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ABSTRACT 

Strength and performance of reinforced-concrete depend on the good bond strength, 
between high yield steel bars and concrete, and the effects of corrosion on high yield 
steel bars in a range of 12 mm, 16 mm and 25 mm diameter reinforced the concrete 
for its bond strength and are debated endlessly on-site. To investigate the effects of 
corrosion on the bond strength between the high yield steel bars and concrete, 36 
specimens of tensile test, 72 specimens of pullout test and 12 specimens of flexural 
test conducted. Descriptions of specimen data taken an average of three reading for 
tensile test and pullout test except for flexural test, uncorroded as control specimen 
and corroded as a final specimen. High yield steel bars ranges from 12 mm, 16 mm 
and 25 mm diameter 600 mm long used for tensile test, high yield steel bars ranges 
12 mm, 16 mm and 25 mm diameter 800 mm long used as reinforcement bars and 
embedded vertically in a concrete mold 150 mm x 150 mm x 150 mm concrete grade 
20 and concrete grade 30 for pullout test and 1500 mm x 150 mm x 200 mm beam 

concrete grade 20 for the flexural test. Results show, weight of high yield steel bars 

reduced by 0.13%, 0.07% and 0.02%, area reduced by 0.13%, 0.07% and 0.02% 

on 8 months and 12 months reduced by 0.13%, 0.04%, and 0.03%, the area reduced 
by 0.12%, 0.04% and 0.03% for high yield steel bars 12 mm, 16 mm and 25 mm 
diameter for the tensile test. The weight of high yield steel bars reduced by 0.14%, 
0.05%, and 0.02%, area reduced by 0.13%, 0.06%, and 0.02% on 8 months and 
12 months for high yield steel bars 12 mm, 16 mm and 25 mm diameter for pullout 
test concrete grade 20 and concrete 30. Weight of high yield steel bars reduced by 
0.08%, 0.05% and 0.01%, area reduced by 0.08%, 0.04% and 0.01% for 8 months 
and 12 months for the high yield steel bars 12 mm, 16 mm and 25 mm diameter for 
flexural test concrete grade 20. Weight and area of high yield steel bar 12 mm, 16 
mm and 25 mm diameter unchanged for the 4 months for pullout test concrete grade 
20 and concrete grade 30, and flexural test concrete grade 20. In sum, the researcher 
discovered the uncleaned corrosion on high yield steel bars surface influences the 
bond strength on 4 months of corrosion and the cleaned corrosion on the high yield 
steel bars surface did not influence the bond strength on the 8 months and 12 months 
of corrosion for pullout test and flexural test conducted. 
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ABSTRAK 
KEKUA TAN IKA TAN BEST WAJA BERKARA T DI TANAM 

DALAM KEKUA TAN KONKRIT BIASA 

Kekuatan dan prestasi konkrit bertetu/ang bergantung kepada kekuatan ikatan yang 
sempurna antara besi waja dan konkrit. Kesan karat pada besi waja bersaiz 12 mm, 
16 mm, 25 mm untuk tetulang pada konkrit selalu menjadi perbahasan ditapak bina. 
Penyiasatan terhadap kesan karat pada kekuatan besi waja dan konkrit bertetulang, 
sebanyak 36 spesimen untuk ujian regangan, 72 spesimen untuk ujian tarik keluar 
dan 12 spesimen untuk ujian /enturan telah di/aksanakan. Keterangan data daripada 
spesimen diambil berdasarkan purata daripada tiga bacaan untuk ujian regangan dan 

ujian tarik keluar kecua/i ujian lenturan Besi waja tidak berkarat digunakan sebagai 
spesimen rujukan ujian, manakala besi waja berkarat diuji untuk dapatan perbezaan 
kekuatan ikatan antara besi waja dan konkrit untuk diperbandingkan. Besi waja salz 
12 mm, 16 mm dan 25 mm 600 mm panjang digunakan untuk ujian regangan. Besi 
waja salz 12 mm, 16 mm dan 25 mm 800 mm panjang digunakan sebagai tetulang 
konknt dengan kaedah diletak menegak dalam acuan 150 mm x 150 mm x 150 mm 
berkonkritkan gred 20 dan 30 untuk ujian tarik ke/uar. Besi waja salz 12 mm, 16 mm 
dan 25 mm 1400 mm panjang digunakan sebagai tetu/ang konkrit gelagar 1500 mm 
x 150 mm x 200 mm gred 20 di dalam ujian lenturan. Keputusan ujian menunjukkan, 
berat besi waja menurun 0.13%, 0.07% dan 0.02%, ukur/i/it menurun 0.13% 0.07% 
dan 0.02% pada 8 bulan dan pada 12 bulan berat besi waja menurun 0.13%, 0.04 % 
dan 0.03%, ukur/flit menurun 0.12%, 0.04% dan 0.03% pada besi waja salz 12 mm, 
16 mm and 25 mm untuk ujian regangan. Pada 8 bu/an dan 12 bu/an berat besi waja 
menurun 0.14%, 0.05% dan 0.02%, ukurlilit menurun 0.13%, 0.06% dan 0.02 % 
pada besi waja sa/z 12 mm, 16 mm and 25 mm untuk ujian tank ke/uar pada konkrit 
gred 20 dan konkrit gred 30. Pada 8 bulan dan 12 bulan berat besi waja menurun 
0.08% 0.05% dan 0.01 %, ukurlilit menurun 0.08% 0.04% dan 0.01 % pada besi 
waja salz 12 mm, 16 mm dan 25 mm untuk ujian lenturan konkrit gred 20. Pada 4 
bulan, berat dan ukurlilit besi waja bersaiz 12 mm, 16 mm dan 25 mm tidak berubah, 
digunakan di da/am ujian tarik keluar konkntgred 20 dan konkrit gred 30, dan ujian 
lenturan konkrit gred 20. Kajian menunjukkan karatan yang tidak dibersihkan pada 
permukaan besi waja mempengaruhi kekuatan di da/am ikatan antara besi waja dan 
konkrit pada 4 bulan tetapi tidak mempengaruhi kekuatan da/am ikatan antara besi 
waja dan konkrit pada 8 bulan dan 12 bu/an pengkaratan setelah karatan dibersihkan 
pada permukaan besi waja. 
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CHAPTER 1 

INTRODUCTION 

1.1 Introduction 

One of the most significant currents of discussions is regarding the corrosion of the 

high yield steel bars. Corrosion of high yield steel bars are commons problem faced 

by contractors and constructors, and becoming increasingly difficult and sometimes 

been ignored in practices of keeping the material in the construction site. High yield 

steel bars are common material characterized by iron and an important component 

that reinforces the concrete for better and stronger bond strength. The corrosion of 

the high yield steel bars becomes an issue in a structural buildings industry for past 

developments. Corrosion of high yield steel bars has been thoughts of the factors in 

giving bad bond strength to reinforces the concrete, and which is most widely used 

in a constructions development industry. Corrosion of high yield steel bars occurs 
because it is placed on the ground and expose to weathers for the long periods of 

time, presented in Figure 1.1 and Figure 1.2 respectively. 



Figure 1.1: Corroded High Yield Steel Bars laid on the Ground 

Figure 1.2: Corroded Reinforcement 
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High yield steel bars, one of the most common and useful materials used to 

reinforces the concrete in the structural constructions, and it has one major flaw, it 

corrodes when exposed to oxygen and water. High yield steel bars are most highly 

manufactured by man-made materials and its subject to corrosion as it is was made 

almost entirely of iron in its production respectively. 

Mechanism of the corrosion occurs when iron (Fe) surface undergoes simple 

changes as following: 

a. First, (Fe -> Fen+ +n electrons) iron atoms lose some of the electrons and 

become a positively charged ion, and allow it to bond with another group of 

the negatively charged atom. The negatively charged atoms combined with 

electrons and the specimens (high yield steel bars) produce the first rusting 

reaction (Malaysia Steel Industry). 

b. Second, the reaction involves oxygen (02) and water (H20) or (02 + 2H20 + 

4e- -' 40H-) to give a variant of iron oxide to rusted the wet iron (Malaysian 

Steel Industry). 

2Fe + 02 + 2H20 --º 2Fe(OH)2 

Iron (High Yield Steel Bars) + Oxygen + Water -º Iron Hydroxide dissolved in it. 

Oxygen dissolves in water and reacts with Iron Hydroxide caused Corrode. 

4Fe(OH)2 + 02 -º 2H20 + 2Fe2O3H2O 

Iron Hydroxide + Oxygen --+ Water + Hydrated Iron Oxide (Brown color corrode). 

(Malaysian Steel Industry). 
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In this study, high yield steel bars reinforced concrete cubes 150 mm X 150 

mm X 150 mm dependent on bar's sizes, concrete covers, and position of high yield 

steel bars. Its mechanism allowed the anchorage positions and composites actioned 

which reacts when concrete cube pulled out from high yield steel bar, which causes 

slips and cracks during the process to separates both of the specimens. High yield 

steel bars reinforce the concrete beams 1500 mm X 150 mm X 200 mm dependent 

on bar's sizes, concrete covers, spacing and positions between high yield steel bars 

and stirrups. Its mechanism allowed the anchorages of the horizontal, parallel and 

vertical positions of high yield steel bars reinforced concrete for its bond strength, 

and it also allowed composites action reacts when the loads applied to the concrete 

beam during flexing respectively. 

1.2 Problem Statement 

It has been discussed regarding corrosion of the high yield steel bars by contractors 

and constructors that confused and uncertainty, how corrosion can affects the bond 

strength between corroded high yield steel bars and concrete. However, there are 

little attentions has been paid to prevents corrosion for the unstable practicals ways 

of keeping high yield steel bars. In Sandakan, most of high yield steel bars that are 

used in the construction abandoned for months and hence, the high yield steel bars 

exposures to weathers pore to the corrosion and moreover, contractors also tend to 

purchases corroded steel bars without knowing the actuals strength and therefore, 

the researcher focuses on the tensile strength and the bond strength respectively. 
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The critical of the study is to investigate and reveal the finding on high yield 

steel bars strength on its tensile strength and bond strength between the high yield 

steel bars and concrete for pullout strength and flexural strength of uncorroded and 

corroded high yield steel bars which corrosion is uncleaned and cleaned on surfaces 

of high yield steel bars might be. The limitation of this production for the specimens 

are all high yield steel bars are new and come in a bundle of each size ranges from 

8 mm 0,12 mm 0,16 mm 0 and 25 mm 0. The brand new high yield steel bars cut 

600 mm length of 12 mm 0,16 mm 0 and 25 mm 0,800 mm length of 12 mm 0, 

16 mm 0 and 25 mm 0,1400 mm length of 12 mm 0,16 mm 0 and 25 mm 0 and 

500 mm length of 8 mm 0 mild steel for stirrups of 100 mm X 150 mm X 100 mm X 

150 mm which tie with the 1400 mm long high yield steel bars then kept above the 

ground level of 76 cm under the shed for corrosion process respectively. 

1.3 Objectives 

The aimed of this study is to investigate the tensile strength and the bond strength 

of the high yield steel bars that subjected to different periods of corrosion. In order 

to achieve the aims the following objectives are set: 

Objective 1: To investigates high yield steel bars that exposed to weathers 

for 4 months, 8 months and 12 months of corrosion for the tensile strength. 

Objective 2: To investigates high yield steel bars that exposed to weathers 

for 4 months, 8 months and 12 months corrosion, high yield steel bars embedded 

vertically in concrete cubes 150 mm X 150 mm X 150 mm for the pullout test. 
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