Alternate Left Right Approach. In AIP Conference Proceedings. 1522(1):757-761).

Noor, M. A. \& Khalifa, A. K. 1987. Cubic Splines Collocation Methods for Unilateral Problems. International Journal of Engineering Science. 25(11-12):1525-1530.

Noor, M. A. \& Tirmizi, S. I. A. 1988. Finite Difference Technique for Solving Obstacle Problems. Applied Mathematics Letters. 1(3):267-271.

Noor, M. A., \& Khalifa, A. K. 1994. A Numerical Approach for Odd-Order Obstacle Problems. International Journal of Computer Mathematics. 54(1-2):109-116.
Noor, M. A. \& Al-Said E. A. 2003. Quartic spline solution of the third-order obstacle problems. Applied Mathematics and Computation. 153(20):307-316.

Noor, M. A, Tirmizi, I. A. \& Khan, M. A. 2006. Quadratic Non-Polynomial Spline Approach to the Solution of a System of Second-Order Boundary-Value Problems. Applied Mathematics and Computation. 179(1):153-160.

Ng, Y. H. \& Hasan, M. K. 2013. Investigation of Steady State Problems via Quarter Sweep Schemes. Sains Malaysiana. 42(6):837-844.

Othman, M. \& Abdullah, A. R. 2000. An Efficient Four Points Modified Explicit Group Poisson Solver. International Journal of Computer Mathematics. 76(2):203-217.

O'Reilly, R. C. \& Munakata, Y. 2000. Computational Explorations in Cognitive Neuroscience: Understanding the Mind by Simulating the Brain. Massachusetts: MIT press.

Ortega, J. M. 1972. Numerical Analysis; A Second Course. New York: Academic Press. Ozisik, N. 1994. Finite Difference Methods in Heat Transfer. New York: CRC press.

Padmaja, P. \& Reddy, Y. N. 2014. A Domain Decomposition Method for Solving Singularty Perturbed Two Point Boundary Value Problems via Exponential Splines. American Journal of Numerical Analysis. 2(4):128-135.

Powell, M. J. D. 1976. Some Convergence Properties of the Conjugate Gradient Method. Mathematical Programming. 11(1):42-49.

Powell, M. J. D. 1977. Restart Procedures for the Conjugate Gradient Method. Mathematical programming. 12(1):241-254.

Price, C. F. 1968. An Offset Vector Iteration Method for Solving Two-Point BoundaryValue Problems. The Computer Journal. 11(2):220-228.

Qadir, M. I. \& Ahmad, M. O. 2017. Compact Finite Difference Schematic Approach for Linear Second Order Boundary Value Problems. Pakistan Journal of Engineering
and Applied Sciences, 20:79-84.

Qi, G. U. O., Kuanquan, W. A. N. G., Yongfeng, Y. U. A. N. \& Yongtian, Y. A. N. G. 2009. Application of Trigonometric Spline Wavelets in ECG Detection. Electric Journal. 18(1):117-119.

Quarteroni, A. \& Saleri, F. 2006. Approximation of Functions and Data. Scientific
Computing with MATLAB and Octave $71-99$. Computing with MATLAB and Octave. 71-99.

Rashidinia, J. 2002. Direct Methods for Solution of a Linear Fourth-Order Two-Point Boundary Value Problem. Journal of International Engineering and Science. 13:37-48.

Rashidinia, J., Jalilian, R. \& Mohammadi, R. 2007. Non-Polynomial Spline Methods for the Solution of a System of Obstacle Problems. Applied mathematics and computation. 188(2):1984-1990.

Rashidinia, J., Mohammadi, R. \& Jalilian, R. 2008. Cubic Spline Method for Two-Point Boundary Value Problems. International Journal of Engineering Science. 19:3943.

Rashidinia, J. \& Mohammadi, R. 2011. Tension Spline Solution of Nonlinear Sine-Gordon Equation. Numerical Algorithms. 56(1):129-142.

Ramadan, M. A., Lashien, I. F. \& Zahra, W. K. 2007. Polynomial and Nonpolynomial Spline Approaches to the Numerical Solution of Second Order Boundary Value Problems. Applied Mathematics and computation. 184(2):476-484.
Ramadan, M. A., Lashien, I. F. \& Zahra, W. K. 2009. Quintic Nonpolynomial Spline Solutions for Fourth Order Two-Point Boundary Value Problem. Communications in Nonlinear Science and Numerical Simulation. 14(4):1105-1114.
Ravi A. S. V. K. \& Reddy Y. N. 2005. Cubic Spline for a Class Of Singular Two-Point Boundary Value Problems. Applied Mathematics and Computation. 170:733-
740 .

Reddy, S. M. 2016. Collocation Method for Ninth Order Boundary Value Problems by Quinitic 8-splines. International Journal of Engineering Science. 2171.
ur-Rehman, M. \& Khan, R. A. 2012. A Numerical Method for Solving Boundary Value Problems for Fractional Differential Equations. Applied Mathematical Modelling. 36(3):894-907.

Rentrop, P. 1980. An Algorithm for the Computation of the Exponential Spline. Numerische Mathematik. 35(1):81-93.

Richardson, W. H. 1972. Bayesian-Based Iterative Method of Image Restoration. JOSA. 62(1):55-59.

Richardson, A. R. 1920. Stationary Waves in Water. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science. 40(235):97-110.

Roberts, S. M. \& Shipman, J. S. 1967. Continuation in Shooting Methods for Two-Point Boundary Value Problems. Journal of Mathematical Analysis and Applications. 18(1):45-58.

Rosenkranz, M. 2005. A New Symbolic Method for Solving Linear Two-Point Boundary Value Problems on the Level of Operators. Journal of Symbolic Computation. 39(2):171-199.

Saad, Y. \& Schultz, M. H. 1986. GMRES: A Generalized Minimal Residual Algorithm for Solving Nonsymmetric Linear Systems. SIAM Journal on scientific and statistical computing. 7(3):856-869.

Saad, Y. 2003. Iterative Methods for Sparse Linear Systems. Philadelphia: SIAM.
Sakai, M. \& Usmani, R. A. 1986. On Exponential Splines. Journal of Approximation Theory. 47(2):122-131.

Sarkar, T., Arvas, E. \& Rao, S. 1986. Application of FFT and the Conjugate Gradient Method for the Solution of Electromagnetic Radiation from Electrically Large and Small Conducting Bodies. IEEE Transactions on Antennas and Propagation. 34(5):635-640.

Saudi, A. \& Sulaiman, J. 2009. Path Planning for Mobile Robot with Half-Sweep Successive Over-Relaxation (HSSOR) Iterative Method. In Symposium on Progress in Information and Communication Technology (SPICT'09). 57-62.

Saudi, A. \& Sulaiman, J. 2010. Red-Black Strategy for Mobile Robot Path Planning. In The International MultiConference of Engineers and Computer Scientists 2010.

Saudi, A. \& Sulaiman, J. 2012. Path Planning For Indoor Mobile Robot Using Half-Sweep SOR via Nine-Point Laplacian (HSSOR91). IOSR Journal of Mathematics. 3:01-

Schempp, W. 1981. Cardinal Exponential Splines and Laplace Transform. Journal of Approximation Theory. 31(3):261-271.

Schumaker, L. L. 1983. On Hyperbolic Splines. Journal of Approximation Theory. 38(2):144-166.

Schumaker, L. 2007. Spline Functions: Basic Theory. New York: Cambridge University Press.

Shea, G. S. 1985. Interest Rate Term Structure Estimation with Exponential Splines: A Note. The Journal of Finance. 40(1):319-325.

Sickel, S., Yeung, M. C. \& Held, M. J. 2005. A Comparison of Some Iterative Methods in Scientific Computing. Summer Research Apprentice Program.

Siddiqi, S. S. \& Twizell, E. H. 1996. Spline Solutions of Linear Eighth-Order BoundaryValue Problems. Computer Methods in Applied Mechanics and Engineering. 131(3-4):309-325.

Siddiqi, S. S. \& Akram, G. 2006. Solution of fifth order boundary value problems using nonpolynomial spline technique. Applied Mathematics and Computation, 175(2):1574-1581

Siddiqi, S. S. \& Akram, G. 2007. Sextic Spline Solutions of Fifth Order Boundary Value Problems. Applied Mathematics Letters. 20(5):591-597.

Siddiqi, S. S., Akram, G. \& Malik, S. A. 2007. Nonpolynomial Sextic Spline Method for the Solution along with Convergence of Linear Special Case Fifth-Order TwoPoint Boundary Value Problems. Applied Mathematics and Computation. 190(1):532-541.

Sipser, M. 2012. Introduction to the Theory of Computation. Cengage Learning.
Skariah, D. G. \& Arigovindan, M. 2017. Nested Conjugate Gradient Algorithm with Nested Preconditioning for Non-Linear Image Restoration. IEEE Transactions on Image Processing.

Sleijpen, G. L. \& Van der Vorst, H. A. 1995. Hybrid Bi-Conjugate Gradient Methods for CFD Problems. Universiteit Utrecht: Mathematisch Instituut.

Sonneveld, P. 1989. CGS, a Fast Lanczos-Type Solver for Nonsymmetric Linear Systems. SIAM Journal on Scientific and Statistical Computing. 10(1):36-52.

Spath, H. 1969. Exponential Spline Interpolation. Computing. 4(3):225-233.
Srivastava, P. K., Kumar, M. \& Mohapatra, R. N. 2012. Solution of Fourth Order Boundary Value Problems by Numerical Algorithms Based on Nonpolynomial Quintic Splines. Journal of Numerical Mathematics and Stochastics. 4(1):13-25.

Srivastava, P. K. 2014. Study of Differential Equations with their Polynomial and Nonpolynomial Spline Based Approximation. Acta Technica Corviniensis-Bulletin of Engineering. 7(3):139.

Subbotin, Y. N. 1975. Interpolating splines. Approximation Theory. 221-34.
Sugihara, M. 2002. Double Exponential Transformation in the Sinc-Collocation Method for Two-Point Boundary Value Problems. Journal of Computational and Applied Mathematics. 149(1):239-250.

Sulaiman, J., Othman, M. \& Hasan. M.K. 2004. Quarter-Sweep Iterative Alternating Decomposition Explicit Algorithm Applied to Diffusion Equations. International Journal of Computer Mathematics. 81(12):1559-1565.

Sulaiman, J., Othman, M. \& Hasan, M. K. 2009. A New Quarter Sweep Arithmetic Mean (QSAM) Method to Solve Diffusion Equations. Chamchuri Journal of Mathematics. 1(2):93-103.

Sunarto, A., Sulaiman, J. \& Saudi, A. 2014. Solving the Time Fractional Diffusion Equations by the Half-Sweep SOR Iterative Method. International Conference of Advanced Informatics: Concept, Theory and Application (ICAICTA), 2014. 272-277.

Sunarto, A., Sulaiman, J. \& Saudi, A. 2015. Numerical Solutions of the Time-Fractional Diffusion Equations by using Quarter-Sweep SOR Iterative Method.

Sung, N. Ha., 2001. A Nonlinear Shooting Method for Two Point Boundary Value Problems. Computers and Mathematics with Applications. 42:1411-1420.

Taiwo, O. A. \& Ogunlaran, O. M. 2008. Numerical Solution of Fourth Order Linear Ordinary Differential Equations by Cubic Spline Collocation Tau Method. Journal of Mathematics and Statistics. 4(4):264-268.

Taiwo, O. A. \& Ogunlaran, O. M. 2011. A Nonpolynomial Spline Method for Solving Linear Fourth Order Boundary Value Problems. International Journal of Physics Sciences. 6(13):3246-3254.

Tedre, M. 2011. Computing as a Science: A Survey of Competing Viewpoints. Minds and Machines. 21(3):361-387.

Toraichi, K. \& Kamada, M. 1995. Knot Positions for the Smoothest Periodic Quadratic Spline Interpolation of Equispaced Data. Linear Algebra and its Applications. 221:245-251.

Trefethen, L. N. 1992. The Definition of Numerical Analysis. Cornell University.
Turing, A. M. 1948. Rounding-Off Errors in Matrix Processes. The Quarterly Journal of Mechanics and Applied Mathematics. 1(1):287-308.

Usmani, R. A. \& Warsi, S. A. 1980. Quintic Spline Solutions of Boundary Value Problems. Computers \& Mathematics with Applications. 6(2):197-203.

Usmani, R. A. 1992. The Use of Quartic Splines in the Numerical Solution of a FourthOrder Boundary Value Problem. Journal of Computational and Applied Mathematics. 44(2):187-200.

Vaddi, S. S., Menon, P. K., Sweriduk, G. D. \& Ohimeyer, E. J. 2005. Multi-Stepping Solution to Linear Two Point Boundary Value Problems in Missile Integrated Control. In ALAA Guidance, Navigation, and Control Conference and Exhibit, San Francisco, California. 2:1279-1292.

Van der Vorst, H. 1990. Iterative Methods for the Solution of Large Systems of Equations on Superomputers. Actvances in Water Resources. 13(3):137-146.

Van der Vorst, H. A. 1992. Bi-CGSTAB: A Fast and Smoothly Converging Variant of BiCG for the Solution of Nonsymmetric Linear Systems. SIAM Journal on scientific and Statistical Computing. 13(2):631-644.

Visioli, A. 2000. Trajectory Planning of Robot Manipulators by Using Algebraic and Trigonometric Splines. Robotica. 18(6):611-631.

Varga, R. S. 1976. "M.Matrix Theory and Recent Results in Numerical Linear Algebra". In Sparse Matrix Computations. Edited by Bunch, J.R. and Rose, D.J. 375387. New York: Academic Press.

Von Plato, J. 2017. The Great Formal Machinery Works: Theories of Deduction and Computation at the Origins of the Digital Age. London: Princeton University Press.

Mises, R. V. \& Pollaczek-Geiringer, H. 1929. Practical Methods of Equations Resolution. ZAMM Journal of Applied Mathematics and Mechanics. 9(1):58-77.

Walz, G. 1997. Identities for Trigonometric B-Splines with an Application to Curve Design. BIT Numerical Mathematics. 37(1):189-201.

Wang, Q. 2006. Numerical Solutions for Fractional Kdv-Burgers Equation by Adomian Decomposition Method. Applied Mathematics and Computation. 182(2):1048-

Weibel, E. S. 1958. Confinement of a Plasma Column by Radiation Pressure. The Plasma in a Magnetic Field. 60-76.

Wiener, N. 1925. Note on a Paper of O. Perron. Studies in Applied Mathematics. 4(1-4):21-32.

Yao, Y., Li, M., Zhang, Z., Li, R., He, S. \& Nakatake, S. 2017. Power Amplifier Behavioral Model Adaptive Pruning using Conjugate Gradient-Based Greedy Algorithm. IEEJ Transactions on Electrical and Electronic Engineering. 12(1).

Young, D. M. 1950. Iterative Methods for Solving Partial Differential Equations of Elliptic Type. Doctoral Thesis. Harvard University.

Young, D. M. 1954. Iterative Methods for Solving Partial Difference Equations of Elliptic Type. Transactions of the American Mathematical Society. 76(1):92-111.

Young, D. M. 2014. Iterative solution of large linear systems. Elsevier.
Yu, B., Weber, L., Pacureanu, A., Langer, M., Olivier, C., Cloetens, P. \& Peyrin, F. 2017. Phase Retrieval in 3D X-Ray Magnified Phase Nano CT: Imaging Bone Tissue at the Nanoscale. Intemational Symposium on Biomedical Imaging (ISBI 2017), 14th IEEE. 56-59.

Zahra, W. K. 2011. A Smooth Approximation Based on Exponential Spline Solutions for Nonlinear Fourth Order Two Point Boundary Value Problems. Applied Mathematics and Computation. 217(21):8447-8457.

Zahra, W. K. \& El Mhlawy, A. M. 2013. Numerical Solution of Two-Parameter Singularly Perturbed Boundary Value Problems via Exponential Spline. Journal of King Saud University-Science. 25(3):201-208.

Zin, S. M., Abbas, M., Majid, A. A. \& Ismail, A. I. M. 2014. A New Trigonometric Spline Approach to Numerical Solution of Generalized Nonlinear Klien-Gordon Equation. PLOS ONE. 9(5): e95774.

Zoppou, C., Roberts, S. \& Renka, R. J. 2000. Exponential Spline Interpolation in Characteristic Based Scheme for Solving the Advective-Diffusion Equation. International Journal for Numerical Methods in Fluids. 33(3):429-452.

