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ABSTRACT 

The ultimate goal of a wastewater filtration process is to remove contaminants, 
thus leaving only clean water as the product. However, conventional wastewater 
filtration process requires improvements in terms of its overall cost and 
effectiveness. The most commonly used filtration system is the dead end filtration 
system which is prone to clogging. Tangential flow filtration (TFF), a type of 
filtration system where the feed flows tangentially across the filter, offers longer 
effective filtration life span compared to dead end filtration system. This is highly 
attributed to the limited filter cake build-up in TFF. However, a TFF system requires 
a good filter membrane to function and, for that purpose, polymethacrylate 
monolithic (PM) membrane was chosen in this research due to its dynamic nature 
of controllable pore size and reactive epoxy groups for easy functionalization. 
Several TFF prototypes were tested whereby the final prototype had a separate 
compartment to encase the PM membrane thus allowing easy access and 
maintenance of the filter membrane. The final prototype was designed and 
fabricated using a 3D printer and Computer Numeric Control (CNC) machine. A 
number of parameters (thickness of monolith, percentage of porogen, initiator 
content and initial polymerization temperature) were tested for their abilities to 
control the pore size of the PM membrane. Percentage of porogen was opted as 
the pore-determining parameter due to its practicality and cost effectiveness. The 
combined TFF system and PM membrane was then used to filter wastewater 
samples (turbid water containing PM powder, lake water and river water) followed 
by water quality test. Among the 60%, 65% and 70% porogen-based monolithic 
membranes tested, the 60% porogen content monolithic membrane gave the 
optimum filtration performance due to its smaller pore size than the 65% and 70% 
porogen monolith. The turbidity level of river water sample was reduced from 17.41 
Nephelometric Turbidity Unit (NTU) to 0 NTU and lake water from 9.02 NTU to 0.35 
NTU. Water samples filtered using monolithic membrane of 60% porogen yielded 
no bacterial growth in nutrient agar even after 24 hours of incubation. However, no 
significant reduction or changes in the pH level of water samples before and after 
filtration. For total dissolved solid (TDS) analysis, a slight reduction of 68 parts per 
million (ppm) to 63 ppm was observed for lake water after filtration and a reduction 
of 36 ppm to 26 ppm was observed for river water sample. The monolithic 
membrane of 60% porogen content reduced the colour of lake water sample from 
221 Hazen to 36 Hazen and 205 Hazen to 38 Hazen for river water sample. The 
combined TFF system along with the monolithic membrane was also tested for 
prolonged usage, and the data suggested that it is reliable for long term usage. The 
developed filtration system provides insight and alternative to the conventional 
wastewater treatment process, hence could be improved to be applied in remote 
areas where access to treated water is not available. 
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ABSTRAK 

 
PEMBANGUNAN SISTEM PENAPISAN ALIRAN TANGEN BERASASKAN 

POLIMETAKRILAT UNTUK RAWATAN AIR SISA. 

 
Matlamat utama proses penapisan air sisa adalah untuk mengasingkan bahan 

cemar, sekali gus hanya meninggalkan air bersih sebagai produk. Walau 

bagaimanapun, proses penapisan air sisa konvensional masih memerlukan 

penambahbaikan dari segi kos dan keberkesanan secara menyeluruh. Sistem 

penapisan yang paling biasa digunakan ialah sistem penapisan buntu yang senang 

tersumbat. Penapisan aliran tangen (PAT), sejenis sistem penapisan di mana aliran 

masuk mengalir secara tangen pada seluruh penapis, menawarkan penapisan lebih 

berkesan jika dibandingkan dengan sistem penapisan buntu, kerana kotoran yang 

cenderung melekat pada penapis terus dihanyutkan semasa proses penapisan. 

Walau bagaimanapun, sistem PAT memerlukan membran penapis yang baik untuk 

berfungsi dan, dalam hal ini, membran monolit polimetakrilat (MP) telah dipilih 

untuk kajian ini kerana sifat dinamik saiz liang boleh dikawal dan kumpulan epoksi 

reaktif untuk pemfungsian mudah. Beberapa prototaip TFF telah diuji di mana 

prototaip terakhir mempunyai ruangan khas untuk menempatkan membran MP 

dengan tujuan membolehkan akses mudah dan penyelenggaraan membran 

penapis. Prototaip akhir direka dan dicetak menggunakan mesin pencetak 3D dan 

Kawalan Berangka Berkomputer (CNC). Beberapa parameter (ketebalan monolit, 

peratusan porogen, kandungan pemula dan suhu pempolimeran awal) telah diuji 

untuk keberkesanan mengawal saiz liang membran MP. Peratusan porogen telah 

dipilih sebagai parameter penentuan saiz liang kerana lebih praktikal dan jimat. 

Sistem gabungan PAT dan membran MP kemudiannya digunakan untuk menapis 

sampel air sisa (air keruh mengandungi serbuk MP, air tasik dan air sungai) diikuti 

dengan ujian kualiti air. Di antara 60%, 65% dan 70% kandungan porogen 

membran monolitik yang diuji, membran monolitik dengan kandungan 60% 

porogen memberikan hasil yang optimum kerana ianya mempunyai saiz liang paling 

kecil berbanding membran monolitik dengan kandungan porogen 65% dan 70%. Ia 

mampu mengurangkan kekeruhan sampel air sungai dari 17.41 Unit Kekeruhan 

Nephelometric (NTU) kepada 0 NTU dan air tasik dari 9.02 NTU hingga 0.35 NTU. 
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Sampel air yang ditapis oleh sistem PAT dengan 60% kandungan porogen 

membran monolitik menunjukkan tiada pertumbuhan bakteria dalam nutrien agar 

walaupun selepas masa inkubasi selama 24 jam. Walau bagaimanapun, tiada 

pengurangan atau perubahan drastik dalam pH sampel air sebelum dan selepas 

penapisan. Bagi jumlah pepejal terlarut (TDS), analisa menunjukkan pengurangan 

daripada 68.00 bahagian dalam sejuta (ppm) kepada 63.00 ppm untuk air tasik 

selepas penapisan dan pengurangan 36.67 ppm kepada 26.00 ppm untuk sampel 

air sungai. Membran monolitik 60% juga dapat mengurangkan warna sampel air 

tasik dengan ketara daripada 221 Hazen kepada 36 Hazen dan 205 Hazen kepada 

38 Hazen untuk sampel air sungai. Sistem gabungan TFF bersama-sama dengan 

membran monolitik juga diuji untuk kegunaan berpanjangan dan data 

mencadangkan ia boleh digunakan untuk kegunaan jangka masa panjang. Sistem 

penapisan yang dibangunkan memberikan pandangan baru dan alternatif kepada 

proses rawatan air sisa konvensional dan boleh ditambahbaik untuk digunakan di 

kawasan terpencil dimana tiada akses kepada air bersih yang telah dirawat. 
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CHAPTER 1 

 

INTRODUCTION 

 

 

1.1 Background of Study 

Water is a finite and an important resource on earth. An essence of life, all living 

things on earth need water to survive and no other living things other than human 

uses water for so many applications. Wastewater contains different types of 

contaminant depending on its sources (Sophonsiri & Morgenroth, 2004). 

Wastewater from agricultural runoff usually contains high levels of nitrogen and 

phosphorus which play a major role in eutrophication (Elser, Marzolf, & Goldman, 

1990; Zimmo, Van Der Steen, & Gijzen, 2004), while water from domestic wastes 

contains mostly organic matter. The uncontrolled disposal of domestic and 

industrial wastewaters into the environment causes severe pollution problems such 

as eutrophication or oxygen depletion in lakes and rivers, which makes wastewater 

treatment paramount (Cai, Park, & Li, 2013). Globally, the World Health 

Organization (WHO) estimates that by 2025, about 50% of the world’s population 

will be living in water scarce-areas of which demands exceed the available supply, 

while currently, even with access to water, 2 billion people use drinking water 

source that is contaminated with fecal matter which can transmit illnesses such as 

dysentery, diarrhea, cholera, polio and typhoid (WHO, 2018).  

Conventional wastewater treatment comprises several steps to remove 

different sizes and types of contaminants. However, current wastewater treatment 

processes still encounter overwhelming challenges. For example, the virus removal 

efficiency in water treatment is highly dependent  on several parameters such as 

salt, turbidity, concentration, pH  and contact time (Riley, Gerba, & Elimelech, 

2011). Recently, methacrylate monolith has been successfully used as a tool for 

waterborne virus removal from wastewater (Rački et al., 2015). A monolith is a 

single piece of a highly porous material consisting of interconnected pores 

(Williams,2001).Polymethacrylate monolith is a highly potential material
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used either in separation or concentration process due to its pH resistance, ease of 

synthesis and flexibility in tailoring the pore size according to the target solutes 

(Podgornik, Smrekar, Krajnc, & Štrancar, 2013). Apart from virus removal, another 

challenge faced by the conventional wastewater treatment process relates to the 

chemical used in the disinfection process, chlorine, which can react with naturally 

occurring materials in drinking waters to form by-products that are detrimental to 

human health (Riley et al., 2011). These by-products are called disinfection by-

products (DBPs), and there are more than 600 types that have been identified 

having a variety of detrimental effects on human’s health (Richardson et al., 2007). 

One of the most important processes in wastewater treatment is filtration. 

In traditional dead-end filtration, the feed flows directly into the filter, resulting in 

clogged filter pores over a short period of time. In tangential flow filtration (TFF), 

the feed flows tangentially across the filter surface enabling prolonged filtration as 

the filter cake is continuously being washed out during the filtration process (Van 

Reis & Zydney, 2001). TFF has been widely used in biotechnology to recover 

proteins and metabolic products from fermentation as well as to concentrate 

bacterial sample for further analysis (Naja, Volesky, & Schnell, 2006; Van Reis & 

Zydney, 2001). The TFF system used in wastewater treatment generally produce 

two outputs simultaneously in a single flowthrough, one being the more 

concentrated wastewater (retentate) and the other being clean water (permeate). 

 

1.2 Problem Statement 

Water crisis is a recurring problem faced by many in the developing and arid 

countries. With the exponential growth of human population, the demand for water 

is also increasing exponentially hence the reason why water reclamation is 

important. Filtration is one of the main processes in water reclamation and there 

are many types of filters existing in the market today each designed to cater for 

different needs. In recent years, polymethacrylate monolith is used in separation 

processes due to its controllable pore size and reactive epoxy groups that can be 

functionalized,(Barroso, Hussain, Roque, & Aguiar-Ricardo, 2013). 
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 Currently available water treatment technology relies heavily on chlorine for 

microbial disinfection. This process has been known to produce disinfection 

byproducts that pose risks to human health (Richardson et al., 2007). People who 

live in rural areas where there are no access to treated water often rely on natural 

water sources such as river water, rain, ponds and underground water that are not 

treated where boiling is the only method of disinfection. The water quality at such 

places is usually affected by weather condition such as heavy downpour that 

usually brings a massive amount of suspended solids into the water bodies. 

Although boiling makes water biologically safe, the high level of suspended solid 

(especially nano particles) makes water undrinkable and unsafe for daily use. 

Therefore, a simple and affordable yet effective water filtration system needed to 

be developed. 

 The pore size of a polymethacrylate monolith is affected by several 

parameters especially the amount of reagents used for the polymerization process. 

Apart from that, the amount of heat produced during the polymerization process 

and the shape of the polymethacrylate monolith greatly affects the pore size 

formation within the monolith. Manipulation and understanding of these parameters 

are crucial in fine tuning the pore size of a polymethacrylate monolith into a desired 

size. In order to fabricate a polymethacrylate monolith into a desired shape, a 

polymerization mold that has good heat conductivity and water resistance is 

required, since the mold would be submerged in a water bath. Another challenge is 

to remove the resulting polymethacryate monolith from the mold, as it has the 

tendency to stick on the mold itself. 

 Most commonly used filtration system employs the dead end filtration 

system which is susceptible to clogging after a brief usage, as the feed flows 

directly onto the filter membrane itself. A better alternative would be the tangential 

flow filtration system, where the feeds flows tangentially across the filter 

membrane thus enabling longer effective filtration process compared to dead end 

filters as the filter cake is continuously washed away. A simple TFF system that 

could house the polymethacrylate monolith membrane needs to be developed to 

integrate both TFF and polymethacrylate monolith membrane into a fully functional 



 

 
 

4 
 

filter. It needs to be waterproof and is able to withstand high pressure to prevent 

leakage during usage.  

 

1.3 Hypothesis of Study 

The hypotheses of this research were: 

1. The polymethacrylate monolith pore size could be adjusted to retain 

different types of suspended contaminants in wastewater and allow 

effective high throughput water filtration to be conducted at a fairly low 

pressure. 

2. The fabricated polymethacrylate-based TFF system was able to effectively 

house the monolithic membrane. 

3. The developed TFF system could be used to filter wastewater at varying 

degrees of efficiency according to the pore size of the monolithic 

membranes. 

1.4 Objectives 

The objectives of this research were: 

1. To characterise the morphology of polymethacrylate monoliths prepared at 

varied experimental conditions (thickness of monolith, percentage of 

porogen, amount of initiator and initial polymerization temperature).  

2. To design and fabricate a polymethacrylate-based TFF system for 

wastewater filtration. 

3. To test the efficiency of the TFF system for the removal of microbes and 

suspended particles from wastewater.  
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1.5 Significance of Research 

The development of a simple TFF system combining polymethacrylate monolithic 

membrane to filter wastewater provides an alternative to current technology in 

wastewater treatment. It has the potential to eliminate the dependency on chlorine 

for water disinfection which is known to produce disinfection byproducts 

detrimental to human’s health. The developed TFF system combining 

polymethacrylate monolithic membrane is small in size, portable and can be 

operated at low water pressure hence without pump. The current prototype can 

cater for an individual or small family needs in rural areas that lack treated water 

supply. The proposed system could potentially be up-scaled to process hundreds 

litres of untreated water. This is due to the fact that polymethacrylate monoliths 

have been produced successfully in larger size than the current monolith (Chan, 

Adam, Obeng, & Ongkudon, 2018) . 
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