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ABSTRACT 

A 35 kDa FK506-binding protein (FKBP35) from Plasmodium knowlesi (PkFKBP35) is 
considered as a viable target for development of antimalarial drugs without 
resistant effects. This protein is a member of peptidyl prolyl cis-trans isomerase 
(PPIase) with the ability to catalyze isomerization of cis-prolyl bond during protein 
folding. Sequence alignment of PkFKBP35 with other FKBP35 from P. falciparum 
and P. vivax revealed that PkFKBP35 consists of two domains which are the FK506-
binding domain (FKBD) and the tetratricopeptide repeat domain (TPRD). FKBD 
acted as a catalytic domain, while TPRD serves as a non-catalytic domain. 
Development of new antimalarial drugs is so far focused only on the catalytic 
domain, while limited studies in the non-catalytic domain. Structurally, non-catalytic 
domain in other FKBPs was reported to be important for oligomerization of the 
proteins. There were also some cases that the oligomerization is associated with 
correct folding of the protein. Nevertheless, whether TPRD, as a non-catalytic 
domain of PkFKBP35, also structurally play important role for folding and 
dimerization remain to be investigated. Functionally, as the non-catalytic domain 
folds into TPR motif, thus this domain was thought to facilitate interaction between 
FKBP35 and other (partners) proteins. Since TPR motif in other proteins was known 
to interact to heat shock protein90 (Hsp90), it was also speculated that TPRD of 
FKBP35 might facilitate interaction between Plasmodium Hsp90, particularly to its 
C-terminal pentapeptide (MEEVD) and involved in folding machinery of the parasite
cells.  Interestingly, TPRD of FKBP35 segment contains a calcium-modulated
proteins (calmodulin) binding motif (CBM) at its C-terminal. The presence of this
motif promotes a speculation that TPRD might also interact with calmodulin and
involved in calcium signaling pathway of the parasites. However, no study has been
done to confirm these speculations. This study aims to determine the structural and
functional roles of the non-catalytic domain (TPRD with its CBM) of PkFKBP35.
Structural importance of non-catalytic domain was confirmed through solubility,
folding and oligomerization assay. In addition, flexibility analysis revealed and 2D
structural analysis of PkFKBP35 using transmission electron microscope revealed
that PkFKBP35 was found to be a very dynamic protein with three conformations:
circular, hook, elongated. This flexibility is believed regulated by catalytic domain.
Further, binding analysis using pull down assay revealed the first evidences of
interaction between PkFKBP35 and calmodulin (CaM). The binding was only
observed in the presence of calcium ions which suggest that the interaction
required an active state of CaM. Further analysis using surface plasmon resonance
revealed that full length PkFKBP35 and PkTPRD+ bind to CaM with similar
dissociation constant (KD values). This suggested that TPRD segment with its CBM
is really essential for binding to CaM. In addition to the interaction to CBM,
PkFKBP35 was also shown to be able to interact to MEEVD of Hsp90. This
interaction was also found to be regulated by TPRD. Further, molecular docking
analysis revealed that the binding sites of CaM are shared between TPRD and CBM.
Altogether, the study demonstrated that non-catalytic domain has important role in
protein-protein interaction function of PkFKBP35, mainly in facilitating the
interaction to HSP90 or calmodulin. In addition, non-catalytic domain of PkFKBP35
is important for proper folding of this protein, yet, apparently, no involvement in
structural flexibility of this protein.
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ABSTRAK 

(KEPENTINGAN STRUKTUR DAN FUNGSI DOMAIN BUKAN KATALITIK FKBP35 
DARIPADA Plasmodium knowlesi) 

FK506-pengikat protein bersaiz 35 kDa (FKBP35) dari Plasmodium knowlesi 
(PkFKBP35) dianggap sebagai sasaran yang berdaya maju untuk pembangunan 
ubat antimalaria tanpa kesan tentangan. Protein ini adalah ahli peptidyl prolyl cis-
trans isomerase (PPIase) dengan keupayaan untuk memangkin isomerization ikatan 
cis-prolyl semasa lipatan protein. Penjajaran urutan PkFKBP35 dengan FKBP35 
yang lain dari P. falciparum dan P. vivax mendedahkan bahawa PkFKBP35 terdiri 
daripada dua domain yang merupakan domain pengikat-FK506 (FKBD) dan domain 
pengulangan tetratricopeptide (TPRD). FKBD bertindak sebagai domain pemangkin, 
sementara TPRD berfungsi sebagai domain bukan pemangkin. Pengembangan ubat 
antimalarial baru hanya tertumpu pada domain pemangkin, sementara kajian 
terhad di domain bukan pemangkin. Secara struktural, domain bukan pemangkin 
dalam FKBP lain dilaporkan penting untuk oligomerisasi protein. Terdapat juga 
beberapa kes yang oligomerisasi dikaitkan dengan lipatan protein yang betul. 
Walau bagaimanapun, sama ada TPRD, sebagai domain bukan pemangkin 
PkFKBP35, juga berperanan penting dalam struktur untuk lipatan dan dimeralisasi 
untuk disiasat. Secara fungsional, sebagai domain bukan pemangkin dilipat menjadi 
motif TPR, maka domain ini dianggap memudahkan interaksi antara FKBP35 dan 
protein (pasangan) lainnya. Oleh kerana motif TPR dalam protein lain diketahui 
berinteraksi dengan protein kejutan haba 90 (Hsp90), ia juga membuat spekulasi 
bahawa TPRD FKBP35 mungkin memfasilitasi interaksi antara Plasmodium Hsp90 
dan terlibat dalam mesin lipatan sel parasit. Menariknya, segmen TPRD FKBP35 
mengandungi protein mengikat kalsium (calmodulin) yang mengikat (CBM) di 
terminal C-nya. Kehadiran motif ini menggalakkan spekulasi bahawa TPRD mungkin 
juga berinteraksi dengan calmodulin dan terlibat dalam laluan isyarat kalsium 
parasit. Walau bagaimanapun, tiada kajian telah dilakukan untuk mengesahkan 
spekulasi ini. Kajian ini bertujuan untuk menentukan peranan struktur dan fungsi 
domain bukan pemangkin (TPRD dengan CBM) PkFKBP35. Kepentingan struktur 
domain bukan pemangkin telah disahkan melalui uji kelarutan, lipatan dan 
oligomerisasi. Di samping itu, analisis fleksibiliti mendedahkan dan analisis struktur 
2D PkFKBP35 menggunakan mikroskop elektron penghantaran mendedahkan 
bahawa PkFKBP35 didapati sebagai protein yang sangat dinamik dengan tiga 
bentuk: bulat, cangkuk, memanjang. Tambahan pula, analisis mengikat 
menggunakan asai tarik ke bawah menunjukkan bukti pertama interaksi antara 
PkFKBP35 dan calmodulin (CaM). Analisis lanjut menggunakan resonans plasmon 
permukaan mendedahkan bahawa panjang penuh PkFKBP35 dan PkTPRD+ 
mengikat CaM dengan pemalar pemisahan yang sama (nilai KD). Ini menunjukkan 
bahawa segmen TPRD dengan CBM adalah sangat penting untuk mengikat CaM. 
Sebagai tambahan kepada interaksi ke CBM, PkFKBP35 juga ditunjukkan dapat 
berinteraksi dengan MEEVD dari Hsp90. Interaksi ini juga didapati dikawal oleh 
TPRD. Tambahan lagi, analisis “docking” molekul mendedahkan bahawa tapak 
interaksi CaM dikongsi di antara TPRD dan CBM. Secara keseluruhannya, kajian 
menunjukkan bahawa domain bukan pemangkin mempunyai peranan penting 
dalam fungsi interaksi protein protein PkFKBP35, terutamanya dalam memudahkan 
interaksi dengan Hsp90 atau calmodulin. Di samping itu, domain bukan katalitik 
PkFKBP35 adalah penting untuk lipatan protein yang betul, namun, nampaknya, 
tiada penglibatan dalam fleksibiliti struktur protein ini. 



vii 

TABLE OF CONTENTS 

Pages 

TITLE i 
DECLARATION ii 

CERTIFICATION iii 

ACKNOWLEDGEMENT iv 
ABSTRACT v 
ABSTRAK vi 
TABLE OF CONTENTS vii 
LIST OF TABLES x 
LIST OF FIGURES xi 
LIST OF ABBREVIATIONS xii 

LIST OF SYMBOLS xiii 
LIST OF APPENDICES xiv 

CHAPTER 1: INTRODUCTION 1 
1.1 Background Study 
1.2 Problem Statement 
1.3 Hypothesis 
1.4 Aim and Objectives 

1 
8 
10 
10 

CHAPTER 2: LITERATURE REVIEW 11 
2.1 Malaria Disease and the Parasites 

2.1.1. Plasmodium knowlesi 
2.2 Antimalarial drugs development 
2.3   Resistance effect of Plasmodium Parasites 
2.4 Peptidyl prolyl cis-trans isomerase 
2.5 FKBP35 as a Member of PPIases family and as a Target Protein of 

FK506 
2.6 Multi-domain Structure of FKBPs 

2.6.1 FK506-binding Domain 
2.6.2 Tetratricopeptide Repeat Domains and heat shock protein 90 
2.6.3 Calmodulin-binding Motif 

11 
14 
16 
19 
21 
26 

27 
29 
33 
35 

CHAPTER 3: MATERIALS AND METHODS 38 
3.1   Constructions of Expression Systems 

3.1.1 PkFKBP35 and Its Derivatives 
3.1.2 Calmodulin 

3.2 Transformation 
3.3 Protein Over-Expression 
3.4   Solubilization and Refolding of Insoluble Recombinant Protein 
3.5   Purification 
3.6   Sodium Dodecyl Sulfate-polyacrylamide Gel Electrophoresis 
3.7   Oligomerization 
3.8   Circular Dichroism (CD) Spectra 
3.9   Flexibility Analysis 
3.10    Electron Microscopy Negative Staining and Images Processing 
3.11 Pull-down Assay 
3.12 Surface Plasmon Resonance 

38 
38 
40 
40 
41 
41 
42 
43 
45 
45 
45 
46 
47 
47 



viii 

3.13 Homology Modeling and Validation of Protein Structure 
3.14 Molecular Docking and Molecular Dynamics Simulation 

48 
49 

CHAPTER 4: RESULTS AND DISCUSSION 
4.1 Constructions of Expression Systems 
4.2 Transformation 
4.3 Proteins Over-Expression 

4.3.1 PkFKBP35 and its derivatives 
4.3.2 Calmodulin 

4.4 Solubilization and Refolding of Insoluble Recombinant Protein 
4.5 Proteins Purification 
4.6 Oligomerization 
4.7 Circular dichroism (CD) spectroscopy 
4.8   Flexibility Analysis of PkFKBP35 
4.9 Transmission Electron Microscope and Negative Staining Method 
4.10 Binding to Calmodulin 
4.11    Binding to HSP90 C-terminal Pentapeptide MEEVD 

50 
50 
53 
56 
57 
61 
62 
63 
66 
69 
72 
75 
80 
90 

CHAPTER 5: CONCLUSION AND FUTURE PROSPECT 
Conclusion 
Future Prospect 

98 
98 
99 

REFERENCES 100 

APPENDIX 117 



ix 

LIST OF TABLES 
Pages 

Table 2.1: Currently available ACT drugs with co-partner drugs 16 

Table 2.2: Classes of antimalarial drugs and examples of respective class 18 

Table 2.3: Antimalarial drugs and its resistance distribution pattern 20 

Table 2.4: The possible functions of PPIases 25 

Table 2.5: PfFKBD interacting partners identified via Y2H screening 27 

Table 2.6: Catalytic activity of recombinantly expresses human FKBP12 active 
site  

30 

Table 3.1: List of SDS-PAGE gel components 44 



x 

LIST OF FIGURES 
Pages 

Figure 2.1: World-wide reported areas with high and limited rates of 
malaria 

12 

Figure 2.2: The Drugs Resistance Association with the Plasmodium’s 
Life Cycle 

13 

Figure 2.3: Area with reported P. knowlesi infection in humans and 
macaques an the natural distribution limit of it natural 
reservoir and vector 

15 

Figure 2.4: (A) Chemical structure of some commonly used
antimalarial drugs. (B) Proposed model for the mechanism
and target localization of the antimalarial drugs

17 

Figure 2.5: Different types of antimalarial drugs and their respective
target part to hinder the process of malarial infection.

18 

Figure 2.6: Example of peptidyl prolyl isomerization 22 

Figure 2.7: The schematic presentation of cis-trans isomerization of a
peptidyl prolyl bond that catalyzed by PPIase

23 

Figure 2.8 Three PPIases family: FKBPs, cyclophilins and parvulins 24 

Figure 2.9 Structural comparison of proteins with the FKBP fold 28 

Figure 2.10 The domain layout of PfFKBP35, FKBD of PfFKBP35 and 

hFKBP38 
29 

Figure 2.11 Amino acid alignment of FKBD from different species 31 

Figure 2.12 FKBD of human FKBP12 in complex with FK506 32 

Figure 2.13 The overlay of backbone heavy atom trace of the NMR 
structures 

33 

Figure 2.14 Three example of TPRD structure 34 

Figure 2.15 The 2 different conformation of Hsp90 35 

Figure 2.16 The conformational changes of apo-CaM, holo-CaM, and in 
complex holo-CaM 

36 

Figure 2.17 Example of established IQ motifs and potential CaM target 
proteins 

37 

Figure 3.1 Schematic of primary structure of full length PkFKBP35 
and its variants 

39 

Figure 4.1 iPCR products for (A) PkTPRD- 
system 

53 

Figure 4.2 Transformants of (A) PkTPRD- and (B) Pk∆CBM 54 

Figure 4.3 Insert check of PkTPRD- 55 

Figure 4.4 Expression of PkFKBP35 and its variants visualized under 
15% SDS-PAGE 

58 

Figure 4.5 (A) Expression profile of CaM upon the induction by IPTG
visualized under 15% SDS-PAGE

61 

Figure 4.6 (A) Resolubilization and refolding results of PkTPRD- and
Pk∆CBM

63 

Figure 4.7 Purified PkFKBP35, PkFKBD and PkTPRD+ 64 

Figure 4.8 SDS-PAGE of pure CaM from SEC 65 

Figure 4.9 SEC graph of PkFKBP35, PkTPRD+ and PkFKBD 67 

Figure 4.10 Far-UV CD spectra of PkFKBP35 and its variants 70 

Figure 4.11 Prediction of flexibility score of the residues of PkFKBP35 73 

Figure 4.12 Micrograph representatives of negatively stained 
PkFKBP35 viewed under transmission electron microscope 

76 

Figure 4.13 Average surface area of PkFKBP35 molecules 77 



xi 

Figure 4.14 Distribution of molecular shapes of PkFKBP35 78 

Figure 4.15 Representative of (A) Elongated, (B) Hook and (C) Circular 
shapes of PkFKBP35 

79 

Figure 4.16 Possible relationships among the molecular shapes of 
PkFKBP35 

79 

Figure 4.17 15% SDS-PAGE gel of pull-down assay for PkFKBP35 with 
CaM 

82 

Figure 4.18 15% SDS-PAGE gel of pull-down assay for PkTPRD+ with 
CaM 

83 

Figure 4.19 (A) Sensorgrams from Biacore X showing the binding of
active and inactive forms of CaM to immobilized 
PkFKBP35. 

85 

Figure 4.20 (A) Sensorgrams from Biacore X between PkTPRD+ and
PkFKBD to CaM 

86 

Figure 4.21 PPIase activity of PkFKBP35 in the presence of various 
concentration of CaM 

89 

Figure 4.22 
PkFKBP35, PkTPRD+ and PkFKBD 

91 

Figure 4.23 Relationships between the equilibrium binding response 
and concentration of MEEVD to full length PkFKBP35 and 
PkTPRD+ 

92 

Figure 4.24 (A) Overall structure of PkTPRD; (B) Ramachandran Plot of
PkTPRD+ model 

95 

Figure 4.25 (A) MD simulation graph of TPRD-MEEVD complex
obtained from the docking. 
(B) Structural fluctuation (RMSD) per residue

96 

Figure 4.26 The best complex of PkTPRD+ and MEEVD 97 



xii 

LIST OF ABBREVIATIONS 

bp Base pair 
FKBD FKBP binding domain 
FKBP35 FK506-binding domain 35 
P. falciparum Plasmodium falciparum 
P. knowlesi Plasmodium knowlesi 
cDNA Complementary   Deoxyribonucleic acid 
P. vivax Plasmodium vivax 
Pf Plasmodium falciparum 
Pk Plasmodium knowlesi 
PPIase Peptidyl prolyl isomerase 
Pv Plasmodium vivax 
rpm Revolution per minute 
SDS-PAGE Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis 
TEMED Tetramethylethylenediamine 
UV Ultraviolet ray 
EDTA Ethylenediaminetetraacetic acid 

TPRD Tetratricopeptide repeat domain 
DTT Dithiothreitol 
CaM Calmodulin 
CBM Calmodulin-binding motif 
Pvn Parvulin 
Cyp Cyclophillin 
WHO World health organization 
TPR Tetratricopeptide repeat 
FKBP22 FK506-binding domain 22 
Hsp90 Heat shock protein 90  
FKBP38 FK506-binding domain 38 
FKBP12 FK506-binding domain 12 
CDC Center for disease control and prevention 
ACT Artemisinin combination therapy 
CsA Cyaclosporin A 
Ca2+ Calcium ions 
LB Luria-Bertani 
IPTG isopropyl β-D-1-thiogalactopyranoside 

HCl hydrochloric acid 
FPLC Fast Protein Liquid Chromatography 
SEC Size exclusion chromatography 
CD Circular Dichroism 
NaCl Sodium chloride 
CaCl2 Calcium chloride 
w/v Weigh/volume 
APS Ammonium Persulfate 
GMQE Global Model Quality Estimation 

https://en.wikipedia.org/wiki/Ethylenediaminetetraacetic_acid


xiii 

LIST OF SYMBOLS

μg Micro gram 
μm Micro meter 
μM Micro molar 
°C Degree Celsius 
a.u. Arbitrary unit 
g Gram 
kDa Kilo Dalton 
M Molar 
ml Mili liter 
nm Nano meter 
ps Pico second 
% Percentage 
mM Mili molar 
K Kelvin 
∆ Delta 
≈ Approximately 
β Beta 
α Alpha 
™ Trademark sign 



xiv 

LIST OF APPENDIX  
Pages 

Appendix A pET29B Plasmid map 117 



1 

CHAPTER 1 

INTRODUCTION 

1.1 Background Study 

Malaria is a global health issue affecting almost half population in the world. This 

disease is caused by Plasmodium parasites and transmitted to human via the bites 

of infected female Anopheles mosquitoes (WHO, 2016). The number of malaria 

cases reported in 2016 has increased about 5 million as compared to the number of 

cases reported in 2015. The numbers of malaria deaths in 2016 as reported by 

WHO (2017) was 445 000 cases which showed decrease of 1000 cases from 2015 

total cases. The malaria cases distribution was categorized into 91% was in the 

African region, 7% in South-east Asia and 2% from the Eastern Mediterranean 

(WHO, 2017). The incidence rate of malaria in Malaysia has decreased from 37.0 to 

14.7 per 100,000 population in 2006 and 7.1 per 100,000 population in 2012. While 

in 2016 the rate increase to 7.2 per 100,000 population. The malaria mortality rate 

was fluctuating throughout the years of 2001-2012 between 0.25 to 0.59, however, 

in 2016, the mortality rate dropped to just 0.01 per 100,000 population (Ministry of 

Health Malaysia, 2016; 2012). Malaria Elimination 2011-2020 is a National Strategic 

Plan that was introduced with the objective to prevent locally-acquired malaria in 

Malaysia (WHO, 2015). The isolated geographic area with high number of migrant 

workers causing Sabah and Sarawak to have high number of malaria cases in 

Malaysia (Ministry of Health Malaysia, 2016). According to WHO Malaria Report 

2015, Malaysia with 1.3 million populations at risk of malaria is in the pre-

elimination stage of malaria. As of 2010, the risk of contracting malaria for the 

population in Sabah, Sarawak and West Malaysia were 24.5%, 19.7% and 0.4% 

respectively. 
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Malaria is caused by Plasmodium parasites which can be transmitted to 

human via the bites of infected female Anopheles mosquitoes. There are 4 

Plasmodium species that were previously reported to have the ability to infect 

human such as P. falciparum, P. malariae, P. vivax, and P. ovale. The P. falciparum 

and P. vivax were considered as the most common parasites in Africa and outside 

the Sub-saharan (World Health Organization, 2016). Recently, P. knowlesi was 

reported as the fifth human malaria parasite. Though, this Plasmodium species was 

firstly reported to be hosted by macaque monkeys (Wilson et al., 2011). The 

structure of P. malariae and P. knowlesi are very similar, thus, it is hard to 

differentiate both of the Plasmodium species microscopically. Therefore, causing 

misdiagnosis and classification of both species as a single group for cases 

notification (William et al., 2013, Cox-Singh et al., 2008). 

 

P. knowlesi natural host are long-tailed and pig-tailed macaques. The 

macaques are from forested area of Southeast Asia region including Borneo island 

(Singh & Daneshvar, 2013). Furthermore, the increasing reported cases of P. 

knowlesi in Malaysia since 2008 was a major concern, making Malaysia as the 

country with the highest percentage of P. knowlesi infection in WHO Western 

Pacific Region. William et al. (2014) reported that P. knowlesi has increasing 

number of incidence and has been significantly increased from 2004 to 2013 in 

Sabah (William et al., 2014). According to Sabah Department of Health malaria 

report data from 1992-2013, the percentage of malaria cases in Sabah caused by P. 

malariae/P. knowlesi was increasing from 1% in 1992 to 35% in 2011 and to 62% 

in 2013 (William et al., 2014). Thus, the situation urges serious efforts to eradicate 

the parasite infection. 

 

Antimalarial drugs are the answer to control and eliminate malaria. The 

greatest known naturally occurring antimalarial compounds are quinine and 

artemisinin which extracted cinchona bark and Artemisia, respectively (An et al., 

2017). The deployment of artemisinin-based combination therapies have 

contributed greatly in recent decreases in the global malaria problem (Cui et al., 

2015). However, there have been recent alarming concerns about the antimalarial 

drugs resistance in Plasmodium parasites. World Health Organization (WHO, 2015) 

had reported that out of 5 Plasmodium species that affect human, three of the 
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plasmodium parasites are known to have antimalarial drugs resistance. The 

resistance toward antimalarial drugs has led to incomplete elimination of the 

Plasmodium parasites from patient’s blood after treatment using antimalarial drugs 

which the parasites has developed resistance towards. Furthermore, the problem 

exaggerated by the ability of the parasites to have cross resistance which caused 

the treatment of the malaria using antimalarial drugs that has same chemical family 

or similar modes of action with another antimalarial drugs that the parasites already 

build resistance toward, become similarly inefficient (World Health Organization, 

2016). Thus, resistance to antimalarial medicines is a threat to global strategy to 

control and eliminate malaria. Therefore, to address this problem, alternative 

antimalarial drugs must be discover and develop.  

 

Presently, an immunosuppressant drug known as FK506 or also known as 

tacrolimus was reported to have antimalarial properties with no resistance issue 

being reported thus far (Monaghan et al., 2017). FK506 was used originally during 

organ transplantation to momentarily suppress the recipient immune response so 

that no immune response to reject the transplanted organ. Immunosuppressive 

effect of this drug is considerably the biggest drawback. Therefore, although FK506 

possess antimalarial properties, it is not possible or unfavorable for this drug to be 

used as an antimalarial drug for long term as it may suppress the patient immune 

system. Therefore, attempts to find FK506 replacers as antimalarial drugs with no 

immunosuppressive effect and no resistance effect are necessary (Monaghan et al., 

2005).  

 

Monaghan et al. (2017) reported that the protein receptor for this drug is a 

FK506-binding protein (FKBP) which is a member of peptidyl prolyl cis-trans 

isomerase (PPIase). PPIase is a group of enzyme capable of catalyzing slow 

isomerization of cis-prolyl peptide bond which is regarded as a rate-limited step of 

protein folding (Fanghanel & Fischer, 2004). Three structurally distinct family of 

PPIase were identified, including cylophilin (Cyp), FKBP and parvulin (Par). These 

three groups are different in their substrate specificity, inhibitors as well as their 

cellular roles. FK506 specifically binds to FKBPs group, but not to Cyp or Par. An 

FK506-FKBP complex inhibits the catalytic activity of the FKBP, protein phosphatase 

calcineurin and blocking a key step in T-cell activation. This leads to assumption of 
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the existence of FKBPs member inside Plasmodium parasite cells. The exposure of 

Plasmodium parasite with FK506 leads to disruption of the vital cellular functions of 

the FKBPs that cause cell death events.  

 

Based on the genomic sequences of some Plasmodium parasites, it was 

later confirmed that a single FKBPs member exist inside parasite cells. This protein 

known as FKBP35, is to date, the only PPIase member exists inside the parasite 

cells. The study on this protein was done on P. falciparum and P. vivax, designated 

as Pf and PvFKBP35, respectively (Alag et al., 2013; Yoon et al., 2007). Previous 

studies on FKBP35 from P. falciparum (PfFKBP35) and P. vivax (PvFKBP35) 

discovered that this protein consists of two domains, N-terminal domain which is 

highly similar with human FKBP12 (designated as FKBP domain, FKBD), and C-

terminal domain with tetratricopeptide repeat motif comprising calmodulin binding 

motif (designated as tetratricopeptide repeat domain, TPRD) (Kang et al., 2008; 

Monaghan & Bell, 2005; Yoon et al., 2007). FKBP35 protein has been reported to 

bind with FK506, exhibit PPIase activity toward tetrapeptide substrate, chaperone 

function, and inhibit calcineurin’s phosphatase activity with or without FK506 

(Monaghan & Bell, 2005; Yoon et al., 2007).  

 

It is interesting to note that the genomic DNA of P. knowlesi encodes a 

homolog of FKBP35 (gene ID: PKH_146480), designated as PkFKBP35. It shares a 

high similarity to PfFKBP35 and PvFKBP35 approximately 80% and 90%, 

respectively, based on their sequences. Likewise, the primary structure of 

PkFKBP35 also displays the organization of FKBD followed by tetratricopeptide 

repeated domain. The presence of FKBD in PkFKBP35 (designated as PkFKBD 

henceforth) suggests that FK506 might be an effective antimalarial drug for P. 

knowlesi infection. Although many studies have been conducted on PfFKBP35 and 

PvFKBP35, unfortunately, so far, there is no study on PkFKBP35.  

 

Most of studies were conducted on FKBD, which was identified as a domain 

responsible for catalytic function of this protein. High similarity of this domain with 

human FKBP12 revealed that some residues in human FKBP12 that had been 

reported to be involved in PPIase activity (Y26, F36, D37, R42, F99, W59 and I56) 

(Fanghanel & Fischer, 2004) are conserved in FKBD from Plasmodium FKBPs. These 
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residues, interestingly, were also well conserved in other Plasmodium FKBPs, which 

leads to an acceptable assumption that PkFKBD indeed serves as a catalytic 

domain. Accordingly, attempts on finding the drug targeting FKBP35 was so far 

focused on this domain. As an example, Harikishore et al. (2013) attempted the 

screening and discovered the small molecules inhibiting FKBD from P. falciparum 

and discovered a small ligand of displaying inhibitory effect towards this protein. 

Nevertheless, there are no attempts yet for the screening of inhibitors targeting 

non-catalytic domain of Plasmodium FKBP35. This is believed due to the less 

fundamental studies on non-catalytic domain of Plasmodium FKBP35.  

 

TPRD is assumed to be a non-catalytic domain of Plasmodium FKBP35. The 

sequence homology of TPRD among Plasmodium FKBP35 is considerably high (> 

80%) supposing that they share structural and functional properties. It is 

interesting to note that in multi-domain FKBPs with dimeric structure (e.g., FKBP22, 

Lp-MIP, FKBP37, and FKBP26), domains that were involved in dimerization were 

found to have no catalytic activity (non-catalytic domain) (Budiman et al., 2011; Jo 

et al., 2015; Hackert & Hendrickson, 2011; Tunnicliffe et al., 2001). In addition, 

structural analysis of TPR motif was also found to facilitate dimerization in some 

proteins. Therefore, it is reasonable to assume that TPRD might be important for 

dimerization. Besides, finding on FKBP22 from Shewanella sp. SIB1 revealed an 

interesting relation between dimerization of non-catalytic domain and overall 

folding of the protein (Budiman et al., 2012). Nevertheless, dimerization of PkTPRD 

and its association with the folding of PkFKBP35 remain to be experimentally 

proven. 

 

Structurally, TPR motif consists of multiple repeats of 34 amino acids 

sharing a degenerate consensus sequence defined by a configuration of small and 

large hydrophobic amino acids (Zeytuni & Zarivach, 2012). TPR is not a unique 

domain for Plasmodium FKBP35 since; hitherto, more than 5000 proteins were 

reported to harbor this motif. Functionally, this motif facilitates involvement of the 

proteins in many cellular diverse processes, which mainly through mediating the 

interaction to the other proteins (protein-protein interaction). To note, the 

formation of protein-protein complexes is essential for many biological functions. 

The protein-protein interactions are considered as essential for all functional, living 
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cells (Zeytuni & Zarivach, 2012). Accordingly, TPRD of Plasmodium FKBP35 is 

considerably a feasible antimalarial drug target as functional inhibition of this 

domain might lead to disruption of many cellular events of the parasite. 

 

 One of protein partner that was reported to interact with TPR motif is heat 

shock protein 90 (Hsp90). TPR domain (TPRD) of P. falciparum (PfTPRD) has been 

reported to bind to Hsp90. Hsp90 is important molecular chaperone that is involved 

in the activation or maturation of many keys proteins which play important roles in 

different types of cellular functions (Pratt et al, 2003; Richter et al., 2003). The 

interaction is particularly facilitated by pentapeptide of MEEVD located at the C-

terminal of Hsp90 (Alag et al., 2009). Docking and molecular dynamic simulation 

further demonstrated the pentapeptide is accommodated by clamp forming 

residues and a hydrophobic pocket (Alag et al., 2009). This interaction suggests 

possible involvement of FKBP35 in protein folding machinery of parasite and play 

an important role in the pathogenesis of Plasmodium (Yoon et al., 2007). 

Additionally, this interaction also provides another hotspot for development of 

antimalarial drug targeting FKBP35 and thus comprehensive understanding on this 

interaction is unavoidable. Nevertheless, whether interaction between FKBP35 and 

MEEVD pentapeptide are general feature for the other Plasmodium FKBP35 remain 

to be addressed. Besides, experimental study on the interaction is so far limited 

only to TPRD (Alag et al., 2009). Study on the interaction between full length 

FKBP35 or FKBD towards MEEVD is important to have conclusive proposal on the 

role of TPRD in the interaction.  

 

The genomic DNA of P. knowlesi also contains a gene encoding Hsp90, 

designated as PkHsp90, with 87% and 90% similarity to PfHspP90 and PvHsp90, 

respectively, on their amino acid sequences. The presence of PkFKBP35 with 

PkHsp90 promotes the possibility that these proteins might also associate and 

involved in wide cellular network and chaperone system of P. knowlesi. Monaghan 

and Bell (2005) finding implied that inhibition of chaperone function might be the 

promising target for development of antimalarial drug (Monaghan & Bell, 2005). 

There is no study yet for PkFKBP35, particularly on its interaction to PkHsp90. The 

study might lead to general understanding on Plasmodium and Hsp90 interaction 

which is important as a platform for development of novel antimalarial drug. To 
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note, amino acid sequences alignment revealed that while the clamp forming 

residues are highly conserved for PfFKBP35 and PkFKBP35, some corresponding 

amino acid residues forming hydrophobic pocket for MEEVD binding in PfFKBP35 

are different to that of PkFKBP35. These differences promote possibility of the 

uniqueness in binding mechanism between PkFKBP35 and PkHsp90 and possibility 

to develop specific inhibitor for PkFKBP35. Nevertheless, experimental studies are 

needed to confirm this assumption. 

 

In addition, the presence of Calmodulin-binding motif (CBM) at the C-

terminal tail of TPRD suggested that the FKBP35 also binds to calcium-modulated 

proteins (Calmodulin / CaM). CaM is a small protein, with approximately 16 kDa in 

size that capable of binding to calcium ions. Since, FKBP35 has the conserved motif 

of CBM in their amino acid sequence, it may involve in regulating activities that are 

done by CaM. CaM is known to regulate several cellular processes that involved 

calcium ions-dependent signaling pathways (Stull, 2001). In its action, CaM binds to 

its target protein and regulates function of some target proteins that further affect 

the downstream cellular pathways. CaM is widely distributed among mammalian 

and other eukaryotes with high similarity in the amino acid sequences (Hayashi et 

al., 1998). CaM has 4 calcium ions binding sites which are known as the EF hands, 

in which upon completion of Ca2+ binding, the CaM undergoes structural changes. 

This conformational change activates the CaM, hence, enables CaM to recognize 

and bind to its target proteins (Crivici & Ikura, 1995). The interaction between 

FKBP35 to CaM suggests the involvement of this protein in calcium-mediated 

signaling pathway of the parasite cells.  

 

Nevertheless, there are no study to date for the interaction between 

Plasmodium FKBP35 and CaM. Human FKBP38 is so far the only FKBPs member 

with CBM that been experimentally proved to bind with CaM (Edlich et al., 2007; 

Edlich et al., 2005). Nevertheless, FKBP38 is structurally different to FKBP35 as this 

protein stick in the cell membrane. The CBM in FKBP38 is not located at the C-

terminal of this protein but close to its transmembrane domain (Kang et al., 2008). 

Indeed, the binding of CaM to FKBP38 was reported to be observed in catalytic and  
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non-catalytic domains of this protein, which is questionable. Study on binding 

between PkTPRD and CaM should confirm two issues:  

(1) Whether or not CBM at Plasmodium FKBP35 generate binding affinity to CaM; 

and  

(2) Whether or not binding site of CaM is localized at catalytic and non-catalytic 

domain.  

 

Altogether, fundamental studies on TPRD of PkFKBP35 are unavoidable to 

have a comprehensive understanding on the importance of this domain. In this 

study, first experimental evidences on the role of TPRD for structure and function 

of PkFKBP35 are provided. Confirmed importance roles of this domain should 

provide acceptable reasons for targeting this domain, in addition to its catalytic 

domain, in the development of antimalarial drug with no resistance effect. As this 

study specifically targets the protein from P. knowlesi, this should also provide a 

platform for development of specific drug targeting this simian malaria parasite.  

 

1.2 Problem Statement 

 

The data from World Health Organization showed that malaria is a major threat on 

human health worldwide as it risks more than half of the human population. Malaria 

disease is caused by Plasmodium parasites which are transmitted from the bites of 

female Anopheles mosquitoes. Currently, there are five major Plasmodium parasites 

which are known to infect human. The Plasmodium parasites are P. falciparum, P. 

malariae, P. vivax, P. ovale, and P. knowlesi. In Malaysia, P. knowlesi dominate the 

reported cases of malaria, this might be due to Southeast Asia is the natural habitat 

of P. knowlesi and the natural hosts are the long-tailed and pig-tailed Macaques.  

  

 Medicine for malaria is commercially available and has plays a major part in 

reducing the fatality rate because of malaria in this last decade. However, the 

Plasmodium parasites have developed resistance toward the antimalarial drugs that 

currently being used to combat this disease. Therefore, threatening to hinder the 

efforts to eradicate malaria.  
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