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ABSTRACT 

The study of p-type semiconductor CuGaO2 thin film was carried out to investigate 
the effects of various temperatures during and after the deposition in order to obtain 
the optimum result in achieving a good optical transparency and conductivity of the 
thin film. Majority of the transparent oxide semiconductors (TOS) which were 
developed do not possess p-type conductivity. Due to an excess oxygen in the 
acceptor levels and the created holes which are firmly localized at the oxygen sites, 
p-type oxide semiconductors are gaining more research attention. With the increase
of demand in the novel components, CuGaO2 has gained importance in research as a
p-type semiconductor. Previous studies emphasized on the effects of lower
temperature post-treatment of the CuGaO2 thin film of temperature lower than
500°C. The potential applications of the CuGaO2 thin films are very wide such as thin­
film transistors, transparent diodes and light-emitting diodes which are growing to be
more and more relevant in the current generation. The CuGaO2 thin films were
fabricated on quartz substrate via the RF magnetron sputtering technique with
varying sputtering temperatures and annealing temperatures. The p-type thin films
were deposited at temperatures of room temperature (RT), 50°C, 100°C, 150°C,
200°C and 250°C. Each samples of the individual deposition temperatures were also
annealed at varying temperatures of 500°C, 600°C, 700°C, 800°C and 900°C. The
XRD results showed that the thin films of 900°C annealing temperature has a peak
approximately at 36.28° with the orientation of (012), which is based on
rhombohedral unit cell with the space group R-3m (JCPDS card No. 41-0255). The
crystallite size obtained is 18.040nm for the annealing temperature of 900°C while
the Full-Wave Half Maximum (FWHM) value is 0.081. The optical band gaps obtained
from the thin films ranged from 3.30-3.72 eV, which is in line with the results found
in the general range of CuGaO2 thin film optical band gaps of 3.30-3.60 eV. From the
UV-Vis measurement, the high transparencies were observed to be approximately at
70-80%. The EDS measurement of the chosen parameters of 100°C with annealing
temperature of 900°C showed that the Oxide weighted at 33.75%, Copper at 27.86%
and Gallium at 19.13% while the remaining 19.13% belongs to Silicon which is a part
of the quartz used as the substrate. Due to the optimum surface morphology of the
annealing temperature of 800°C of deposition temperature 100°C, bandgap which is
within the range of general range of CuGaO2 and high transmittance are reasons
suitable for diode fabrication.
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ABSTRAK 

FABRIKASI DAN PENCIRIAN FILEM NIPIS COPPER GALLIUM OXIDE 
PADA SUHU PENYEPUHLINDAPAN YANG BERLAINAN 

Kajian terhadap filem n/pis semikonduktor CuGaO2 jenis p telah d#alankan 
untuk mengkaji kesan kepe/bagaian suhu semasa dan se%pas penmendapan, 
bagi mendapatkan hasil yang optimum da/am mencapa/ kete/usan optik dan 
kekonduksian yang baik bagi filem nipis. Kebanyakan semikonduktor oksida yang 
berlutsinar yang dihasilkan tidak memiliki kekonduks/an jen/s p. Disebabkan 
oksigen yang berlebihan yang ada pada aras penerima dan juga lubang lohong 
yang bersetempat di tapak oksigen, semikonduktor oksida jenis p to/ah menarik 
lebih perhatian untuk kajian dilakukan. Dengan permintaan yang semakin tinggi, 
CUGaO2 menunjukkan kepentingan da/am penyelld/kan sebagai semikonduktor 
jenis p. Potensi aplikasi filem n/pis CuGaO2 sangat /uas seperti transistor filem 
nipis, diod telus dan diod pemancar cahaya semakin terkenal dan lebih re%van 
pada generasi semasa. Filem n/pis CuGaO2 to/ah difabrikasi pada substrat kuarza 
menggunakan teknik pemercikan Magnetron Frekuensi Radio dengan suhu 
pemercikan dan suhu penyepuhlindapan yang berbeza-beza. Filem nipis jenis p 
telah dimendapkan pada suhu yang berbeza iaitu pada suhu bilik, 50°C, 100°C, 
150°C, 200°C dan 250°C. Set/ap sampel yang dipercikkan juga me/alui proses 
sepuh l/ndap pada suhu yang berbeza 500°C, 600°C, 700°C, 800°C dan 900°C. 
Hasil XRD menunjukkan bahawa filem nipis pada suhu 900°Cmempunyai puncak 
secara hampir pada 36.28° dengan or/entasi (012), berdasarkan set unit 
rhombohedral dengan kumpulan ruang R-3m (kad JCPDS No. 41 -0255). Sa/z 
kr/stal yang d/dapati ada/ah 18.040nm daripada suhu penyepuhlindapan 900°C 
manaka/a Mai maks/mum Separuh Penuh Ge%mbang (FWHM) adalah 0.081. 
Jurang tenaga opt/k yang dipero%hi daripada fitem n/p/s adalah dar/ 3.30-3.72 
e V, /anya se/aras dengan hasil yang didapati da/am rangkaian umum fitem n/pis 
CuGaO2 la/tu 3.30-3.60 eV Berdasarkan pengukuran UV-V/s, ketelusan filem 
dicerap kira-k/ra 70-80%. Pengukuran EDS bag/ parameter 100°C dengan suhu 
penyepuhlindapan 900°C menunjukkan bahawa peratus berat Oks/da pada 
33.75%, Tembaga pada 27.86% dan Gallium pada 19.13% manakala peratusan 
se%bihnya sebanyak 19.13% adalah milik Silicon yang merupakan sebahagian 
daripada substrat. O/eh kerana morfologi permukaan yang optima pada suhu 
penyepuhlindapan 800°C dengan suhu pemercikan 100°C, jurang tenaga optic 
yang berada di rangkaian umum CUGaO2 dan ketelusan filem yang tingg/ adalah 
sebab-sebab yang sesuai untuk fabrikasl diod. 
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CHAPTER I 

INTRODUCTION 

1.1 Background Study 

The electronic industries particularly optoelectronics have intrigued the interest of 

many especially researchers due to its potential and demand in the marketplace. The 

optoelectronic devices found widely in many applications such as LCD TV, mobile 

phones, electronic tablets and laptops have been the typical necessities in most 

societies nowadays. 

Transparent Conductive Oxides (TCO) are widely used not just due to its 

transparent properties but also their electrical properties in relevant devices which 

are commonly used in technological applications such as LEDs (Tsukazaki et al, 
2004), flat panel displays (Bruce et al, 2005), sensors (Alias et al, 2012) and 
transistors (Presley etal, 2004), which form the basis of the optoelectronic industry. 

Essentially, optoelectronic devices require good transparency in the visible spectral 

range and low resistivity (Saad et al, 2015). Inorganic oxide-based materials of high 

transparency and electrically conductive of either electron or hole type were being 

worked on over the past two decades (Domaradzki, 2016). Hence, TCOs have 

become more popular in the modern society due to its practicality. A de-icer was the 

first device that involved a TCO material which was used in WWII as bomber windows 
(Bruce et. al, 2005). Most of the TCOs used are of the n-type semiconductors due to 

its good electrical properties such as Sn02 (Presley etal, 2004), In2O3 (Sahm eta/, 
2007) and ZnO (Dhara and Girl, 2012). As an example, ZnO has a large exciton 
binding energy which is approximately 60 meV (Ajimsha etal, 2014). In addition, 
due to its low solubility and self-compensating effect of the acceptor dopants, ZnO 

exhibit a n-type conductivity. Moreover, the development of ZnO homojunction was 

constrained as reported by Shen et. a/(2014: 345). Hence hybrid p-n heterojunctions 



such as p-type thin layers p-Si, p-NiO and p-polymer with n-type ZnO were 

considered. However, high quality heterojunctions are always difficult to obtain due 

the huge difference in lattice mismatch between the p-type and n-type (Shen et. a/, 
2014: 345). 

The delafossite group was reviewed and showed potential in improving the 

p-type conductivities. Therefore, it is important to research on this group in the 
development of the optoelectronic advancement. Several popular examples of the 
delafossite group which have been studied on such as CuAIO2 (Reddy et. al, 2009), 

CuInOz (Sasaki and Shimode, 2003) and CuGaO2 (Tsay and Chen, 2017). The 

discovery of the p-type Cu-bearing TCOs also presented opportunities for research 

on the p-n transparent junction devices (Domaradzki, 2016). 

1.2 Problem Statement 

A p-n junction of two types of oxide semiconductors combined leads to the creation 

of transparent optoelectronic devices and electronic circuits, which are also known 

as smart electronics. However, majority of the transparent oxide semiconductors 

(TOS) which were developed do not possess p-type conductivity (Tsay and Chen, 

2017). Due to an excess oxygen in the acceptor levels and the created holes which 

are firmly localized at the oxygen sites, p-type oxide semiconductors are gaining 

more research attention. Copper based delafossite oxide semiconductors has a 
formula of CuM111O2, where M is group III elements such as Ga, Al, and Cr. These 

semiconductors were studied on the basis that they have room temperature p-type 

conductivity (Tsay and Chen, 2017). The copper-based delafossite oxide 

semiconductors are attributed to the ionized Cu vacancies and interstitial oxygen 

atoms. The introduction of the divalent cations for the trivalent cations at the 

octahedral sites of the delafossite structure might be a fruitful solution in increasing 

the hole concentration density, hence improving the electrical conductivity of the thin 

films (Tsay and Chen, 2017). Doped p-type were introduced in past researches. 

However, it was still difficult to obtain a stable p-type conductivity due to several 
factors such as deep acceptor level, low solubility of the acceptor dopant and of the 

native donor defects (Dhara and Giri, 2012). 
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With the increase of demand in the novel components, CuGaO2 has gained 
importance in research as a p-type semiconductor (Yu and Lee, 2018). Previous 

studies emphasized on the effects of lower temperature post-treatment of the 
CuGaO2 thin film, which were also limited with the use of glass that has a threshold 

of 550°C (Abu Bakar et. al, 2015). High formation temperature has been reported for 

delafossite structures such as CuCrO2 (600°C) and CuAIO2 (800°C) (Yu and Lee, 
2018). Hence, annealing of the thin films were performed to improve the crystallinity. 

In this study, the effect of higher annealing temperature ranging from 500°C, 

600°C, 700°C, 800°C, and 900°C of the nature of CuGaO2 thin film has been studied 
to attain better efficiency of an optoelectronic material. Chun-Tsung and his research 
team report the common use of quartz glass as substrate for CuAIO2 thin film (Chun- 

Tsung etal, 2011). The use of quartz enables the samples to be heated up to higher 

temperatures by RF magnetron sputtering (Kumar et al, 2012). Hence, the use of 

quartz has been applied for this research. 

1.3 Research Aims 

This research aims to study on the effect of the higher annealing temperature with 

quartz as the substrate compared to that of a lower heat tolerance glass slab of the 

deposition of CuGa02 thin film. The deposition method used in this research is RF 

magnetron sputtering due to its high purity via the high vacuum process and the 

ability to control the thickness at nanoscale. Fabrication of different parameters will 

produce different outcome, namely the structural or morphological property, the 

optical property and the crystalline structure of the CuGaO2 thin film. 

1.4 Research Objectives 

The objectives of this research are: 

1) To fabricate the CuGa02 thin films with different deposition temperature and 
different annealing temperature via RF magnetron sputtering technique. 

2) To characterize the of CuGa02 thin films at different deposition temperature 

and different annealing temperature in terms of structural, surface 

morphology and optical properties. 
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3) To determine the optimum deposition and annealing temperature of CuGa02 

thin films as a p-type TCO. 

1.5 Research Scope 

Using various parameters in fabricating a semiconductor sample will bring about 
different results, likewise with different deposition methods. Hence, this research 

aims to ascertain the optimum parameters there is during and after the deposition, 

which in this research via RF magnetron sputtering. The experiments include 
depositing semiconductor materials on quartz substrate with deposition temperature 

of room temperature (RT), 50°C, 100°C, 150°C, 200°C and 250°C for 30 minutes on 
each sample. Subsequently, this study also involves the annealing process from 

500°C, 600°C, 700°C, 800°C, and 900°C for each sample at a fixed time of 3 hours 

and leaving one of the parameters as non-annealed for comparison. Hence, the 

sample size comprises of 36 samples as each samples of individual deposition 

temperatures were annealed individually from the parameters mentioned above. The 

characterization methods are demonstrated in terms of the crystal structures, surface 

morphologies and optical properties. Methods used includes XRD and EDS to study 

on the crystal structure, FESEM and AFM to study on the surface morphology, lastly 

UV-Vis to study on the optical properties of the thin film. 

1.6 Thesis Outline 

This thesis consists of five chapters with different contents. In chapter 1, the 

introduction of the project is discussed starting with uses of TCO devices being 

discussed. In addition, the limitations of achieving high quality TCO devices are also 
included. The aim of the research, objectives and the scope of the thesis are written 
in this chapter. 

Chapter 2 provides the fundamental theory behind the sophisticated device. 

The emphasis of this research deals mainly with semiconductor physics hence most 

of the elaborations are based on it. Previous researches were also reviewed 

concerning the development of TCO from the primary aspect to the up-to-date 

progress. 
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Chapter 3 discusses the methods used in carrying out the experiments, with 

a brief explanation of the steps taken beginning with cleaning of the substrate and 
the proper way of handling the samples. The characterization methods are also 
discussed in terms of the crystal structures, surface morphologies and optical 

properties. Methods used includes XRD and EDS to study on the crystal structure, 
FESEM and AFM to study on the surface morphology, lastly UV-Vis to study on the 

optical properties of the thin film. 

Chapter 4 details the results obtained, and data tabulated. The 

characterization of the finished product from the experiment is done and a discussion 

based on past research is provided so that the current research can be justified. 

Finally, chapter 5 summarizes and concludes the effectiveness of the research 

with its objectives fulfilled. A future work is also suggested so that there is an 

advancement in this field. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Solid Classification 

In semiconductor physics, solid is classified into three forms categorized as 
conductors, semiconductor and insulator. The main difference among the three is 
the electrical conductivity. 

2.1.1 Conductors 

When electrons experience an applied electric field, the electrons are accelerated and 

are able to move into a new energy state. Hence, there must be empty energy states 

vacant for electrons to fill for charge transport to happen (DasGupta and DasGupta, 

2007). The outermost shell of the atom is not completely occupied by electrons; 
hence it is possible for current to flow through a solid when there is a potential 
difference across the conducting material. The higher bands overlap such that more 

conduction happens through the empty states which are vacant. Types of conductors 

includes alkali metals which are sodium and potassium and metals such as aluminum 

and mercury (Edwards-Shea, 1996). 

Conduction Band 

Figure 2.1: (a) A narrow bangap and (b) overlapping band of a conducting 

material 
Source : Edwards-Shea, 1996 



2.1.2 Insulator 

Conduction Band 

Valence Band 
M 

..:,: mi 

Figure 2.2: Band diagram of an insulated material 

Source : Edwards-Shea, 1996 

Insulators have very few electrons present in the conduction band due to the valence 
band being almost filled and hence less available empty states for electrons to fill. 

The energy gap is big and hence conduction of electricity is unlikely to happen 

(DasGupta and DasGupta, 2007). Even in high temperature up to several hundred 

kelvins, insulators are either almost filled or the other way around which is almost 

completely empty. When an electric field is applied across these insulating materials, 
the electrons cannot be accelerated in the field since there are no available energy 

states which the electron energies can be increased. Hence, the force exerted by the 
field is too small for the electrons to cross the gap from the valence band to the 

conduction band (Edwards-Shea, 1996). 

2.1.3 Semiconductor 

Conduction Band 

Výaxý Band 

Narrow bandgap 

Figure 2.3: Band diagram of a semiconducting material 
Source : Edwards-Shea, 1996 
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Semiconductors have similar energy gap just like that of the insulators where the 

valence band is filled, and the conduction band is empty at 0 K. The main difference 
between them are the size of the band gap which is bigger for insulators. The small 
gap between the valence and conduction bands in semiconductors enables electrons 
in the filled valence band to be excited and fill the empty conduction bands by thermal 

excitation at room temperature. Some examples of semiconductors are Germanium, 

Silicon, Indium Phosphide etc. (DasGupta and DasGupta, 2007). The significance of 
the narrowness of the bandgap between the valence and conduction band is that it 

can gain enough heat energy even at room temperature so that the electrons can be 

excited and emerge from the valence band to the conduction band (Edwards-Shea, 

1996). 

At temperature close to 0 K, semiconductors act like an insulator in which 
they do not conduct. This is due to the insufficient thermal energy for the electrons 
break their bond, hence staying in the valence band. However, semiconductors in 

temperatures more than 0K can conduct which source its energy from the thermal 

excitation of electrons, leaving the valence band only party empty. 

2.2 Classification of Semiconductors 

Generally, semiconductors consist of two types, intrinsic semiconductor and extrinsic 

semiconductor. An intrinsic semiconductor is a perfect crystal with no impurities or 
defects (DasGupta and DasGupta, 2007) while an extrinsic semiconductor has certain 
impurities added to it so that its conductivity is improved (Edwards-Shea, 1996). 

2.2.1 Intrinsic Semiconductor 

In many instances intrinsic semiconductors are found with some impurities. This may 
have been caused by the processing methods in manufacturing factories which have 

incorporated the impurities. Ideally intrinsic semiconductors comprise just atoms of 
its own which form solids as they bond together. 

Elemental semiconductors like silicon and germanium have four valence 

electrons on the outermost orbit of their atom which is in a tetravalent configuration. 
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