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ABSTRACT 

Impact phenomenon is a multidisciplinary subject and is of interest for all 
engineering, physics, aerospace, space, defense, building and auto industries. The 
present study involves analysis, experimentation using LabVIEW and Finite Element 
Method (FEM) simulation using Abaqus software for structural members such as 
beams and slabs. During the service life of the structure, the structural members 
might be subjected to impact loads. In order to develop a protective structure that 
is capable of withstanding the potential percussion, the relevant impact engineering 
studies are stimulated. Plates and slabs are the major elements of most of the 
structures. Steel plates are commonly used in manufacturing and have high 
potential to competently resist the impact load. Also reinforced concrete (RC) slab 
is widely used in the construction industry. Thus, the dynamic responses of the 
steel plates and RC slabs due to impact load were investigated in this study. The 
conventional analytical method, Hertz's contact theory, Navier's solution and Levy's 
solution were reviewed and formulated for analysing the impact responses of steel 
plates and RC slabs. Hammer drop test is the usual approach that is conducted to 
examine the impact responses of steel plates and RC slabs. The finite element 
professional software package Abaqus version 6.12 was used to model and 
simulate the response of the steel plate and RC slab in the aforementioned 
experiments. Since the response of plates and slabs depends on the material 
properties, mode of impact, the transmitted impact forces, aspect ratio of the 
specimens, span and boundary conditions, experiments were conducted on 58 steel 
plate models and 24 RC slab models with various hammer heights, specimen aspect 
ratios, support spans and support conditions. The experimental responses of the 
steel plates and RC slabs in the hammer drop test were evaluated with a data 
acquisition system that consists of data acquisition and analysis hardware (National 
Instruments USB-6281 multifunction DAQ card), two units of 4-channel ICP @ 
sensor signal conditioner, six numbers of model 350303 PCB piezoelectric 
accelerometers and an application software (National Instrument LabVIEW 
software). These responses were also computed using Levy's solution and modelled 
with Abaqus simulation. The results of the experimental studies agree well with the 
analytical values as well as the FEM responses obtained using Abaqus simulation, 
thus validating the results. Using this validation and appropriate calibration, the 
virtual hammer drop test is developed using Abaqus software. It is highly potent to 
predict the impact responses of plates and slabs accurately. Thus, the concept of 
this virtual impact test can be further extended for general studies involving 
structures of general shape, size, impact energy, direction and mode of impact. 
This can be particularly useful to conduct virtual tests in situations where 
experimental tests are either not feasible or not economical to be carried out. 
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ABSTRAK 

DYNAMIC RESPONSES OF PLATES AND SLABS DUE TO 
IMPACT LOADS 

Fenomena impak adalah multidisiplin subjek dan penting dalam semua bidang 
kejuruteraan, fizik, aeroangkasa, ruang, pertahanan, industri pembinaan dan auto. 
Kajian ini melibatkan analisis, eksperimen menggunakan kaedah LabVIEW dan 
Kaedah Unsur Terhingga (FEM) menggunakan perisian Abaqus terhadap anggota 
struktur seperti rasuk dan papak. Sepanjang hayat perkhidmatan struktur, anggota 
struktur mungkin tertakluk kepada beban impak. Dalam usaha untuk 
membangunkan struktur pelindung yang mampu untuk menahankan perkusi, kajian 
kejuruteraan impak dipergiatkan lagi. Plat dan papak ada/ah elemen utama da/am 
struktur. Plat keluli yang biasanya digunakan da/am industri pembuatan mempunyai 
potensi yang tinggi untuk menahani beban impak. Manaka/a konkrit bertetulang 
(RC) papak digunakan secara meluas dalam industri pembinaan. O/eh itu, 
tindakbalas dinamik plat ke/uli dan RC papak terhadap impak telah dikaji da/am 
kajian ini. Kaedah analisis konvensional, iaitu "Hertz Contact Theory", "Navier's 
Solution "dan "Levy's Solution " diulas dan dirumus untuk mendapat tindakbalas plat 
keluli dan papak RC. Ujian tukul jatuh adalah pendekatan utama yang boleh 
dija/ankan untuk menganalisis tindakbalas plat ke/uli dan RC papak terhadap impak. 
Pakej perisian profesional Unsur Terhingga - Abaqus versi 6.12 dilaksanakan untuk 
model dan simulasi sambutan plat keluli dan RC papak da/am eksperimen di atas. 
Oleh kerana sambutan plat dan papak adalah berbeza mengikut sifat bahan, mod 
and nilai beban impak, nisbah aspek spesimen, span dan keadaan sempadan, 
eksperimen dijalankan terhadap 58 model plat keluli dan 24 model papak RC 
dengan pelbagai ketinggian tukul, nisbah aspek spesimen, span sokongan dan 
syarat sokongan. Tidakbalas eksperimen plat keluli dan papak RC da/am ujian tukul 
jatuh telah dinilai dengan sistem perolehan data yang terdiri daripada pemerolehan 
data dan perkakasan analisis (National Instruments USB-6281 kad pelbagai fungsi 
DAQ), dua unit 4-saluran ICP @ sensor penghawa isyarat, enam unit model 350303 
pecutan PCB piezoelektrik dan perisian aplikasi (perisian Instrumen Nasional 
LabVIEW). Tindakbalas ini juga dikira menggunakan "Levy's Solution" dan 
dimodelkan dengan simulasi Abaqus. Keputusan eksperimen bersetuju balk dengan 
nilai analitika/ dan nilai FEM yang diperolehi daripada simulasi Abaqus, oleh itu, 
mengesahkan keputusan yang didapati. Dengan pengesahan dan penetukuran 
tersebut, ujian tukul jatuh maya yang dibangunkan menggunakan perisian Abaqus 
berpotensi untuk meramalkan tindakbalas impak plat dan papak dengan tepat. 
Oleh yang demikian, konsep ujian impak maya ini adalah suai dan boleh 
diperluaskan lagi untuk kajian umum yang melibatkan struktur pelbagai bentuk, 
salz, tenaga, arah dan mod impak. Ujian maya ini amat berguna apabila ujian 
eksperimen adalah sukar, mahal dan mustahil dilakukan . 
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