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ABSTRACT 

In this thesis, a class of functions f (z) which are analytic in the open unit disk 'D == 
{z: lzl < 1} is denoted by .A. Next, s denote the subclass of .A consisting of univalent 
functions and normalized by f(O) = o and f'(O) = 1. The main subclasses of s are 
the classes of starlike, convex, close-to-convex and quasi-convex functions which can 
be represented ass•, c, X and Q respectively. Every univalent function f has an 
inverse function defined by 1-1(f(z)) = z and t(f-1(w)) = w where lwl < r0(f) and 

ro Cf) � ¼ with 1-1cw) = W - a2w2 
+ (2a� - a3)w3 

- (Sa� - Sa2a3 + a4)w4 
+ ···. A

function f e .A is said to be bi-univalent in 'D if both f and 1-1 are univalent in 'D. 
Further, a denoted the class of bi-univalent functions in 'D. Hence, in this thesis, new 
subclasses of a were proposed by considering functions f e a and the coefficient 
estimates for these classes are obtained. Furthermore, the upper bounds of the 
Fekete-Szego inequalities and second Hankel determinant are obtained for certain 
subclasses of a. 
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ABSTRAK 

SUBKELAS BAGI FUNGSI BI-UNIVALEN 

Di dalam tesis int kelas fungsi f(z) yang analisis di dalam cakera unit terbuka 'D ==
{z: lzl < 1} ditandakan sebagai cA. Seterusnya, s melambangkan subkelas bagi cA 
yang mengandungi fungsi univalen dan ternormal dengan f(O) = o dan f'(O) = 1. 
Subkelas utama bagi s ialah kelas fungsi bakbintang, cembung, hampir cembung 
dan kuasi cembung yang masing-masing diwaki/kan sebagai s•, c, X dan Q. Setiap 
fungsif mempunyai fungsi songsangan yang ditakrifkan sebagai 1-1(f(z)) = z dan 

t(f-1(w)) = w dengan lwl < roCf) dan roCf) �; bagi 1-1(w) = w - a2w2 
+

(2a1 - a3 )w3 
- (Sa� - Sa2 a3 

+ a4)w4 + ···· Suatu fungsi f E cA dikatakan bi­
univalen di dalam 1J jika kedua-dua fungsi f dan 1-1 adalah univalen di dalam 'D. 
Selanjutnya, <J ditandakan sebagai kelas fungsi bi-univalen di dalam 1J. Justeru itu, 
di dalam tesis int subkelas baru bagi <J diperkenalkan dengan mempertimbangkan 
fungsi f E <J dan anggaran pekali bagi kelas-kelas tersebut diperoleh. Di samping itu, 
batasan atas bagi ketaksamaan Fekete-Szego dan penentu Hankel ke-dua juga 

diperoleh untuk suatu subkelas bagi <J. 
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CHAPTER 1 

PRELIMINARIES 

1.1 Introduction 

One of the aspects of the theory of analytic functions of a complex variable is the 

study of geometric function theory. This study was founded around the turn of the 

20th century and still remains as one of the most active fields researched by others 

scholars. Geometric function theory studies the geometric properties of analytic 

functions and is mainly concerned with the power series of the form 

f(z) = bo+b1z+b2z2+"""+bnzn+""" 

in a complex variable z that is convergent in a domain E. Such a power series can 

be interpreted as a mapping of the domain E in the z-plane onto the same range 

set F in the w-plane. 

This thesis considers A to be the class of analytic functions in the open unit 
disk D= {z: IzI < 11. According to Spiegel (1964), if the derivative f'(z) exists at all 

points z of a regime E, then f (z) is said to be analytic in E and is referred to as an 

analytic function in E or a function analytic in E. The terms regular and holomorphic 

are sometimes used as synonyms for analytic. A function f(z) is said to be analytic 

at a point zo if there exists a neighborhood Iz - zo I<S at all points of which f'(z) 

exists. Let f (z) = 1/zi g(z) = z1/2 and h(z) = ez for Iz - ii < 1. All three functions 

are analytic in this region and in particular are analytic in i. 



1.2 Univalent Functions 

From the geometric point of view, univalent functions are the simplest analytic 

functions. Various other terms are used for this concept. Thus, univalent functions 

are called simple or schlicht (the German word for simple). The Russians refer to 

such functions as ornolistni, which means single-sheeted. According to Ahuja (1986), 

a function f(z) that is analytic in E is said to be univalent in E, if it never takes the 

same value twice, that is, f(z1) -"6 f(z2) if z1 * z2, where z1, z2 E E. Certain 

simplifying assumptions are necessary in the theory of univalent functions. The first 

assumption is to take the unit disk D= (z : IzI < 1) in place of the arbitrary domain 

E. The second assumption is to take the normalization conditions which are f(0) =0 

and f'(0) = 1. With these assumptions, f (z) can be rewritten in the form 

00 
f (z) = z+Y, anzn, an EC, ZED 

n=2 

Further, let 

s= {f :fEA and f is univalent in D) 

(1.1) 

An example of a univalent function is the function g(z) = i±i. Another example of 

univalent function is the Koebe function in the form 

k(z) 
4[(l 

± 
z1- 

1J = (1 
zzýZ, 

z*1 

that maps D onto the entire complex plane except the slit along the negative real 

axis from -o to - 
4. 

2 



1.3 Subclasses of Univalent Functions 
We let S be the subclasses of Ai in D. Some of the most important subclasses of S 

are given as follow. 

Definition 1.1 (Goodman, 1975) A set E in the plane is said to be starlike 

with respect to wo an interior point of E if each ray with initial point wo intersects the 

interior of E in a set that is either a line segment or a ray. If a function f (z) maps D 

onto a domain that is starlike with respect to wo, then we say that f(z) is starlike 

with respect to wo. In the special case that wo = 0, we say that f (z) is a starlike 
function. 

The class of all starlike functions in D is denoted by S. It was first studied 
by Alexander in 1916. The most common example of starlike function is the Koebe 

function, k(z) _ (1Z2 
because it maps D onto the entire complex plane excluding 

the slit -co <w <- - 
4. Robertson (1936) showed that fE S" if and only if 

/zf'(z) 
Re( 

f(z) 
>0, zE D 

Another important subdass of 8 consist of the convex functions. 

Definition 1.2 (Goodman, 1975) A set E in the plane is said to be convex if 
for every pair of points wl and w2 in the interior of E, the line segment joining wl 
and w2 is also in the interior of E. If a function f(z) maps D onto a convex domain, 

then f (z) is called a convex function. 

The class of all convex functions in D is denoted by C. It was first studied in 

1931 by Jensen. The Mobius function, L0(z) = i±i =1+2 En 1 z", is one example 

of convex function because it maps D onto a half plane. Robertson (1936) observed 
that function fES is convex in D if and only if 

3 



Re 
r1 

+f , CZ))/ > 0, zED 

In 1952, Kaplan introduced the class K of all close-to-convex functions in D. 

Definition 1.3 (Kaplan, 1952) Let f(z) be analytic for Izl < R. Then f(z) is 

dose-to-convex for IzI <R if there exists a function 4(z), convex and schlicht for 

Izl < R, such that f (z) has positive real part for Izl < R. 

It will be convenient to exclude reference to the circular domain of definition 

when R=1. Hence, a close-to-convex function will mean a function which is close- 
to-convex for IzI < 1. 

The classes of S' and C can be generalized to the class of the starlike and 

convex functions of order a as follows. 

Definition 1.4 (Goodman, 1975) A function f(z) in the form (1.1) is said to 

be starlike of order a in D if for all zED 

Reýf(Zý')>a, zE D 

where 0: 5 a<1. We denote S *(a) as the subclass of .i consisting of all starlike 
functions of order a in D. 

Note that a function fE .4 is said to be starlike in D when a=0. 

Definition 1.5 (Goodman, 1975) A function f(z) in the form (1.1) is said to 

be convex of order a in D if for all zED 

4 



Re C1 + 
f, 

ý(Z)/ >a zED 
z 

where 0 <_ a<1. We denote C(a) the subclass of A consisting of all convex 
functions of order a in D. 

Note that a function fEA is said to be convex in D when a=0. 

The concepts of starlike and convex functions of order a were introduced by 
Robertson (1936). Thus, many other mathematicians continue to study and 
investigate this idea. 

Definition 1.6 (Goodman, 1975) A function f(z) in the form (1.1) is said to 

be strongly starlike of order a in D if for all zED, 

(zf'(z)ll air 
arg f (z) J 'ý- 2 

for 0<a <_ 1. 

The set of all such functions is denoted by SS*(a). 

Definition 1.7 (Goodman, 1975) A function f(z) in the form (1.1) is said to 
be strongly convex of order a in D if for all zED, 

Iarg 
(1 

+ zf if () 
f'(z))I `2 

for 0<a51. 

The set of all such functions is denoted by SC*(a). 

5 



Definition 1.8 (Noor & Thomas, 1980) Let f be analytic in D with f(0) 

f'(0) -1=0. Then f is said to be quasi-convex in D if there exist a function 

g (z) EC with g (O) = g'(0) -1=0 such that for zED 

Re ((Zf'(Z))' >0 
\ 9'cz) J 

The set of all such functions is denoted by Q(a). 

1.4 Bi-Univalent Functions 

According to the Koebe one-quarter theorem by Duren (1983), the image of D under 

every univalent function fES contains a disk of radius 4. 
Thus, an inverse for every 

univalent function f can be defined as 

f-1(f(z)) = z, ZED 

and 
f(f-1(w)) = w, 

(IwI < ro(f), ro(f) ý, t 4) 
where 

f1(w) 
=w- a2w2 + (2a2 - a3)w3 

-(5a3-5a2a3+a4)W4+... (1.2) 

A function fEA is said to be bi-univalent in D if both f and f are univalent 
in D. The class of bi-univalent functions defined in D is denoted by a. Some example 

and 

where 

of functions in class a include --L-, -log(1- z) and 21og (i±i). 

The first researcher to introduce and study about the class of bi-univalent 

functions is Lewin (1967). He proved that 1a21 < 1.51. Later on, Brannan and Clunie 

(1980) refined the result to Ia2I < 'lf2-. While Netanyahu (1969) showed that 
4 

mEaxIa2I=3. 
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Brannan and Taha (1986) instigated certain subclasses of bi-univalent 

functions. It has similarities with the subclasses of univalent functions which 
consisting of starlike, convex and strongly starlike functions. They investigated bi- 

starlike functions and obtained the estimates on the initial coefficients. 

There are two main subclasses of bi-univalent functions which are bi-starlike 

and bi-convex functions. These subclasses are denoted as 8 and CQ, respectively. 

1.5 Subordination 

Definition 1.8 (Goodman, 1975) Let G(z) = ao + a1z + """ be analytic and 

univalent in D and suppose that F(D) = S. If f(z) is analytic in D, f(0) = G(O), and 
f(D) c 8, then we say that f(z) is subordinate to G(z) in D, and we write 

f (z) <G (z) 

We also say that G(z) is superordinate to f(z) in D. 

1.6 Functions with Positive Real Part 

The convex and starlike functions are relatively related to functions with positive real 
part. We give definition to these functions as follow. 

Definition 1.9 (Goodman, 1975) The set T is the set of all functions of the 
form 

00 
P(z) =1+ P1z + P2 Z2 + Pnzn ... =1+I Pnzn 

n=1 

that are analytic in D, and such that for z in D, Re(P(z)) > 0. Any function in P is 

called a function with positive real part in D. 

7 



In this case, it should be noted that P(z) is not required to be univalent. 

Thus, P(z) =1+ z' is in P for any integer n >_ 0, but if n >_ 2, this function is not 

univalent. 

Just as the Koebe functions, k(z) plays a major role in the class s, the Möbius 

function 

(A 1+z 
Lo(z) _ 1-z-1+2z+2z2+" "=1+2ýz", z*1 

n=1 

Also plays a major role in the class P. This function is belonging to the dass P, it is 

analytic and univalent in D, and its maps D onto the half plane. 

8 



1.7 Objectives of Research 

The objectives of this research are: 
I. to obtain the estimates of the Maclaurin coefficients, Ia2I and laid for 

functions belonging to certain subclasses of a; 
ii. to obtain the upper bounds of the Fekete-Szegö functional for functions 

belonging to certain subclasses of a; and 
iii. to obtain the upper bounds of the second Hankel determinant for 

functions belonging to a subclass of a. 

1.8 Outline of Research 

This thesis consists of five main chapters. Chapter 1 explains and gives brief insight 

of the ideas of the geometric function theory, analytic and univalent functions and 
its subclasses, bi-univalent functions and its subclasses and functions with positive 

real part. Some definitions are used to substantiate these terms. Chapter 2 consists 

of defining certain subclasses of bi-univalent functions which are denoted by 

J-t'Q(gp, a), J , (gyp), LQ(cp) and XQ(ýp, a). Chapter 3 mentions about the Fekete-Szegö 

functional for all the certain new subclasses of a. Chapter 4 mentions about the 

results on the upper bounds of the second Hankel determinant for a new subclass of 

a. Lastly, Chapter 5 gives the conclusion of the thesis and future works of this study. 

9 



CHAPTER 2 

INITIAL COEFFICIENTS 

2.1 Introduction 

In Chapter 1, brief history of functions in class a have been discussed while in this 

chapter, several new subclasses of a will be developed. These subclasses will then 
be denoted by 7CQ(ýp, a), 1, (ßp), LQ(ýp) and 7C (qp, a) with 0<a<1. The ideas of 
developing new subclasses of a were inspired by some well-known authors such as 
Ali et at. (2012), Srivastava et al.. (2013) and Lashin (2016). 

2.2 The Class It, (4p, a) 
Before giving the definition of the new subclass of a, we begin by stating the well- 
known definition of a dass which was introduced by Ma and Minda (1994). 

Definition 2.1 (Ma & Minda, 1994) considered an analytic function ýp with 

positive real part in D, qp(0) = 1, ßp'(0) >0 that maps D onto a region starlike with 

respect to 1 and symmetric with respect to the real axis. The series expansion for 
function V can be expressed in the form of 

g(z) =1+ Blz + B2 Z2 + """, (Bl > 0) (2.1) 

The class of Ma-Minda starlike functions consists of functions fE .4 satisfying 
the subordination 



z f' (z) 
<m(z) f/Z\ T \-J 

(2.2) 

and the dass of Ma-Minda convex functions consists of functions fE .4 satisfying 

the subordination 

1+ zf "(z) 
<z 

f, (z) ýP( ) 
(2.3) 

respectively. All et al.. (2012) stated that in order for function f to be bi-starlike or 

bi-convex of Ma-Minda type, both f and f-1 must be respectively Ma-Minda starlike 

or Ma-Minda convex. ST, (ýp) and CVV(V) denote the lasses for bi-starlike of Ma- 

Minda type and bi-convex of Ma-Minda type, respectively. 

Motivated by the classes STQ(cp) and CVQ(cp), we come out with the subclass 

of a which is denoted by Jf, (cp, a) as follows. 

Definition 2.2 A function fEa given by (1.1) is said to be in the class 

J-CQ(gp, a) with 0 <_ a <_ 1 if the following subordination hold: 

zf'(z)+az2f"(z) 
(1 - a)f(z) + azf'(z) 

< (P (Z) 

and 

(2.4) 

wg'(w) + aw g (w) (2.5) 
(1- a)g(w) + awg'(w) 

< co(w) 

where the function g is given by 

g(w) = f-1(w) =w- a2w2 + (2a2 - a3)w2 (2.6) 

In particular, for a=0, the class of JCQ(cp, a) is reduced to the dass sx, (ýO), 

bi-starlike of Ma-Minda type and for a= 1, the dass of H, (ýp, a) is reduced to 

CVQ(4p), bi-convex of Ma-Minda type. 

11 
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