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ABSTRACT 

Solanum /ycopersicum belongs to the genus of Solanum with a small genome size of 

950Mb of DNA in 91 scaffold aligned to 12 tomato chromosome. Solanum 

/ycopersicum which has been known to be originated from Andean Region and 

widely used as a research material has contributed towards the vast amount of 

tomato genetic information such as the discovery of 34,727 protein coding gene and 

a mass of accumulated information of tomato functional genomics in various 

databases. However, the functional genomics of plant genes has not yet been fully 

correlated to its specific function which only 18,320 genes were specified. Despite of 

having a high economical value with other significant attribution and benefits, its 

fullness can't be achieved if vital gene function has not been known yet. The present 

study was performed to correlate the scrutinized targeted plant genes to its function 

in the basis of S. /ycopersicum mutagenesis via chemical mutagen ethyl 

methanesulfonate (EMS). Mutant tomato plants were developed up to its second 

generation mutant line which its genomic DNA were sequenced with the use of nine 

primers for the study of functional genomics of the specific loci in the tomato 

genome. All 99 samples were sequenced and screened for the changes in genotypic 

aspect through TILLING and reference comparison to its control untreated DNA 

sequence via bioinformatic software. Based on the analyzed results a total of five 

genes were detected to be mutated through random mutation induced in seeds by 

ethyl methanesulfonate treatment. The variations in 12 main classes and 24 sub

classes of tomato phenotypes, Brix sugar index, chlorophyll level and tomato height 

that were observed and recorded from germination stage up to senescence stage of 

tomato plants were in line with the polymorphism screened in the sequence of the 

mutated genes. Sugar index were also relatively low in mutant fruits with a mean 

value of 3.8 %Brix in comparison to control tomato fruits of 6.2 %Brix, indicating 

HXK gene might take part in the Carbon catabolite repression (CCR). Mutagenic 

effect of EMS were notably in the variation of mutant and control plant heights, 

mutant plant were stunned with the shortest to be recorded with a height of 10 cm 

of its main stem. Chlorophyll levels were relatively lower in leaves of mutant plants. 

EXP gene was screened to be mutated and caused the growth of shorter stem and 

nodes of tomato plants as it regulates the loosening of plant cell wall. Ethyl 

Methanesulfonate has proved its reliability in plant mutagenesis through the 

screening of newly emerging technology of TILLING for the study of plant functional 

genomics and further intensive research can be applied on tomato whole genome. 

This research of tomato as a plant model could contribute in the agriculture sector 

that emphasized on Solanum lycopersicum and mutagenesis via Ethyl 

methanesulfonate. 
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ABSTRAK 
CAL ON-CALON MUTAN Solanum lycopersicum DIBANGUNKAN 

MENGGUNAKAN ETHYL METHANE SULFONA TE 

Solanum lycopersicum tergolong dalam genus Solanum dengan salz kromosom 
950Mb asid deoksiribonuk/elk (DNA) di 91 perancah doFajarkan kepada 12 kromosom 
tomato. Solanum lycopersicum telah diketahui berasal darf Wilayah Andean dan 
d/gunakan sebagai bahan penyelidikan secara meluas, is menyumbang kepada 
sejum/ah besar mak/umat genetik tomato seperti penemuan 34,727 gen 
pengekodan protein dan sejum/ah besar mak/umat genomik fungsian tomato 
terkumpul da/am pangka/an data. Wa/au bagaimanapun, fungsi genomik gen 
tumbuhan belum dikaitkan sepenuhnya kepada fungsi khusus mereka, hanya 18,320 
gen to/ah dispesifikasikan. Wa/aupun is mempunyai nilai ekonomi yang tinggi dan 
faedah lain yang penting, kebaikan kese/uruhannya tidak bo/eh dikecapi jika fungsi 
gen penting be/um diketahui lagi. Kajian ! ni to/ah dpalankan untuk mengaitkan gen 
tumbuhan yang dikaji kepada fungsinya secara dasar mutagenesis 5. lycopersicum 
menggunakan Ethyl methanesu/fonate (EMS). Tanaman tomato mutan dibiak 
sehingga generasi kedua di mana DNA genomik mereka telah me/a/ui proses 
penjujukan DNA dengan menggunakan sembilan primer bagi mengkaji genomik 
fungsian Jokus tertentu da/am genom tomato. Kesemua 99 sampel to/ah melalui 
proses penjujukan DNA dan disaring untuk sebarang perubahan da/am aspek 
genotip melalui kaedah TILLING dan perbandingan kepada jujukan DNA kumpulan 
kawa/an. Keputusan analisis menunjukkan sejum/ah lima gen dikesan telah 
bermutasi melalui kaedah rawatan Ethyl methanesulfonate. Perbezaan pada 12 
ke/as utama dan 24 sub-kelas fenotip tomato, indeks gu/a Brix, paras k/orofil dan 
ketinggian tomato yang direkodkan darf peringkat percambahan sehingga peringkat 
penuaan tanaman tomato ada/ah se/arcs dengan polimonisme yang disaring di 
jujukan DNA gen yang bermutasi. Indeks gu/a buah-buahan mutan ada/ah rendah 
dengan nilai rata-rata 3.8 %Brix berbanding dengan buah tomato kumpu/an 
kawa/an /a/tu sebanyak 6.2 %Brix, menunjukkan gen HXK berkemungkinan 
mengambil bahagian dalam Karbon Repress! Katabolite. Kesan mutagenik EMS 
ada/ah ketara terutamanya pada variasi ketinggian tumbuhan mutan dengan 
kumpulan kawa/an, pokok-pokok mutant terbantut dengan ketinggian paling rendah, 
10 cm dan paras k/orofil juga rendah. Saringan gen EXP menunjukkan is bermutasi 
dan menyebabkan pertumbuhan batang dan nod tanaman tomato lebih pendek 
kerana /a mengawal proses pe%onggaran dinding sel tumbuhan. Ethyl 
Methanesu/fonate telah membukdkan keboiehpercayaannya da/am mutagenes/s 
tumbuhan me/a/ui kaedah saringan teknologi TILLING. Kajian genomik fungsian 
tumbuhan yang lebih intensif boieh dilakukan pada kese/uruhan genom tomato. 
Penyelidikan /ni yang menggunakan tomato sebagai model tumbuhan yang boleh 
menyumbang kepada sector pertanian menekankan penggunaan Solanum 
lycopersicum dan mutagenesis me/a/ui Ethyl methanesulfonate. 
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CHAPTER 1 

INTRODUCTION 

1.1 Research Background 

Tomato (So/anum lycopersicum) is a fruit-bearing vegetable plant that belongs to 

the family of Solanaceae which also commonly known as nightshades. Tomato and 

other related nightshades have been ascertained to be originated from Andean 

Regionof South America including some areas of Ecuador, Peru and Chile (Sims, 

1980). The Solanaceae family comprises more than 3000 species and were said to 
be the third most important plant for economical proposes. Solanaceae sub-family 

consists of a variety amount of crop species from potato to medicinal plants which 

are constantly used as plant model system in agricultural and biological field 

(Fernandez-pozoet a/., 2014). Plant breeding of S. lycopersicum is essential in 

ensuring better and improved characteristic of the plants to meet several necessities 

and requirements of commercial production. Tomato is chosen as a plant model 

system in this study as the genome sequence of tomato is relatively small with 950 

megabases of DNA in 91 scaffold aligned to the 12 chromosomes found in tomato, 
this is relatively small compared to the other crops within Solanaceae family 
(Matsukuraet a/., 2008), making tomato an ideal reference species for sequencing 
the genome of Solanaceae family (Emmanuel & Levy, 2002). SOL genomic network 
had managed to discover 34,727 protein coding gene (The tomato genome 
Consortium, 2012). Most of the plants from Solanaceae family exhibit genomic 

stability (Doganlaret a/., 2002). However, the gene function of tomato has not been 

fully studied with only 18,320 known gene correlated to its specific function. The 
development of mutant tomatoes by means of mutagenesis could facilitate the study 

of plant gene function (Reddaiahet a/., 2014) through the approach of newly 

emerging technology of TILLING (Gilchrist &Haughn, 2005; Stemple, 2004) for the 

search of mutation on the specific studied genes. 
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Tomato is seen to contain high amount of vitamin which is mainly ascorbic 

acid, vitamin A, potassium, micro and macro nutrients. The high demand of tomato 

due to it's commercialize value and contribution to medical health benefits such as 
the presence of relatively high content of antioxidant particularly lycopene has 

necessitated the need to develop novel, high-yielding varieties of tomato plants 
(George et al., 2004) and for the purpose of functional genomics (Emmanuel & 

Levy, 2002). Other than the relatively small genome of tomato and its thousands of 
discovered genes, S. /ycopersicon is also specifically chosen for its fairly short life 

cycle which makes it a convenient plant to study up to their second generation. 
Tomato tree does not consume a lot of space and suitable to be grown with a 

constant parameter in greenhouse or transgenic facility. Novel varieties of tomato 

crop can be breed through four fundamental approaches namely conventional plant 
breeding, protoplast fusion, genetic engineering and mutation breeding. 

Breeding programs of tomatoes such as conventional plant breeding, genetic 

engineering and protoplast fusion are the approaches to breed better or improved 

varieties of plants. These various approaches had led to tomato crops with 

commercially targeted traits such as texture and taste enhancement, enhanced 

growth, resistance to certain diseases and other useful quality traits. Despite of 
these approaches in the development of new varieties of crops plants, there are 

some issues that were consider as drawback specifically the negative prospect in 

regards to ethical issue. 

Regulatory issues pertaining to genetically modified organism has been a 
main reason for the addition of mutagenesis as an alternative approach in functional 

genomics of S. lycopersicum. The approach of developing new verities of crops in a 

more rapid and easy way by means of mutation breeding was firstly discovered in 
1930s (Schouten & Jacobsen, 2007). Techniques of mutagenesis breeding were 
then improved after World War II. The research approach adopted in this study 
focuses on chemical mutagenesis breeding via exposure of Ethyl Methanesulfonate 

(EMS) which is an alternative approach to genetic engineering. Chemical mutagen 

such as Ethyl Methanesulfonate (EMS) which acts on guanine, is capable to produce 
mutation in diploid DNA with the range of two to 10 mutation per megabase (Mb) 

(Till et a/., 2007). Although mutagenesis breeding is more randomized compared 
togenetic modification of plants (Lai et a/., 2004), mutagenesis is a relatively 
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conventional approach as it needs a fewer amount of plantlets, time and cost 

reduction in yielding high number of tomato plants (Kim et al., 2006; Clark, 1963; U 

et al., 2016). The development of mutant population with significant change in 

phenotypes and physiological responses is a robust tool in the study of biological 

function of specific genes in plants. The use of chemical mutagen, EMS aided with 

new technology of Targeting Induced Local Lesions in Genome (TILLING) are the 

approaches used for the study of functional genomics in tomato plants. TILLING is 

the best approach used for the detection of mutation developed through EMS in 

terms of the reduced amount of reagent consumed, duration in producing a mutant 

population, high density of mutation to the work load in screening for target genes 
(Serratet al., 2014)which firstly tested on Arabidopsis thaliana (McCallum et a/., 
2000) and mutation on Drosophila melanogaster (Bentley et al., 2000). The 

functional genomics of the specific genes will be analyzed through the development 

of mutant plants via EMS and TILLING approach (Kim et al., 2006) through the 

analysis in both of the plant's genomic and phenotypic aspect. The basis of TILLING 

involves the development of mutant population and ends with the screening and 

mutation discovery on the specific studied gene (Comai&Henikoff, 2006). TILLING 
has been an established technology in mutagenesis breeding for genetic studies 
linking genes with their associated functions. 
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1.2 Objectives 

The research objectives of this study are: 

I. To develop a mutant population of S. /ycopersicum via chemical mutagenesis. 
ii. To screen the population for mutant on the basis of phenotype. 

iii. To evaluate the effect of chemical mutagenesis on specific genes. 

1.3 Significance of study 

The discovery of thousands coding protein in tomato plant genome is one of the 

greatest achievements in plant genetics. Various research papers were published in 

regards to the number and types of new genes found in tomato, recently more 
than eighteen thousand genes were knownpublicly. Although this had lent a 

tremendous improvement in plant study, there are still a few genes have not yet 
been link to their specific function. This research approaches focus on the study of 
functional genomics in tomato as a model plant via TILLING technology. Mutation 

occurs in the targeted gene will aid in determining the function of studied gene. 
The study of gene function could bridge the gap between the function of the gene 

or gene regulation within the plant genome. The function of mutagenesis is proven 
for the study of reverse genetics through the screening of mutation along the 
target genes by means of DNA sequencing. The knowledge through this research 
could be useful for the study of this model plant and the mutagenic effect of 
chemical mutagen particularly EMS. This will benefit the agriculture sector that 

emphasize on the study of this model plant and gene regulation. 

4 



CHAPTER 2 

LITERATURE REVIEW 

2.1 So/anum /ycopersicum 

Tomato (So/anum lycopersicum) originated in South America and the 

commercialization of this particular plant continues to dominate other countries due 

to its usefulness as a vegetable crop. The anatomic features of tomato consist of its 

unique compound leaves, differential texture of its fruit and sympodial shoot 
branching. Furthermore, the tremendous advantages of tomato also include its short m 

life cycle, self-pollination and non-complex diploid genetics. 

1 
The word Tomato was originated from a Spanish word tomate where its 

species originally grown in the South American Andes. The large amount of tomato C6 
consumed made it classified as the second highly intake vegetable (Szczechuraet al., 
2011). Tomatois one of the crops that has been harvested for the purpose of 

commercialization and contribute as a model plant for increasing the depth in 
knowledge for the aspect of growth, maturation and metabolism in the biology of 
fruits (Giovannoni, 2004; Carrariet a/., 2006) and considered as a good plant model 
system for Solanaceous family due to its considerably small genome size (Reddaiahet 

al., 2014). The whole tomato genome has been successfully sequenced by The 
International Solanaceae Genomics Project (SOL) (Muller, 2005a; Muller 2005b). It's 

genome consisted of more than 75% of heterochromatin (Fernandez-pozoet al., 
2014) and 730 Mb of the tomato genome are pericentromeric heterochromatin with 
220 Mb of the tomato chromosome made up of distal euchromatic segments 
(Szczechuraet al., 2011). Tomato genome was initially thought to be a huge 

challenge for full sequencing as its genome is complicated and larger in size 
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compared to animal model, it was then discovered that tomato genome in the range 

of 950MB is considered manageable. 

The Tomato Genome Sequencing Project has been one of the most important 

projects in the history of sequencing, this project employed both Sanger's and next- 

generation sequencing (NGS) technologies for the assembly of plant genome as well 

as a draft of So/anum pimpine//ifo/iumwhich was released in 2012 (TGC, 2012). The 

sequence data generated by 150 tomato Genome Consortium has further uncover 

the natural alleles exist in different genotypes of tomato (Mueller et a/., 2009). 

However, the functional potential of the major fraction of this newly generated 

resource is still undefined. 

Tomato has been used for the study of functional genomics in plants. 
Arabidopsis thaiiana was initially the main model plant for this purpose due to its 

significant characteristics advantages. With the identified similar leverage of small 

genome size and short life cycle of tomato in comparison to Arabidopsis thaliana, 

makes tomato an ideal plant for gene study (Watanabe et al., 2007). 

Research on tomato were previously conducted with various tomato varieties 
including Arka Vikas for the purpose of investigating the effect of mutagenic 
treatment on agronomic parameters such as seedling heights and plant height 

(Laskaret a/., 2016), Patharkutchi was used to study the frequency and spectrum of 
macro-mutations of EMS and its combined treatment (Dutta et al., 2017), Red Setter 
for the reverse genetic study in creating new traits of specified variety (Minoiaet al., 
2010) and Lycopersiconescu/entum Mill. was chosen as the model plant for the study 
of effects of mutagen concentration (Aliyu &Adamu, 2007). Studies of these tomato 

varieties focuses on the use of ethyl methanesulfonate as the chemical mutagen 
however, tomato variety of Yates F1 Hybrid (Grosse Lisse) from Australia has never 
been studied before. Thus, Yates F1 Hybrid (Grosse Lisse) was chosen in this 

research to study the mutants developed from this specified variety via EMS 

mutagenic treatment. 
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2.2 Breeding Program of Tomato 

Conventional plant breeding is one of the approaches to breed better or improved 

varieties of plants by means of selecting desirable traits and cross breeding between 

varieties. Newly improved next generation population could be made possible through 

this method which carries the best traits from the parental plants. Commercially 

targeted traits were texture and taste enhancement, resistance to certain diseases and 

additional nutrient values. Conventional plant breeding method starts with specifically 

selected traits possessed crops via pure-line selection and hybridization between crops 

for the breeding of future generation. Conventional plant breeding relies on sexual 

recombination (Manshardt, 2004). Although this step has greatly contributed in the 

development of new variety of crop plants with inherited gene of interest but the good 
traits of the parental are only passed down through multiple back-crossing between 

progeny and recurrent parent which is considered as a time consuming plant 
development method (Hoisington eta/., 1999) 

Protoplast fusion in plants on the other hand uses the application of fusing two or 

more protoplast to transfer useful genes. This approach of genetic recombination is able 
to transfer diseases resistance, enhanced growth, heat and cold resistance and other 

useful quality traits for forming good varieties of plants. The process of making new 

plant hybrids through protoplast fusion requires the removal of cell wall and cell fusion 

via electrofusion as the prime step (Grosser & Gmitter, 2011). The successful fused cells 

will have to be grown into calluses, plantlets and finally develop into a fully grown crop 
(Salamiah et al., 2000). This important fundamental approach uses genetic modification 

method and requires a few successful steps to efficiently transfer genes between 

protoplast cells, making it a higher chance of failure in transferring the targeted gene, 
moreover longer period is required for the regeneration of whole plant (Marcone et a/., 
2010; Guan et al., 2010) 

Genetic engineering applies the concept of preserving the genetic material of 
parent by only inserting minute genetic information for expressing the chosen 
characteristics (Richard, 2004). Restriction enzyme aids in the separation of 

purifiedDNA into fragments in order to isolate the candidate gene (Nicholl & 

Desmond, 2008; Alberts eta/., 2002) or by means of polymerase chain reaction 

7 



(PCR) to amplify the gene segment (Kaufman & Nixon, 1996) and extracted through 

gel electrophoresis. The isolated gene is then ligated into a plasmid and inserted into 

a and inserted into a bacterium. Agrobacterium tumefaciens, a plant-pathogenic 

bacterium is the widely used bacteria for the insertion of desired traits in genetic 
breeding. It is well known for its ability to transfer a part of its genetic material into 

many plant species (Gelvin, 2003). Despite of the high reliability of the 

commercialization of genetically modified tomato has been completely stopped in the 

20th century for some countries due to complications that occurred and expensive 

patent system related to transgenic plants and consumers concern in various aspects 

especially in regards to ethical issue (Bai &Lindhout, 2007). Moreover, the insertion of 

single transgene does not able to provide full benefits for important traits with 

commercial value due to the complexity of mostly commercially important traits 

(Strauss, 2003). 

2.3 EMS as Chemical Mutagen 

Several approaches has been developed and introduced with the purpose of inducing 

genetic variation among crops for the past century (Smartt & Simmonds, 1995). 

Initially the development of mutant organisms was conducted by H. J. Muller through 

the exposure of X-ray on Drosophila, increasing its degree of mutation to 15000% 

(Muller, 1927). Mutagenesis has tremendously reducedthe time needed for natural 
mutation to occur for it requires no any external source that could induce any form of 

genetic mutation. The development of mutant plants can facilitate the study of the 

unknown gene functions (Reddaiahet al., 2014). Various ways has been successfully 
develop to induce mutation within plant's genome namely exposure to Ultra Violet 
(UV) rays, Ethidium Bromide (EtBr), fast neutron, transposons, T-DNA and Ethyl 

Methanesulfonate (EMS). 

Chemical mutagent such as EMS was applied in this research asit is a reliable 
mutagenesis inducer and provides high density of mutant population 
(Henikoff&Comai, 2006). It is proven that EMS caused point mutation with a few 
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