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ABSTRACT 

This research exemplifies a framework of mathematical thinking as proposed by 
Chin & Tall (2012) and Chin (2013) by showing the empirical evidence related to 
how a group of participants made sense of complex numbers. Humans make sense 
of new mathematics context by relating it to personal conceptions and experiences. 
This might not be a smooth process as it may involve conceptions that work in an 
old context but do not work in a new context. The researcher has chosen the topic 
of complex numbers as it is an extension of the real numbers system and it will be 
beneficial to explore how the conceptions of participants in the real numbers 
system affect their sense making of complex numbers. This study involves thirty 
undergraduate students majoring in mathematics from the faculty of Science and 
Natural Resources, Universiti Malaysia Sabah. After analysing the responses of the 
participants for the given mathematical task, a follow-up interview was conducted 
with five participants. The interview session was recorded and transcript were 
made of the interviews. The transcripts were then analysed. The results show that 
these participants have supportive and problematic conceptions in making sense of 
complex numbers and these conceptions are originated from the context of real 
numbers. 
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ABSTRAK 

MEMAHAMI NOMBOR KOMPLEKS 

Kajian ini bertujuan untuk mengesahkan kerangka pemikiran matematik yang 

dicadangkan oleh Chin & Tall (2012) dan Chin (2013) dengan menunjukkan bukti 

empirikal tentang bagaimana sekumpulan responden membina pengertian (make 

sense) tentang nombor kompleks. Manusia membina pengertian tentang suatu 

konteks matematik yang baharu dengan menghubungkaitkan konteks tersebut 

dengan pengetahuan konsep dan pengalaman peribadi mereka. Jika suatu konsep 

boleh digunakan dalam konteks yang lama tetapi tidak boleh diguna-pakai dalam 

konteks yang baharu, perkara ini akan menyebabkan proses pembelajaran 

terhalang. Pengkaji telah memilih topik nombor kompleks kerana ia merupakan 

lanjutan daripada sistem nombor nyata dan pengkaji berpendapat bahawa kajian 

ini akan menghasilkan suatu ilmu pengetahuan yang bermanfaat apabila 

penerokaan tentang bagaimana pengertian konsep responden di dalam sistem 

nombor nyata mempengaruhi pengertian konsep mereka di dalam sistem nombor 

kompleks. Kajian ini melibatkan tiga puluh orang pelajar yang mengikuti kursus 

Matematik daripada fakulti Sains dan Sumber Alam, Universiti Malaysia Sabah. 

Selepas analisis dilakukan bagi kertas kaji selidik yang telah dilengkapkan oleh 

responden, satu sesi temu bual dijalankan bersama lima responden terpilih. Setiap 

sesi temu bual tersebut telah direkodkan dan satu transkrip telah dibuat Transkrip 

itu kemudiannya dianalisis. Dapatan kajian menunjukkan bahawa responden

responden ini mempunyai pelbagai pengertian konsep yang berasal daripada 

konteks nombor nyata yang menyokong (supportive) atau menjadi halangan 

(problematic) dalam proses membina pengertian konsep dalam konteks nombor 

kompleks. 
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CHAPTER 1 

INTRODUCTION 

1.1 Study Background 

The imaginary number, i took centuries of time to convince mathematician to 

accept it as a part of the number system. Despite the word imaginary in its name, 
the imaginary numbers are not imaginary at all. Imaginary numbers were invented 
in an effort to evaluate negative square roots, a mathematical operation, that 
before the existence of imaginary number was deemed impossible to solve. Thus, 
the argument to justify the existence of imaginary numbers is similar to the 

argument for the existence of integers, rational numbers, and real numbers. 
Leonhard Euler, an eighteenth-century Swiss mathematician, known for his prolific 

writing in mathematics and his standardization of modern mathematics notation, 
chose the symbol i to stand for the square root of -1 (Merzbach & Boyer, 2011, 

p. 408). Since then, the imaginary number set has included i and any real numbers 
times i. 

It is interesting and important to observe the behavior of i when it is 

multiplied by itself. To begin, i multiplied by itself is i2. By the definition of 
imaginary number, we know that i2 =-1. To continue this line of reasoning, 
i3 =-i. Similarly, i4=1 (Hom, 2014). Continuing, we will find that i5=1, and 
this is where the pattern begins again (i, - 1, - i, 1). Incredibly, by using 
imaginary numbers, it is possible to solve many equations that were deemed 
impossible to solve for centuries. 



After the imaginary number was created, subsequently the complex 

numbers which contain both real part and imaginary part was developed. The 

complex numbers are introduced primarily in order to extend the notion of roots of 
all quadratic equations (Chaves, 2014). Thus, the real numbers and imaginary 

number are subset of the complex numbers. Complex numbers are numbers in the 
form of a+bi, where a is the real part and b is the imaginary part. The real 

numbers, R are the complex numbers in the form of a+Oi, in which the imaginary 

part is equal to zero whereby the imaginary number, i is a complex number in the 
form of 0+bi where the real part as opposed to the real numbers is equal to zero 
(Serdarushich, 2019). 

DIAGRAM 1: Set Representation of Number Systems 

The rule and conception of number system is usually applicable when used in a 
broader context, for example (refer to Diagram 1), Natural numbers, N is a subset 
of rational numbers, Q. The conception in natural numbers still works in the rational 
numbers (e. g. inequality). This, however, is not the case when we move from real 
numbers to the complex numbers. There are some rules that do not apply in 
complex numbers and this will conflict with the learners' existing knowledge. This 
study aims to discuss on this issue. The work by Chin and Tall (2012) which 
proposed the idea of supportive and problematic conception in making sense of 
trigonometry has inspired and gives a clear framework for the researcher to study 
complex numbers and determine the supportive and problematic conception 
involved in the process of making sense of it. 
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The learning content in Malaysian Curriculum is arranged from basic to a 

more advanced knowledge. Thus, learning Mathematics requires individuals to 
learn the basic concept first before they advance to a more sophisticated 
Mathematics topic. This is because the learning process occurs by connecting links 
between any related experiences in our mind, and the learners build experiences 
based on the things they have met-before (Lima & Tall, 2008). Met-before is 
defined as a mental construct that an individual uses at a given time based on what 
they have met-before (Tall 2004b). In this research, The researcher focus on the 

preconception of complex numbers and aims to show the close relationship that 

exists between met-before and preconception. Preconception is an important 

element in learning Mathematics because learners build their understanding by 

trying to make sense of what they have learnt. Preconception can also be seen as 
the formal or informal form of conception that individuals have in their minds. 
Vinner and Tall (1981) state that, we gather formal form of preconception based on 
what we have learnt in the classroom and it usually has a formal name, while the 

informal form of preconception may just be a mental image based on daily life 

experience. 

The researcher will classify and divide preconception into two: supportive 

conception and problematic conception as suggested by Chin and Tall (2012). 

Supportive conception helps the learners when they are in the process of learning 

new things, while the problematic conception will interfere and impede the learning 

process. Further in this chapter, the researcher will discuss about the problem 

statement, research objectives, research questions, significance of the study, 
limitation of the study, operational definition and the summary of this chapter. 

1.2 Problem Statement 

The teaching and learning process of Mathematics has always been a challenge, 
both to the instructor and learners. This is due to the fact that both individuals 
have gone through a different learning experience. Vinner and Tall (1981) 

introduce the terms concept image to describe the total cognitive structure that is 

associated with the concept. They argue that a complex cognitive structure exists in 
the mind of every individual, thus, yielding a variety of personal mental images 

when a concept is evoked. In the learning of Mathematics, the mental images that 
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exist in every individual can also be classified as a preconception which supposedly 

aid or support the learning process, thus, making it easier for the learner to 

understand a new concept. This might not be the case for all individuals. They 

may also have mental images that prevent them from understanding a concept, 
because it conflicted with another mental images (Vinner & Tall, 1981). This is what 
Chin and Tall (2012) classified as the problematic conception because it impedes 

the learning process. 

Focusing on the supportive conception and problematic conception allows 

us to look at the misconception from a different angle. The term misconception is 

often used to point out a wrong conception that is applied in solving a 

mathematical problem. There is a wide usage of the term misconception in several 

studies by other researchers, and to name one of it is a study related to 
Mathematics by Bakar and Tall (1992c). They used the term misconception to 
describe the mistakes of their respondents. Danenhower (2000) also mentioned 

misconception in his study about teaching and learning complex numbers in two 
British Columbia universities. Moreover, Nordlander and Nordlander (2012) also 
applied the term misconception in their study about the concept image of complex 

numbers. 

Previous researchers labeled conceptions that are wrongly applied in a 
certain context as misconception. By doing this and continue using the term 

misconception without conducting further investigation about the cause that 

triggers the "said" misconception, we are actually limiting our view of the bigger 

issues. The concept itself may not be wrong at all but I believe that there is a high 

possibility that the concept is just been used in the wrong context which in the end 

producing an incorrect response for certain mathematical problems. Therefore, by 

conducting this study, I hope to identify the source of the supportive conception, 
the problematic conception and how the problematic conceptions affect the sense 

making of complex numbers. I believe that if the source of the supportive 
conception and problematic conception that exist as a mental image of a learner 

can be traced, then, it will definitely aid the process of making a better teaching 

strategy for complex numbers and in the long run will promote better 

understanding of complex numbers among learners. 
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1.3 Research Objectives 

The objective of this study is to explore: 
1. The supportive conception in the sense making of Complex numbers. 
2. The problematic conception in the sense making of Complex numbers. 
3. The effect of problematic conception in the process of sense making of 

Complex numbers. 

4. The evoked concept image of complex numbers. 

1.4 Research Questions 

This study is conducted to answer the questions below: 

1. What are the supportive conceptions in the sense making of Complex 

numbers? 
2. What are the problematic conceptions in the sense making of Complex 

numbers? 
3. How problematic conceptions affect the sense making process of Complex 

numbers? 
4. What is the evoked concept image of complex numbers? 

1.5 Significance of the Study 

The Malaysian curriculum developers will benefit from this study as the current 

system only focuses on supportive conception. It overlooks certain issues that occur 

when a concept is applied across the context. For example, the conception of 
triangle in Euclidean geometry impedes the generalization of triangle in the 
Cartesian plane because the sides and angles, which previously had specific 

properties as unsigned quantities, can now be in any size, positive or negative 
(Chin & Tall 2012). Such knowledge can be used to construct a method to counter 
the effect of the problematic conception in the process of learning. The analysis of 
students' thinking is seen as a resource that can help teachers make informed 
decisions in their classrooms and improve their practice. Such a listening orientation 
towards teaching promotes a learning environment conducive to and respectful of 
students' own sense making and intellectual autonomy (Davis, 1996; Kamii, 1989). 
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The researcher hopes that this study will be a platform to inform the 

curriculum developers that a curriculum can be built based on problematic 

conception and method to counter problematic conception can be developed in the 
learning of Mathematics. Makgakga (2014) states that it is imperative for teachers 

to teach Mathematics using learners' errors and misconceptions as this will guide 
them on what learners grapple with. One of the ways to implement this idea in our 

education system is to create or devise a new course that emphasizes on the 

problematic conception for the prospective teachers so that they will be able to 

guide the learners. 

1.6 Limitations of Study 

The limitations of this study are: 

1. The supportive and problematic conceptions are limited only to the topic of 
Complex numbers. 

2. This study is classified as an empirical study which conducted in Universiti 
Malaysia Sabah. The informants are thirty undergraduates with complex 
numbers background who enroll in Mathematics with Economics Course. 

3. The outcome of this study cannot be used to generalize other population 

and this study is bounded to the limitation stated above. 

1.7 Operational Definition 

The operational definitions used in this study are: 

1. Met Before 

A current structure resulting from earlier experiences. It refers not to the 

actual experience itself, but to the trace that it leaves in the mind that 

affects our current thinking. (Tall 2004a). 

2. Mental Pictures 

Mental picture is defined as the met before that relates to the thing that we 
discussed (Vinner & Tall 1981). 

6 



3. Concept Image 

Total cognitive structure that is associated with the concept which includes 

all the mental pictures and associated properties and processes (Vinner & 

Tall 1981). 

4. Supportive Conception 

The conception that support learning process and generalization in a new 

context (Chin & Tall 2012). 

S. Problematic Conception 

The conception that impede learning process and generalization. (Chin & 

Tall 2012). 

6. Evoked Concept Image 

Portion of the concept images that are activated at a particular time (Vinner 

& Tall 1981). 

7. Complex Numbers 
Complex numbers is a numbers in the form of a+ bi, where a= real part 

and b= imaginary part. a, bEllB 

1.8 Summary 

This chapter discussed the introduction for this research such as the study 
background, the problem statement, the research objectives, the research 

questions, the significance of the study, the limitation of the study, the operational 
definition and the summary of chapter 1. According to the literature reviews, the 

preconception from the real numbers context will affect the process of sense 

making of complex numbers especially the concept of ordering of numbers in the 

context of real numbers. Tirosh and Almog (1989), in their study, it shows that 

95% of the students agreed that the following inequality i<4+i is true, where i 

is an imaginary number. The students have explained that when a positive number 

is added to a number, it makes the number larger, so they conclude i<4+i. 

Danenhower (2000), in his study also portrays resemblance to the study by Tirosh 

and Almog, that the students have problem understanding that the ordering 
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relation in real numbers does not extend to complex numbers. This is one of the 

area that the researcher hopes to find a similar result as the previous researchers 

did. Finding literatures regarding the complex numbers prove to be a challenging 

task, and not to add that the same can be said about finding past studies that focus 

on the progression of conception from real numbers to complex numbers. This 

situation motivates the researcher to do a research on the topic of complex 

numbers focusing on the conceptions involved in both real and complex numbers 

contexts. The researcher is interested to explore conceptions that are extendable 

from real numbers context to the complex numbers context as well as the 

conceptions that are not. To execute this research, the researcher uses the 

framework of mathematical thinking by Chin and Tall (2012) which has a different 

viewing angle and focus more on the source of the preconception of the informant 

and classify it as either supportive or problematic conceptions. The researcher 

refuses to dismiss such mistake by the informants in their process of solving and 

reasoning a mathematical related problem using the wrong concept as a mere 

"misconception". I believe that there are more stories to be told behind this so 

called "misconception", thus leading me to choose this framework for my research. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Introduction 

This study is conducted to determine the supportive conception, problematic 

conception and how problematic conception affects the sense making of complex 

number by the learners. Learners are exposed to the knowledge of number 

systems throughout their study period. In Malaysia, learners learn the real number 

prior to complex number from primary school until they complete their secondary 

schooling. After completing the five-year secondary schooling, they will learn about 

complex number in their pre-university level. Imagine trying to find a solution of 

x+6=4 but only being able to look for a solution in the set of Natural numbers 

(number system with only positive whole number), which is impossible. However, if 

we expand our domain to integer (number system containing both positive and 

negative whole number), -2 provides a solution. Similarly, it is impossible to find a 

solution to 2x =7 when working only in the domain of integer, but we can expand 

our domain to the set of rational number (number system that contains integer and 

number in the form of fractions), and thus we have 3.5 or as a solution. Now 

suppose you want to find a solution to x2 =2 using only rational numbers. This, 

too, is impossible. However, the set of rational number can be expanded to create 

still another new set of numbers-the real numbers. Clearly, there is one solution to 

the equation x2 =2 because by definition, the square root of any number 

multiplied by itself equals to the number. Another solution is when the negative 

square root of a number multiplied by itself equals the number ("'-XxNf-x =-X 



In tertiary education, for instance in college and university, the real number system 

will be extended to complex number system. This is where the researcher expects 
to find the pre-conception that either support or impede the learning of complex 

number. 

The number system itself has different context like the real number, R and 
the complex number, C. Following the work of Chin and Tall (2012), the researcher 

aims to investigate the pre-conception involved in the learning of complex 

numbers. This chapter will present the history of complex number, the 

chronological development of conceptions, past research studies, conceptual 
framework and the summary of the chapter. 

2.2 History of Complex Number 

The first introduction of imaginary numbers occurs in connection with the solution 

of cubic equations. During the 16th century, Italian mathematicians of the famous 

University of Bologna discovered that sometimes correct answers could be obtained 

more expeditiously if they assumed: a symbol i, iZ = -1 and in other respect 
treated i as an ordinary number (Diamond, 1957). 

Euler (1707 - 1783) achieved brilliant results by the use of complex numbers but 

the fundamental principle of their logic was either not deemed important or was 

completely misunderstood. 

Wessel as cited in Diamond (1957) a Danish mathematicians probably furnished 

the first logical foundation for complex numbers but his work received very little of 

attention. 

Gauss (1777 - 1855) was the first to use the phrase complex number, the symbol i, 
for imaginary unit and introduced mathematicians to the true theory of these 

numbers. Gauss' work was followed by Cauchy and Riemann (1826 - 1866). 

2.3 Conceptions 

The study of conception has been conducted decades ago and it is still developing 

and generating a new way on how to look at the term "conception". Vinner and Tall 
(1981) introduce the terms concept image and concept definitions. Concept image 
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represents the total cognitive structure that relates to the concept, while, concept 

definition is used to designate the formal mathematical definition that explains the 

concept. We can surmise that, concept definition should be identical for everybody 

and does not change from one individual to another, whereas the concept image 

differs between individuals and is reflecting personal reconstructions of a definition 

which generates individual perceptions. Sfard (1991) proposes a similar idea by 

referring it as conception. The whole cluster of internal representations and 

associations evoked by the concept - the concept's counterpart in the internal, 

subjective "universe of human knowing". The personal mathematical conception 

has a subjective nature which cause the difference in the performance of every 

learner. 

Tall (2004) introduces the term met-before to represent the current 

structure resulting from a past experience. Later, Lima and Tall (2008) suggest that 

the previous experience which is known as met-before will have an effect on new 

context. Met-before highlights the importance of previous experience in shaping 

mathematical conception. There might be supportive met-before and problematic 

met-before incorporated in conceptions. A supportive met before is defined as a 
kind of experience which supports the development of coherent knowledge 

structure in a new situation. In contrast, a problematic met-before impedes 

generalization in new situation. It should be noted that supportive or problematic 

met-before can be incorporated into new conceptions, for instance, the met-before 

of `take-away always gives less' in natural number is regarded as a supportive met- 

before when working in positive integers. On the other hand, this met-before will 

become problematic when working in the context of negative integers. 

Chin and Tall (2012) later suggest that these met-before can be considered 

as supportive conception and problematic conception. Supportive conception will 

help to generalize existing knowledge to a new context while problematic 

conception can impede progress because they become an obstacle or conflict when 

the existing knowledge does not work in the new context. Both supportive 

conception and problematic conception are closely linked on how a person is 

making sense of mathematics. It also opens up new perspective in viewing 

misconceptions. They also added, rather than recognizing these difficulties as 
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