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ABSTRACT 

Eddy current facilities are rapidly developing in the field of industry and the 

effectiveness of the eddy current testing (ECT) instrument is well established on 

market and yet, the instruments were very expensive and hard to get in this country. 

Moreover, the optimization for the specification of metals testing is still lacking in 

research and development. The alternative approach as discussed in this research is 

by design and construct a low-cost non-destructive metal testing instrument using 

eddy current method that able to examine the signal imperfection, detect thickness 

(1.5,3.0 and 5.0 mm) and lift-off distance (1.0-5.0 mm). The frequency ranges 

between 250 kHz-3.5 MHz by using 50 ohms function generator is selected to find 

the optimal frequency for each metal testing (i. e., Brass, Cu, Mg Alloy, Ni and Ti). The 

important part in constructing the ECT instrument is the dual coil sensor which is 

known as exciter-receiver coil designed in appropriate turns of coils and the 

instrument amplifier that give a high output voltage that excel at extracting very weak 

signals from noisy environments. The output voltage signals from the sensor circuit 

of the ECT instrument were analyzed and compared. The result of this research 

showed that the designed ECT instrument able to examine the signal imperfection 

and also to detect the thickness. The lift-off distance for the ECT instrument is at 1 

mm. Meanwhile, the optimal frequency on each metal for the ECT instrument is at 
2.90 MHz for Brass, 2.95 MHz for Copper, 2.89 MHz for Magnesium Alloy, 2.85 MHz 

for Nickel and 2.83 MHz for Titanium. The ECT instrument that is developed from this 

study can efficiently generate an accurate output reading and suitable for industrial 

application requirements. 

Keywords: NDT, eddy current testing, optimal frequency, testing instrument. 
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ABSTRAK 

MEREKABENTUK INSTRUMEN U1IAN ARUS PUSAR KEA TAS LOGAM 
DENGANAPLIKASI U. 7L4N TANPA MUSNAH 

Kemudahan arus pusar kini berkembang pesat dalam bidang industri dan 
keberkesanan instrumen ujian arus pusar sudah mantap di pasaran tetapi instrumen 
ini sangat mahal dan sukar dipero%h di negara ini. Selain itu, pengoptimuman 

spesifikasi ujian logam masih kurang da/am penyelidikan dan pembangunan. 
Pendekatan altematif seperti yang dibincangkan dalam kajian ini ada/ah dengan 

merekabentuk dan membina instrumen kos rendah dengan menggunakan kaedah 

anus pusar dengan ujian tanpa musnah yang dapat menguji ketidaksempumaan 

logam, pengesanan keteba/an logam (1.5,3.0 dan 5.0mm) dan jarak angkat yang 

sesua/ bagi instrumen (1.0-5.0mm). Kekerapan antara 250 kHz-3.5MHz dengan 

menggunakan 50 ohms fungsi penjana dipilih untuk mencari frekuensi optimum untuk 
setiap ujian /ogam (iaitu, Brass, Tembaga, Aloi Magnesium, Nikel dan Titanfum). 

Bahagian penting dalam membina instrumen ECT ialah dwl pengesan yang dikenali 

sebagai gegelung penerima-pengujaan yang direka dalam lilitan gegelung yang sesuai 
dan penguat instrumen yang memberikan voltan keluaran yang tinggi untuk 
menge/uarkan isyarat yang sangat lemah daripada persekitaran yang bising. Isyarat 

voltan keluaran darf lltar pengesan instrumen ECT diana/isis dan dibandingkan. Hasil 
daripada kajian ini menunjukkan instrumen ECT yang direka untuk menilai 
ketidaksempumaan logam dan ketebalan pengesanan. Jarak angkat untuk instrumen 
ECT berada pada 1mm. Sementara itu, frekuensi optimum pada setiap /ogam untuk 
instrumen ECT ada/ah pada 2.90MHz untuk Brass, 2.95MHz untuk Tembaga, 2.89MHz 

untuk Alo/ Magnesium, 2.85MHz untuk Nikel dan 2.83MHz untuk Titanium. Dengan 

cara ini akhirnya, instrumen ECT dapat menghasilkan bacaan yang tepat dan sesua/ 
untuk keperluan ap/ikasi perindustr ian. 

Kata kund: NDT, ujian semasa eddy, kekerapan pengoptimuman, alat ujian. 
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CHAPTER 1 

INTRODUCTION 

1.1 Research Background 

Non-destructive Testing (NDT) is a wide group of analysis techniques used in the 

science and technology industry that use the non-invasive techniques to determine 

the integrity of a material, component, structure or quantitatively measure some 

characteristics of an object (Kumar & Mahto, 2013). It is made up of the techniques 

that are based on the application of physical principles employed to determine the 

characteristics of materials and for detecting and assessing the flaws and harmful 

defects without any change in their usefulness or serviceability (U, 2012). 

NDT is a highly valuable technique in ensuring cost-effective operation, the 

safety of use and reliability of a wide range of industrial and research departments 

(Simm, 2013). There are many reasons that industries are applying NDT methods for 

inspection purposes including providing better quality of products, reducing costs and 
increasing production detection of unwanted failures in the very beginning phase, 

providing the ability to inspect the equipment in operational state, reaching to higher 

levels of reliability and avoiding or reducing downtime and wastage of material 
(Zahirian, 2011). NDT provides a better understanding of flaws and defects existing 
in the equipment by clarifying the type, size, position and orientation of defects. 

There is a broad range of NDT methods based on different physical principles 
but the most commonly used are eddy currents evaluation, ultra-sonic, X-radiography, 

magnetic particle inspection and dye penetrant application (Simm, 2013). Therefore, 

choosing a suitable method or a combination of several methods makes a big impact 



on the final results for a specific application. Table 1.1 shows the NDT method that 
most commonly used. 

Table 1.1: Non-destructive testing methods 
Methods I Diagrams 

1) Eddy Current 

-Measures or detects surface and 

subsurface cracks of conductive 

material, heat treatment 

variations, wall and coating 

thickness, crack depth, 

conductivity and permeability. 

2) Liquid Penetrant 
Measures or detects defects open 
to the surface of parts such as 

cracks, porosity, seams, laps and 
through wall leaks. 

2 



3) Magnetic Particle 
Measures or detects surface and 

qualified subsurface defects, 

cracks, seams, porosity, inclusions, 

and very sensitive for locating 

small tight cracks. 

4) Ultrasonic 

Measures thickness, velocity or 
detects internal defects and 

variations, such as cracks, lack of 
fusion and lack of bond. 

Applications include many material 

metal and non-metals. 

5) Radiography 
Measures or detects, internal 
defects and variations, porosity, 
inclusions, cracks, lack of fusion, 

corrosion, geometry variation, 
density changes, misassembled 

and misaligned parts. 
the part. 

Source: NDE Resource Center. net. 
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Eddy current testing (ECT) is one of the oldest and most popular non- 
destructive testing (NDT) methods due to its testing speed, reliability and low cost 
(Rosado eta/., 2014). Eddy currents evaluation or testing is the preferred NDT method 
for superficial and internal flaw detection on conducting materials, especially on metal 

applications. 

Surface inspection and tubing inspection are two major applications of ECT. 

Surface inspection is used extensively in the aerospace industry and it is very sensitive 

and can detect cracks. This technique can be performed both on ferromagnetic and 

non-ferromagnetic materials (Xu, 2014). Tubing inspection is generally limited to non- 
ferromagnetic tubing. This technique is used for inspecting steam generator tubing in 

nuclear plants and heat exchangers tubing in the power and petrochemical industries 

(Shaikh, 2006). 

According to Arjun et al (2014), the heart of eddy current testing 

measurements is the probe. These come in a wide variety of configurations and sizes, 
but the fundamental principle of operation is the same for all. majority of eddy current 
instruments use a continuous sine wave of one fixed frequency as the drive for the 

eddy current coil (Liu et al., 2017). Other than that, the ECT instrument also uses the 

swept frequency method. This method is the same as the fixed frequency except that 

the frequency is no longer fixed but swept over a range of frequencies producing eddy 

currents ranging from low frequencies, which penetrate deeply into the material, to 

the high frequencies which induce eddy currents near to the surface only 
(Bouloudenine et al., 2014). This results in more information which can be used to 

characterize the size and location of the flaw. 
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1.2 Problem Statement 

Industrial development in Malaysia is fast developing nowadays. To be able to stand 
together with other countries, Malaysia needs to control its production standards and 

reliability. Malaysia is one of the users of the ECT method to ensure or assure quality 

control, to test the quality according to the standards and to keep maintenance. Eddy 

current testing method instrument has been commercial worldwide and widely used 
in industrial developments and yet, the instrument was very expensive and hardly 

available in this country. Some of the instrument were simulated and needed an expert 
to handle. Furthermore, if there is any technical problem or damages in the instrument 

it is hard to find suitable spare parts. 

In research and development, ECT has been researched to improve the 

optimization of the coil probes, frequency ranges for the instruments, the lift-off 

effects and ECT in different material (Abrantes eta/., 2015; Cheng, 2017; Ulapane et 

a/., 2017; Angani et al., 2015; Liu et al., 2017). However, the optimization for the 

specification of metals testing is still lacking and not specified yet. According to Fan 

et al. (2016), optimal frequency plays an important role in defect characterization as 

well. At present, single frequency, multiple frequency and pulsed excitation are 

presented to acquire more information on defects. However, the influences of optimal 
frequency on defect characterization had not been paid much attention yet. Biju etal. 
(2009) stated that with optimal frequency will help to get accurate and fast result. 
Furthermore, NDT technicians are in high demand nowadays. The basis of inspection 

technology depends upon the technician's ability to understand the principles of 

physics and apply fundamental mathematical calculations to locate flaws and defects 

in materials. 

Therefore, by creating a low-cost non-destructive metal testing instrument by 

using eddy current method without any simulation, that it is also effective in finding 

the optimal frequency for each specific metal, detecting metal defects measuring the 

metal thickness and lift-off distance that which improves the sensitivity and accuracy 

of the eddy current system. Furthermore, it also can help save costs for purchases 
from outside the country. 
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1.3 Research Objective 

The objectives of this research are listed as follows: 

1. Design and construct an eddy current testing (ECT) instrument which is highly 

affordable, provides real time monitoring and easy to handle. 

2. Examine the signals imperfection, thickness detection with variation of metals 
(1.5,3.0 and 5.0 mm) and lift-off distance for instrument in various distances 

(1-5 mm) from the ECT instrument. 

3. Determine the optimal frequency between 250 kHz-3.5 MHz for each of metal 
testing (brass, copper, magnesium alloy, nickel and titanium) from the ECT 

instrument. 

1.4 Research Design 

The main purpose of this research is to construct an affordable, easy to handle, no 

simulation and providing instant results non-destructive metal testing instruments by 

using eddy current method. The optimal frequency for the several types of metals 
(Brass, Cu, Mg Alloy, Ni and Ti) will then be evaluated by using the ECT instrument. 

In designing the metal testing instrument, the transmit-receiver sensor (dual- 

coil) needs to design and established first. It is widely known that in order to improve 

the sensitivity of the coil should have a large number of turns and a large active area 
(Tumanski, 2007). In order to make the design more accurate, the instrument 

amplifier was designed. Instrumentation amps excel at extracting very weak signals 
from noisy environments. Thus, they are often used in circuits that employ sensors 
that take measurements of physical parameters. This circuit would work faster and 

could be used with different range of frequency. A principle in design and practice was 
based on inverting type signal amplifier circuit. 

The function generator is the most suitable tool in obtaining the optimization 
frequency. The function generator is a very versatile instrument as it can produce a 

wide variety of waveforms and frequencies. The function generator will be connected 

with the exciter coil with a frequency signal range between 250 kHz to 3.5 MHz. The 

pulsed excitation causes a rapid change in the surrounding magnetic field; this, in 
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turn, induces eddy currents in the test piece being assessed. Finally, the digital 

millimeter will measure the output voltage signal for the testing metals. 

1.5 Research Scope 

To develop the eddy current testing (ECT) instrument, the first step is to design the 

excitation-receiver sensor and instrument amplifier based on theoretical and past 

research knowledge. In order to establish the well function ECT instrument design, 

three testing instruments will be tested which is metal imperfection; detection 

thickness with variation of metals and testing of lift-off distance. Another highlight of 
this research is to find the optimal frequency for each metal testing (copper, brass, 

magnesium alloy, nickel and titanium). Methods to determine the optimal frequency 

for metal testing are still the edge of knowledge and this work is a contribution to that 

area. 

1.6 Thesis Arrangement 
This thesis has been organized into five chapters. The first chapter briefly describes 

the background of Eddy Current Testing including their advantages, methods of 

production and principle process. The contributions of NDT in several sectors are also 
discussed in this chapter to signify the practicality of ECT and the significance of this 

research. The discussions that link between the motivation and the objectives of the 

studies are further highlighted to delineate the contribution of the thesis. 

The second chapter is the literature review of the current study on Eddy 

Current Testing. The fundamental theory of the Eddy Current Testing is discussed in 

this section. For further understanding of ECT, the properties and the generation of 
ECT instrument methods are discussed. To provide a clear image of ECT instrument 

production, the revolutions of ECT from previous studies are also reviewed. 

The third chapter discusses the detail of research methodology. Before the 

actual system development, the ECT instrument was designed and tested with several 

metals to obtain the best design in the development of the ECT instrument. Different 

parameters tested in the testing instrument process are discussed in detail in this 

chapter. 
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The fourth chapter would discuss all the findings from this research. The 

results for the ECT instrument in three kinds of test which is metal imperfection, 

detection thickness variation of metals and the suitable lift-off distance for the 

instrument. Other than that, the finding of optimal frequency for each of metal testing 
(Copper (Cu), Brass, Magnesium Alloy (Mg Alloy), Nickel (Ni) and Titanium (Ti)) would 
be discussed before the findings from the ECT instrument. The detail explanation is 

revealed part by part. The complementary discussion that relates the research finding 

of the thesis is all elaborated. 

Finally, the fifth chapter is the conclusion of the important findings from this 

research. The recommendations for improvement in a similar field of study are also 
included. 
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