
 

Numerical Assessment of Anisotropic Diffusion 

Equation for Image Blurring Using SOR Iteration 

  

Nurul Afiqah Basran1*, Jeng Hong Eng1, Azali Saudi2, Jumat Sulaiman1 

 
1Faculty of Science and Natural Resources, Universiti Malaysia Sabah  

2Knowledge Technology Research Unit, Faculty of Computing and Informatics, Universiti Malaysia Sabah, 

Kota Kinabalu, Malaysia  
*Corresponding author email: nurulafiqahbasran@yahoo.com 

 

 

 
Abstract: Blurring the image while preserving the important features 

such as edges is a crucial study in computer vision. This paper 

presents the results of applying three iterative methods which are 

Jacobi, Gauss Seidel and Successive Overrelaxation (SOR) to solve 

anisotropic diffusion equation for image blurring, where the output 

image of Jacobi is used as a control image. The number of iterations 

and computational time required to solve the anisotropic diffusion 

equation are used to measure the performance of the considered 

iterative methods. The findings show that SOR method is more 

efficient to smooth the inner region of an image compared to Jacobi 

and Gauss-Seidel methods in which the SOR required the least 

number of iterations and computational time. 

 
Keywords: diffusion equation, partial difference equation, image 

blurring, SOR method. 

 

1. Introduction 

The application of mathematical models in image processing 

and analysis has begun since early 1960 [1], where the field 

was highly occupied in study of computer science and 

engineering. Numerical method is one of the mathematical 

tools used to solve image processing problems especially 

using techniques of functional analysis and the theory of 

partial differential equations (PDEs). Nowadays, many 

researchers employ the diffusion-wave equation [2], heat 

equation [3], Poisson Equation [4] and Laplace equation as 

PDE-based image processing techniques for image 

segmentation [5], image restoration-denoising and 

deblurring[6], edge detection and enhancement [7] purposes. 

In image processing, image blurring is also known as the 

process of image denoising, smoothing or edge detection. 

The finite difference method (FDM) has been applied for 

the solution of PDEs by approximating any partial derivatives. 

There are three standard types of PDEs that consist of elliptic, 

hyperbolic and parabolic. The two-dimensional heat or 

diffusion equation applied on image blurring techniques is one 

of parabolic PDEs [8]. The approximation equations derived 

after discretization process can be made by using explicit, 

implicit, Crank-Nicholson or other schemes. The solution of 

the generated system of linear equations can be solved by 

using direct or iterative methods. Furthermore, diffusion or 

heat equation applied in image processing and analysis can 

also be referred as the scale space. The theory of scale space 

provided a framework to undergo various image processing 

techniques across multiple scales [9]. 

In this study, three iterative methods were applied to solve 

an anisotropic diffusion equation for image blurring. The 

approximate equation is derived using implicit scheme to 

discretize diffusion equation in which this approximation 

equation can be used to construct the generated system of 

linear equations. Then, this linear system can be solved 

iteratively by using Jacobi, Gauss-Seidel and SOR methods. 

In previous studies, it was proven that SOR method was the 

most suitable way to solve image blending problem [10]. 

 

2. Related Work 

The PDEs techniques had been widely used in image 

processing problems and their techniques also have been used 

to construct the reliable and fast algorithm that is numerically 

efficient to solve the problem. Image processing problem 

based on diffusion equation or also known as the scale space 

had been discussed by Weickert et al. [9]. This equation has 

been widely applied for image filtering including image 

denoising, segmentation and edge detection. It has also been 

used in other fields of study such as biomedical by providing 

the important information from the image effectively. For 

example, the study conducted by Yilmaz et al. [11] applied an 

adaptive anisotropic diffusion to filter out unnecessary noise 

occurred on cone beam computed tomography (CBCT) 

images in order to identify the region of interest (ROI) in the 

diagnosis process.  

An improved nonlinear diffusion algorithm had been 

developed [12] for image denoising problem. Noise is a 

random signal that appears as random speckles which 

significantly corrupt the image quality. Therefore, the new 

method had been verified as an efficient method to reduce 

image noise while maintaining important detail using wavelet 

coefficient. A recent study conducted [13] in image denoising 

problem, proved that a combination of classical additive 

operator splitting and a nonlinear relaxation algorithm are able 

to produce an accurate image restoration which is also able to 

control the problem of stability. Unlike the research conducted 

by Atlas et al. [14], more focusis on reducing the phenomenon 

of an image called staircase effect by proposing efficient tools 

through interpolation of two classical models which are 

Perona-Malik Equation (PME) and 𝜌 −Laplacian with 𝜌 →
∞. 

Meanwhile, the new diffusion coefficient has also been 

proposed [15] earlier for image smoothing method. They 

suggested a time-dependent anisotropic diffusion by 

investigating the relation between Gaussian scale and gradient 
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threshold with its stopping time based on an iterative signal-

to-noise ration (SNR) measure. The accurate stopping time 

can avoid excessive smoothing that will disturb important 

edges and boundaries. Furthermore, the developed model also 

denoises the image faster than some traditional schemes such 

used in some studies [16, 17] while giving the highest value 

of normalized signal-to-noise ratio (NSNR).  

Besides that, a recent study also had found the fastest way 

to denoises the image especially from the speckle noise that is 

present in medical imaging known as a Faster Oriented 

Speckle Reducing Anisotropic Diffusion filter (FOSRAD) 

method [18]. This method had successfully improved the 

execution time by optimizing the processing time using look-

ahead decomposition technique. The result shows a 

significant decrease in execution time by 14X compared to 

original Oriented Speckle Reducing Anisotropic Diffusion 

(OSRAD) filter [19] which is more complex and also 

inappropriate for real time implementation.  

Other than image denoising, diffusion equation also has 

been applied in solving the image segmentation problem. 

Segmentation of color image with Perona-Malik diffusion 

equation had been successfully discovered [20]. The pixels 

based technique of clustering applied to reduce unnecessary 

image details degrade the image quality throughout the 

homogeneous region and at the same time the boundaries 

between the region maintain sharp. The techniques are 

implemented by obtaining a histogram with the value of color 

pixels of an image and then are performed form a cluster based 

on the closest to the pixel color. The fuzzy k-mean clustering 

algorithm had been used and successfully produce segmented 

color images. Besides that, the same but more advanced 

algorithm which is the integration of Template based K-means 

and modified of Fuzzy C-means (TKFCM) clustering 

algorithm had efficiently used in brain MRI image to detect 

the tumor [21]. 

 

3. Anisotropic Diffusion Equation 

The two-dimensional PDE techniques used for isotropic 

diffusion can be known as heat equation is given as follows: 
𝜕𝐼

𝜕𝑡
= 𝛼 (

𝜕2𝐼

𝜕𝑥2 +
𝜕2𝐼

𝜕𝑦2)             ,   𝑅 ×  [0, ∞) (1) 

Where the initial solution is given as 𝐼(𝑥, 𝑦, 0) = 𝑓(𝑥, 𝑦) . 
Actually 𝑓(𝑥) is the experimental image with 𝛼 = 1. Solving 

equation (1) is equivalent to Gaussian smoothing by having 

the following solution [8]: 

𝜕𝐼

𝜕𝑡
= {

𝑓(𝑥, 𝑦)                    ,      (𝑡 = 0)

(𝐺√2𝑡 ∗ 𝑓)(𝑥, 𝑦)     ,     (𝑡 > 0) 
  (2) 

where 𝐺𝜎(𝑥) denotes as two-dimensional Gaussian filter 

known as: 

𝐺(𝑥, 𝑦, 𝜎) =
1

2𝜋𝜎2 𝑒
−(

𝑥2+𝑦2

2𝜎2 )
 (3) 

From equation (2), the time 𝑡 and standard deviation of the 

Gaussian are related by 𝜎 = √2𝑡. Hence, the convolution 

corresponds to a low-pass filtering and solved at different 

instance of time 𝑡 and scale parameter 𝜎 of Gaussian Kernel. 

An anisotropic diffusion is a technique used to remove the 

noise of the image by smoothing the inner region and at the 

same time preserves the edge information. The Perona-Malik 

model anisotropic diffusion equation is stated as [16]: 

𝐼𝑡 = 𝑑𝑖𝑣(𝑐(𝑥, 𝑦, 𝑡)∇𝐼 (4) 

where 𝑑𝑖𝑣 is a divergence operator and ∇𝐼 is a gradient 

magnitude operator respect to the spatial of 𝑥 and 𝑦. 

Meanwhile, 𝑐(𝑥, 𝑦, 𝑡) = 𝑔(‖∇𝐼(𝑥, 𝑦, 𝑡)‖) is a diffusion 

coefficient used to control smoothing rate taken place at any 

location of an image (𝑥, 𝑦). So the smoothing process will 

reduce the diffusivity in places with high possibilities to be 

the boundaries that can be controlled by using the local 

gradient magnitude function, |∇𝐼| where 𝑐(𝑥, 𝑦, 𝑡) = 𝑔(|∇𝐼|). 

Then, the diffusion coefficient or edge stopping function 𝑔(. ) 

can be defined as [16]: 

𝑔(∇𝐼) = 𝑒
−(

||∇𝐼||

𝐾
)

2

 (5) 

or 

𝑔(∇𝐼) =
1

1+(
||∇𝐼||

𝐾
)

2 .  (6) 

The small diffusion coefficient is applied at the location of 

the edges and at the larger 𝑔(. ) value for the inner region. The 

constant K in the function 𝑔 is used to control the strength of 

the image edges in terms of gradient sensitivity [16]. Blurring 

effect with the small value of K is low, while using large value 

of K for 𝑔(. ) will result to low-pass filter in which the blurring 

effect on the image is high as 𝐾 → ∞ then let 𝜀 =
1

𝐾
, it makes 

𝜀 → 0. In this research we used equation (6) as the edge 

stopping function. 

 

3.1 Discretization of Anisotropic Diffusion Equation 

Let the standard two-dimensional anisotropic diffusion 

equation used for image blurring problem in this study be 

given as follows: 

{

𝜕𝐼

𝜕𝑡
=𝑑𝑖𝑣(𝑔(‖𝛻𝐼‖)𝛻𝐼)    ,𝑅 × [0,∞)

𝐼(𝑥,𝑦,0)=𝑓(𝑥,𝑦)         ,𝑅                
〈𝑔.𝛻𝐼,𝑛〉=0                      ,𝜕𝑅 × [0,∞) 

 (7) 

with the Dirichlet boundary conditions. Then, the derivative 

in equation (7) can be discretized as shown below: 
𝜕𝐼

𝜕𝑡
=

𝐼𝑖,𝑗,𝑘+1−𝐼𝑖,𝑗,𝑘

∆𝑡
  (8) 

𝑑𝑖𝑣(𝑔(‖∇𝐼‖)∇𝐼) =
𝜕

𝜕𝑥
(𝑔. ∇𝐼𝑥)|

𝑖,𝑗,𝑘+1
+

𝜕

𝜕𝑦
(𝑔. ∇𝐼𝑦)|

𝑖,𝑗,𝑘+1
  (9) 

Then, the approximations of equation (9) are used as 

follows: 

𝜕

𝜕𝑥
(𝑔. ∇𝐼𝑥)|

𝑖,𝑗,𝑘+1
≈

𝑔.𝐼𝑥|
𝑖+

1
2

,𝑗,𝑘+1
−𝑔.𝐼𝑥|

𝑖−
1
2

,𝑗,𝑘+1

∆𝑥
 (10) 

𝜕

𝜕𝑦
(𝑔. ∇𝐼𝑦)|

𝑖,𝑗,𝑘+1
≈

𝑔.𝐼𝑦|
𝑖,𝑗+

1
2,𝑘+1

−𝑔.𝐼𝑦|
𝑖,𝑗−

1
2,𝑘+1

∆𝑦
 (11) 

The derivative for equations (10) and (11) can be obtained 

by: 

𝑔. 𝐼𝑥|
𝑖+

1
2

,𝑗,𝑘+1
≈ 𝑔

𝑖+
1
2

,𝑗,𝑘+1
(

𝐼𝑖+1,𝑗,𝑘+1 − 𝐼𝑖,𝑗,𝑘+1

∆𝑥
) 

𝑔. 𝐼𝑥|
𝑖−

1
2

,𝑗,𝑘+1
≈ 𝑔

𝑖−
1
2

,𝑗,𝑘+1
(

𝐼𝑖,𝑗,𝑘+1 − 𝐼𝑖−1,𝑗,𝑘+1

∆𝑥
) 

𝑔. 𝐼𝑦|
𝑖,𝑗+

1
2

,𝑘+1
≈ 𝑔

𝑖,𝑗+
1
2

,𝑘
(

𝐼𝑖,𝑗+1,𝑘+1 − 𝐼𝑖,𝑗,𝑘+1

∆𝑦
) 

𝑔. 𝐼𝑦|
𝑖,𝑗−

1

2
,𝑘+1

≈ 𝑔
𝑖,𝑗+

1

2
,𝑘+1

(
𝐼𝑖,𝑗,𝑘+1−𝐼𝑖,𝑗−1,𝑘+1

∆𝑦
) (12) 

 

116 Numerical Assessment of Anisotropic Diffusion Equation for Image Blurring Using SOR Iteration



 

substituted the equations (8), (9), (10), (11) and (12) into 

equation (7), then forming the equation as follows: 
𝐼𝑖,𝑗,𝑘+1 − 𝐼𝑖,𝑗,𝑘

∆𝑡
≅ 

𝑔
𝑖+

1
2

,𝑗,𝑘+1
(

𝐼𝑖+1,𝑗,𝑘+1 − 𝐼𝑖,𝑗,𝑘+1

∆𝑥
) − 𝑔

𝑖−
1
2

,𝑗,𝑘+1
(

𝐼𝑖,𝑗,𝑘+1 − 𝐼𝑖−1,𝑗,𝑘+1

∆𝑥
)

∆𝑥
+ 

𝑔
𝑖,𝑗+

1
2

,𝑘+1
(

𝐼𝑖,𝑗+1,𝑘+1−𝐼𝑖,𝑗,𝑘+1

∆𝑦
)−𝑔

𝑖,𝑗+
1
2

,𝑘+1
(

𝐼𝑖,𝑗,𝑘+1−𝐼𝑖,𝑗−1,𝑘+1

∆𝑦
)

∆𝑦
 (13) 

where ℎ = ∆𝑥 = ∆𝑦,  𝜆 =
∆𝑡

ℎ2 . Thus the approximate 

equation and be written as follows: 

𝐼𝑖,𝑗,𝑘+1 −  𝜆[𝐺𝑁(𝐼𝑖,𝑗+1,𝑘+1 − 𝐼𝑖,𝑗,𝑘+1) + 𝐺𝑆(𝐼𝑖,𝑗−1,𝑘+1 − 𝐼𝑖,𝑗,𝑘+1) +

𝐺𝐸(𝐼𝑖+1,𝑗,𝑘+1 − 𝐼𝑖,𝑗,𝑘+1) + 𝐺𝑊(𝐼𝑖−1,𝑗,𝑘+1 − 𝐼𝑖,𝑗,𝑘+1)] ≅  𝐼𝑖,𝑗,𝑘  (14) 

by rearranging the equation (14) we can finalize the 

approximate equation as shown below: 

(1 + 𝜆𝐺𝑁 + 𝜆𝐺𝑆 + 𝜆𝐺𝐸 + 𝜆𝐺𝑊)𝐼𝑖,𝑗,𝑘+1 −  𝜆𝐺𝑁𝐼𝑖,𝑗+1,𝑘+1 −

𝜆𝐺𝑆𝐼𝑖,𝑗−1,𝑘+1 − 𝜆𝐺𝐸𝐼𝑖+1,𝑗,𝑘+1 − 𝜆𝐺𝑊𝐼𝑖−1,𝑗,𝑘+1 ≅  𝐼𝑖,𝑗,𝑘  (15) 

where 𝜆 > 0. This discretization scheme forms a computation 

molecule of 4 nearest neighbours of the Laplacian operator as 

illustrated in Figure 1. Symbols of N, S, E, W indicates the 

difference between the nearest-neighbour while 𝐺𝑁, 𝐺𝑆, 𝐺𝐸 

and 𝐺𝑊 refer to diffusivity coefficient that is updated at every 

iteration: 

𝐺𝑁 𝑖,𝑗,𝑘+1 = 𝑔 (‖∇𝐼
𝑖,𝑗+

1
2

,𝑘+1
‖) 

𝐺𝑆 𝑖,𝑗,𝑘+1 = 𝑔 (‖∇𝐼
𝑖,𝑗−

1
2

,𝑘+1
‖) 

𝐺𝐸 𝑖,𝑗,𝑘+1 = 𝑔 (‖∇𝐼
𝑖+

1
2

,𝑗,𝑘+1
‖) 

𝐺𝑊 𝑖,𝑗,𝑘+1 = 𝑔 (‖∇𝐼
𝑖−

1

2
,𝑗,𝑘+1

‖). (16) 

The approximation equation for the norm of gradient in 

(16) can be estimated with absolute value of its projection 

along the direction of arc shown as: 

𝐺𝑁 𝑖,𝑗,𝑘+1 = 𝑔(|𝐼𝑖,𝑗+1,𝑘+1 − 𝐼𝑖,𝑗,𝑘+1|) 

𝐺𝑆 𝑖,𝑗,𝑘+1 = 𝑔(|𝐼𝑖,𝑗−1,𝑘+1 − 𝐼𝑖,𝑗,𝑘+1|) 

𝐺𝐸 𝑖,𝑗,𝑘+1 = 𝑔(|𝐼𝑖+1,𝑗,𝑘+1 − 𝐼𝑖,𝑗,𝑘+1|) 

𝐺𝑊 𝑖,𝑗,𝑘+1 = 𝑔(|𝐼𝑖−1,𝑗,𝑘+1 − 𝐼𝑖,𝑗,𝑘+1|). (17) 

The approximation of equation (15) produce (𝑀 − 1)2 

equation based on the number of pixels for the tested image. 

Lastly, the equations will be solved by the iterative method 

such as Jacobi, Gauss-Seidel and SOR. 

 

 
Figure 1. Computational molecule of implicit scheme of 

equation (15) 

3.2 Formulation of SOR Iterative Method 

The anisotropic diffusion equation for image blurring is 

solved by using three iterative methods: Jacobi, Gauss-Seidel 

and SOR. The matrices form by a stack of linear equation 

from approximation equation (18) was developed to simplify 

the formulation of the iterative process. Consider the matrix 

form of the system of linear equation for solution image 

blurring as shown in the following: 

𝐴𝐼 = 𝑏 (18) 

where Matrix A is the main diagonal which has no zeroes 

coefficient. Matrix A also can be split into three different 

matrices: 

𝐴 𝐴 = 𝐷 − 𝐹 − 𝐺. (19) 

Matrices D, F and G refer to the diagonal, strict lower 

triangular and strict upper triangular parts of matrix A, 

respectively. Then equation (19) is merged into equation (18) 

to form: 

(𝐷 − 𝐹 − 𝐺)𝐼 = 𝑏. (20) 

Thus, Jacobi iterative method to solve the linear system 

can be written in matrix-vector notation as: 

𝐼(𝑘) = 𝐷−1(𝐹 + 𝐺)𝐼(𝑘−1) + 𝐷−1𝑏.  (21) 

The Gauss-Seidel method can be written as: 

𝐼(𝑘) = (𝐷 − 𝐹)−1𝐺𝐼(𝑘−1) + (𝐷 − 𝐹)−1𝑏 (22) 

for 𝑘 = 1,2,3, … , 𝑛.  

Successive Over-Relaxation (SOR) iterative method is 

actually a modification of the Gauss-Seidel iterative method. 

The only difference in the SOR method is adding 𝜔 as a 

relaxation parameter. By rearranging equation (19) as shown 

in Gauss-Seidel and adding the parameter 𝜔 which has been 

introduced by Young in 1955, we get [10]: 

(𝐷 − 𝜔𝐹)𝐼(𝑘) = [𝜔𝐺 + (1 − 𝜔)𝐷]𝐼(𝑘−1) + 𝜔𝑏. (23) 

where 𝑘 = 1,2,3, … , 𝑛. The SOR iterative method can be 

written in matrix-vector notation as follows: 

𝐼(𝑘) = (𝐷 − 𝜔𝐹)−1[𝜔𝐺 + (1 − 𝜔)𝐷]𝐼(𝑘−1) + 𝜔(𝐷 − 𝜔𝐹)−1𝑏. (24) 

with 𝑘 = 1,2,3, … , 𝑛. By applying the three methods from 

equations (21), (22) and (24) into equation (15), the 

corresponding iteration scheme for Jacobi, Gauss-Seidel and 

SOR are given as follows: 

𝐼𝑖,𝑗
(𝑘+1)

≅  
𝐼𝑖,𝑗
(𝑘)

+𝜆𝐺𝑁𝐼𝑖,𝑗+1
(𝑘)

+𝜆𝐺𝑆𝐼𝑖,𝑗−1
(𝑘)

+𝜆𝐺𝐸𝐼𝑖+1,𝑗
(𝑘)

+𝜆𝐺𝑊𝐼𝑖−1,𝑗
(𝑘)

1+𝜆𝐺𝑁+𝜆𝐺𝑆+𝜆𝐺𝐸+𝜆𝐺𝑊
, (25) 

𝐼𝑖,𝑗
(𝑘+1)

≅  
𝐼𝑖,𝑗
(𝑘)

+𝜆𝐺𝑁𝐼𝑖,𝑗+1
(𝑘)

+𝜆𝐺𝑆𝐼𝑖,𝑗−1
(𝑘+1)

+𝜆𝐺𝐸𝐼𝑖+1,𝑗
(𝑘)

+𝜆𝐺𝑊𝐼𝑖−1,𝑗
(𝑘+1)

1+𝜆𝐺𝑁+𝜆𝐺𝑆+𝜆𝐺𝐸+𝜆𝐺𝑊
, (26) 

and 

𝐼𝑖,𝑗
(𝑘+1)

≅  ω (
𝐼𝑖,𝑗
(𝑘)

+𝜆𝐺𝑁𝐼𝑖,𝑗+1
(𝑘)

+𝜆𝐺𝑆𝐼𝑖,𝑗−1
(𝑘)

+𝜆𝐺𝐸𝐼𝑖+1,𝑗
(𝑘)

+𝜆𝐺𝑊𝐼𝑖−1,𝑗
(𝑘)

1+𝜆𝐺𝑁+𝜆𝐺𝑆+𝜆𝐺𝐸+𝜆𝐺𝑊
) + (1 − 𝜔)𝐼𝑖,𝑗

(𝑘)
(27) 

for 𝑘 = 1,2,3, … , 𝑛.  

 

4. Results and Discussion 

In this work, we considered three examples of color image as 

shown in Figure 2 of different sizes or resolutions. The 

iterative methods were applied to each input image and the 

number of iterations and computational time for the image to 

blur were recorded. We employed Jacobi iterative as the 

control method with iteration parameter 𝑘 = 100 and 𝑘 =
500 iterations, and threshold parameter, 𝐾 = 2. The iterations 

for Gauss Seidel and SOR were stopped when the quality of 

the output image of both methods were the same with image 
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produced by the Jacobi, where overall pixel difference 

between Gauss-Seidel or SOR and Jacobi images is less than 

1%. 

(a) 

 
 

(b) 

 
 

(c) 

 

Figure 2. (a), (b) and (c) show the input images 

 

Since the algorithm filtered colour image, the iterations are 

running three times for each colour (Red, Green and Blue) 

channels separately causing each colour recorded different 

number of iterations k and computational time t. The average 

number of iterations k and computational time t of the three 

channels run for each image are recorded in Tables 1 and 2. 

For Jacobi method, two different values are used for the 

control parameter 𝑘 = 100 and 𝑘 = 500. 

In Table 1, the control parameter k for Jacobi is set to 100. 

It can be seen that both Gauss-Seidel and SOR required less 

iterations k and faster computation time t compared to Jacobi. 

The number of iterations k for Gauss-Seidel and SOR had 

been reduced approximately by 23%-34% and 67%-76% 

respectively. It can also be observed that the computational 

time t taken by Gauss-Seidel and SOR against Jacobi are 

reduced approximately by 17%-39% and 65%-69%, 

respectively. There is no significant difference in terms of the 

quality of the final output images produced by all three 

methods as illustrated in Figure 3.  

 

(a) 

 
𝑘 = 100 

 
𝑘 = 66 

 
𝑘 = 25 

(b) 

 
𝑘 = 100 

 
𝑘 = 65 

 
𝑘 = 24 

(c) 

 
𝑘 = 100 

 
𝑘 = 77 

 
𝑘 = 33 

 (i) (ii) (iii) 

Figure 3. The output image produced by (i) Jacobi at 𝑘 = 100, (ii) Gauss-Seidel and (iii) SOR iterative methods 
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Table 1.  The number of iterations k and computational time t (in milliseconds) for image blurring by Jacobi, Gauss-Seidel 

and SOR methods. For Jacobi, the control parameter k is set to 100 

Resolution/ 

Method 

Jacobi Gauss-Seidel SOR 

𝒌 𝒕 𝒌 𝒕 𝒌 𝒕 

(a)512x512 100 6325 66 4899 25 2215 

(b)1280x834 100 45386 65 27746 24 14080 

(c)1920x1267 100 126023 77 105004 33 43095 

Table 2 shows the results of image blurring for the three 

methods with control parameter k for Jacobi is set to 500. The 

reduction of percentage in terms of k and t as shown in Table 

2 is similar to Table 1.  Against the control Jacobi method, the 

SOR had successfully reduced their number of iterations k and 

computational time t approximately by 63%-77% and 54%-

80%, respectively. Again, there is no noticeable difference in 

terms of quality of the final output images produced by the 

three iterative methods, as shown in Figure 4. 

 

(a) 

 

𝑘 = 500 

 

𝑘 = 397 

 

𝑘 = 183 

(b) 

 

𝑘 = 500 

 

𝑘 = 394 

 

𝑘 = 113 

(c) 

 

𝑘 = 500 

 

𝑘 = 425 

 

𝑘 = 171 

 (i) (ii) (iii) 

Figure 4. The output image produced by (i) Jacobi at 𝑘 = 500, (ii) Gauss-Seidel and (iii) SOR iterative methods

 

Table 2.The number of iterations k and computational time t (in milliseconds) for image blurring by Jacobi, Gauss-Seidel and 

SOR methods. For Jacobi, the control parameter k is set to 500 

Resolution/Method Jacobi Gauss-Seidel SOR 

𝒌 𝒕 𝒌 𝒕 𝒌  𝒕 

(a)512x512 500 29575 397 27388 183 13431 

(b)1280x834 500 243628 394 173350 113 45690 

(c)1920x1267 500 677311 425 535510 171 237568 
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5. Conclusion 

Three iterative methods, i.e. Jacobi, Gauss-Seidel and SOR 

were examined to compute the solutions of anisotropic 

diffusion equation for application in image blurring. The 

Jacobi was used as a control method with fixed iterations, 𝑘 =
100 and 𝑘 = 500. As expected, the results show that the SOR 

iterative method is superior to Jacobi and Gauss-Seidel with 

the least number of iterations and computational time in 

producing the same quality of Jacobi image. As shown in 

Figures 3 and 4, there is no significant difference in terms of 

quality of the final images. Apart from the SOR iterative 

method which is categorized as a family of one parameter 

iterative method, further study should be made to investigate 

the efficiency of the two parameters of relaxation methods 

such as MSOR [22] and HSAOR [23]. In this research all 

example pictures used from standard source [24].  
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