Coefficient estimate for a subclass of close-to-convex functions with respect to symmetric points

Abstract

Let $S_s^*(A, B)$ denote the class of functions f which are analytic in an open unit disc $\mathcal{D} = \{z : |z| < 1\}$ and satisfying the condition $\frac{2zf'(z)}{f(z)-f(-z)} \prec \frac{1+Az}{1+Bz}, -1 \leq B < A \leq 1, z \in \mathcal{D}$. In this paper, we consider the class $K_s(A, B)$ consisting of analytic functions f and satisfying $\frac{(zf'(z))'}{(g(z)-g(-z))'} \prec \frac{1+Az}{1+Bz}, g \in S_s^*(A, B), -1 \leq B < A \leq 1, z \in \mathcal{D}$. The aim of paper is to determine coefficient estimate for the class $K_s(A, B)$.

Mathematics Subject Classification: 30C45