OIL RECOVERY PERFORMANCE IN THE CO-INJECTION FLOODING OF CO₂ WITH NON-POLAR CHEMICAL MODIFIERS USING MICROMODEL SYSTEM

NUR HANISAH BINTI MOHD FUAT

PERPUSTAKAAN UNIVERSITI MALAYSIA SABAH

FACULTY OF ENGINEERING

UNIVERSITI MALAYSIA SABAH

2019

OIL RECOVERY PERFORMANCE IN THE CO-INJECTION FLOODING OF CO₂ WITH NON-POLAR CHEMICAL MODIFIERS USING MICROMODEL SYSTEM

NUR HANISAH BINTI MOHD FUAT

PERPUETIMAAN UNIVERSITI MALAYSIA SABAH

THESIS SUBMITTED IN FULFILLMENT FOR THE DEGREE OF MASTER OF ENGINEERING

FACULTY OF ENGINEERING

UNIVERSITI MALAYSIA SABAH

2019

UNIVERSITI MALAYSIA SABAH

BORANG PENGESAHAN TESIS

JUDUL: OIL RECOVERY PERFORMANCE IN THE CO-INJECTION FLOODING OF CO2 WITH NON-POLAR CHEMICAL MODIFIERS USING MICROMODEL SYSTEM

IJAZAH: SARJANA KEJURUTERAAN (KEJURUTERAAN KIMIA)

Saya **NUR HANISAH BINTI MOHD FUAT**, sesi **2016-2019**, mengaku membenarkan tesis Sarjana ini disimpan di Perpustakaan Universiti Malaysia Sabah dengan syarat-syarat kegunaan seperti berikut:

- 1. Tesis ini adalah hak milik Universiti Malaysia Sabah.
- 2. Perpustakaan Universiti Malaysia Sabah dibenarkan membuat salinan untuk tujuan pengajian sahaja.
- 3. Perpustakaan dibenarkan membuat salinan tesisi ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. Sila tandakan (/):

(Mengandungi maklumat yang berdarjah keselamatan atau kepengtingan, Malaysia seperti yang termaktub di dalam AKTA RAHSIA 1972) UNIVERSITI MALAYSIA SABAH

FRPUSTAKAAN

TERHAD

SULIT

(Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)

TIDAK TERHAD

NUR HANISAH BINTI MOHD FUAT MK1611012T

Tarikh: 19 JUNE 2019

NORAZUSUNE MAND. COULANLO J PUSTAKAWAN **UNIVERSITI MALAYSIA SABAH** (Tanda Tangan Pustakawan) Prof. Madya Dr. Abu Zahrim 25/6/20 Yaser Penyelia DR.ABU ZAHRIM YASER Deputy Dean (Research & Innovatio Faculty of Engineering Universiti Malaysia Sabah UNI VERSITI MALAY

DECLARATION

I hereby declare that the materials in this thesis are original except for quotations, excerpts, summaries and references, which have been duly acknowledged

Anid

13th May 2019

Nur Hanisah binti Mohd Fuat

MK1611012T

CERTIFICATION

NAME		:	NUR HANISAH BINTI MOHD FUAT
MATRIC NO.		:	MK1611012T
TITLE		:	OIL RECOVERY PERFORMANCE IN THE CO-INJECTION FLOODING OF CO ₂ WITH NON-POLAR CHEMICAL MODIFIERS USING MICROMODEL SYSTEM
DEGREE			MASTER OF ENGINEERING (CHEMICAL ENGINEERING)
VIVA DATE	đ	:	26 MARCH 2019

CERTIFIED BY

SUPERVISOR

Associate Professor Dr. Abu Zahrim Yaser

Aser Signature

DR.ABU ZAHRIM YASER Deputy Dean (Research & Innovation) Faculty of Engineering Universiti Malaysia Sabah

ACKNOWLEDGEMENT

"In the name of Allah, the Most Gracious, the Most Merciful"

I take this opportunity to express my heartfelt appreciation to the people who have contributed directly and indirectly to this thesis and stood by my side throughout this amazing journey of my master study.

First and foremost, I would like to thank my supervisor, Associate Professor Dr. Abu Zahrim Yaser, for his guidance and encouragement throughout the duration of the research. I appreciate all of his contribution of time, ideas and patience together with trustful guidance to make my master study experience a productive and stimulating experience.

I also would like to thank my previous main supervisor, Professor Dr. Pogaku Ravindra, who had to leave UMS due to circumstances in the middle of my study, and has been supervising me as my co-supervisor since his resignation. I would like to thank him for his guidance, enlightening discussions and brainstorming of ideas. His deep insights and handful of knowledge on the research field helped me a lot especially during the difficult conceptual stages at the beginning of my study. I also appreciate his constant contact regarding the progress of the research and my study after he has left UMS.

My full gratitude and appreciation to the Dean, Professor Ir. Dr. Abdul Karim Mirasa, and all of the staff of Faculty of Engineering, UMS, especially Mr. Raysius Modi and Mrs. Noridah Abas, for extending facilities and their help in carrying out my research.

I also would like thank PETRONAS for providing crude oil for the research. My full gratitude to Mrs. Menaka Sivasangaralingam of PETRONAS Carigali (Sabah Operations) who have helped me a lot in the process of getting the supply of crude oil as well as her dedication in giving me feedbacks from the management of PETRONAS regarding the agreement and permission to obtain the crude oil for the research.

I dedicate this thesis to both of my parents, my father, Mohd Fuat, and my mother, Che Roseni, as without their love, care, motivation, constant prayer, emotional and financial support, the pursuit of my master study would not have been possible. Words cannot express the feelings I have for my siblings, my sister, Nur Hazirah and my brother, Muhammad Ridhuan, for all of their love and encouragement.

I also would like to thank my boyfriend, Mr. Muhammad Ridwan Munir, and my dear friends, Ms. Asiah Zulkifli, Farah Halim, Carla Gonzalez and Mr. Ifwat for their help and emotional support throughout the whole study.

Finally, I would like to thank UMS for providing financial support via research grant, UMSGreat0122-01/2017, for the use of my research.

Nur Hanisah binti Mohd Fuat 13th May 2019

ABSTRACT

This research work investigated the possibility for the significant influence of the addition of non-polar chemical modifiers with CO₂ on improving the extraction capability of CO₂ with crude oil, with regards to the solvents rule of 'like dissolves like' by using a micro-model system. Micromodel system allows oil recovery to be studied at the pore scale which determines the large scale flow patterns of oil reservoirs. Thus, by optimizing oil recovery at the pore scale, ultimate oil recovery can be achieved. Other than that, not all oil reservoirs in Malaysian waters are operating at miscible conditions. Thus, the research also investigated the performance of the co-injection of CO₂ and non-polar chemical modifiers at both immiscible conditions and miscible conditions. An economic analysis had also been conducted from the oil recovery data obtained from the experiments to evaluate the potential of the technology to be implemented in the Malaysian reservoirs. From the experiments conducted using micro-model system at immiscible conditions. it was found that extraction of crude oil improved with the addition of nonpolar chemical modifiers with the highest oil recovery achieved of 52.54% by co-injection of gaseous CO₂ and toluene, as compared to oil recovery of 27.73% by gaseous CO₂ alone after 20 Pore Volume (PV) of fluid injected. At miscible conditions, the extraction of crude oil also improved with the addition of non-polar chemical modifiers with the highest oil recovery, 71.87%, achieved by co-injection if CO₂ and toluene, as compared to oil recovery of 44.77% by injection of supercritical CO₂ alone after 20 Pore Volume (PV) of fluid injected. From the economic analysis conducted, it can be concluded that miscible process is more economically attractive with injection of supercritical CO₂ at miscible conditions producing profits of RM582.36, whereas its counterpart, gaseous CO₂ at immiscible conditions only produces profit of RM394.47, with the same amount of fluids injected, 16000 litres (L).

ABSTRAK

PRESTASI PEROLEHAN MINYAK MENTAH DALAM SUNTIKAN BERSAMA KARBON DIOKSIDA DENGAN PENGUBAH-SUAI KIMIA BUKAN`POLAR' DENGAN MENGGUNAKAN SISTEM MIKRO-MODEL

Keria penyelidikan ini menyiasat kebarangkalian pengaruh ketara penambahan pengubah-suai kimia bukan 'polar' dengan karbon dioksida dalam meningkatkan kebolehan pengekstrakan karbon dioksida dengan minyak mentah, dengan menggunakan peraturan pelarut 'sama melarutkan sama' dengan menggunakan sistem mikromodel. Sistem mikromodel membolehkan peningkatan perolehan minyak mentah dipelajari dalam skala liang yang menentukan corak aliran skala besar dalam telaga minyak. Dengan mengoptimakan peningkatan perolehan minyak mentah pada skala liang, peningkatan perolehan minyak mentah muktamad dapat dicapai. Selain itu, ia juga dapat diperhatikan bahawa tidak semua telaga minyak mentah dia perairan Malaysia beroperasi dalam keadaan terlarut campur. Oleh itu, penyelidikan ini juga menyiasat prestasi suntikan bersama karbon dioksida dengan pengubah-suai kimia bukan 'polar' dalam keadaan terlarut campur dan keadaan tidak terlarut campur. Daripada eksperimen yang dijalankan dengan sistem mikromodel, dalam keadaan tidak terlarut campur, ia dijumpai pengekstrakan minyak mentah meningkat dengan penambahan pengubah-suai kimia bukan 'polar' dengan perolehan minyak 52.54% dengan suntikan bersama karbon dioksida dan toluena, berbanding perolehan minyak 27.4% dengan suntikan karbon dioksida sahaja dalam fasa gas selepas 20 isi padu liang cecair disuntik. Dalam keadaan terlarut campur, pengekstrakan minyak mentah juga meningkat dengan penambahan pengubah-suai kimia bukan 'polar' dengan perolehan minyak tertinggi, 71.87%, dengan suntikan bersama karbon dioksida dan toluena. berbanding perolehan minyak 44.77% dengan suntikan karbon dioksida sahaja dalam fasa superkritikal selepas 20 isi padu liang cecair disuntik. Oleh itu, dapat disimpulkan bahawa suntikan bersama karbon dioksida dengan pengubah-suai kimia bukan 'polar' dapat meningkatkan perolehan minyak mentah dalam keadaan terlarut campur dan keadaan tidak terlarut campur dan sesuai untuk dilaksanakan di telaga minyak di Malaysia. Daripada analisa ekonomi yang dilakukan, proses dalam keadaan terlarut ialah paling menarik dari segi ekonomi dengan, ialah suntikan karbon dioksida superkritikal dalam keadaan terlarut dengan keuntungan RM582.36, manakala rakan proses yang sama, gas karbon dioksida dalam keadaan tidak terlarut hanya membuat keuntungan sebanyak RM394.47 dengan menggunakan jumlah bahan mentah yang sama, 16000 liter.

TABLE OF CONTENTS

				Page
TITLE				i
DECL	ARATIO	N		ii
CERTI	IFICATION	DN		iii
ACKN	OWLEDO	GEMENT		iv
ABST	RACT			v
ABST	RAK			VÌ
TABLE		NIENIS		VII
LISI	JF IADLI	EJ DFC		
LIST		TIONS		× vii
LIST (OF ABBR	EVIATION	S	xiii
LIST	OF SYMB	SOLS	-	xiv
LIST	OF APPE	NDICES		XV
CHAP	TER 1 :]	INTRODUC	TION	1
1.1	Researc	h Backgrour	nd	1
1.2	Problem	Statement		2
1.3	Researc	h Objectives	5	3
1.4	Novelty	of Research		3
1.5	Scope of	f Work		4
CHAP				5
2.1		ll Turner of C		5
	2.1.1	Crude Oil (Composition	כ ד
	2.1.2	Polarity of	Crude Oil	10
22	Carbon l	Dioxide		11
2.2	2.2.1	Physical Pl	nase of Carbon Dioxide	11
	2.2.2	Miscibility	of Carbon Dioxide	12
		2.2.2.1	Carbon Dioxide with Crude Oil	13
		2.2.2.2	Carbon Dioxide with Crude Oil and Non-Pola Chemical Modifiers	ar 18
2.3	Carbona	te Esters		19
2.4	Introduc	tion to Enha	anced Oil Recovery	20
	2.4.1	Types of C	Dil Recovery	20
	2.4.2	Enhanced	Oil Recovery	20
	2.4.3	Enhanced	Oil Recovery Technologies	22
		2.4.3.1	Gas Injection	22
		2.4.3.2	Chemical Injection	22
		2.4.3.3		23
		2.4.3.4	Others	23
2.5	Carbon [Dioxide Floo	ding for Enhanced Oil Recovery	23
	2.5.1	Methods of Recovery	of Carbon Dioxide Injection for Enhanced C	il 25
		2.5.1.1	Carbon Dioxide Flooding	25
		2.5.1.2	Carbon Dioxide EOR Huff and Puff Process	32
		2.5.1.3	Foam Assisted Carbon Dioxide EOR	37
		2514	Surfactant Assisted Carbon Dioxide FOP	2. 11
		2.3.1.1	vii Vii	UMS
		·	A BAM U	NIVERSI I MALAYSIA SABAH

		2.5.1.5	Polymer assisted Carbon Dioxide EOR	45
		2.5.1.6	Chemical Modifiers Assisted Carbon Dioxide EOR	48
		2.5.1.7	Carbon Dioxide Micro-Bubbles EOR	50
2.6	Utilizatio	n of Micro-m	nodels for Enhanced Oil Recovery	56
	2.6.1	Micro-mode	el studies for Enhanced Oil Recovery	58
		2.6.1.1	Carbon Dioxide Flooding	58
		2.6.1.2	Polymer Flooding	61
		2.6.1.3	Surfactant Flooding	62
		2.6.1.4	Polymeric Surfactant Flooding	62
		2.6.1.5	Post-Surfactant CO₂ Foam/Polymer-Enhanced Foam Flooding	63
		2.6.1.6	Alkaline Flooding	64
		2.6.1.7	Water Flooding	65
CHAP	FER 3 : M	IETHODOL	OGY	77
3.1	Brief Ove	erview		77
3.2	Materials	; 	and Announting Description	79
	3.2.1	Equipment		86
		3.2.1.1	Basic Working Principle of the Micro-Model System	86
		3.2.1.2	Micro-model Control System	88
		3.2.1.3	Glass Etched Core Sample	90
		3.2.1.4	Digital Camera Used for Image Analysis	91
	3.2.2	Solution Pre	eparation	91
		3.2.2.1	Crude Oil Preparation	91
		3.2.2.2	Chemicals Preparation	92
3.3	Experime	ental Proced	ure	93
•••	3.3.1	Immiscible	Flooding Experiments	95
	3.3.2	Miscible Flo	oding Experiments	95
3.4	Image Ar	nalysis for O	Il Recovery	97
CHAPI	Poculte	ESULIS AN	ID DISCUSSION	99 00
4.1	4.1.1	Immiscible	Flooding Experiments	99
	4.1.2	Miscible Flo	oding Experiments	100
4.2	Discussio	n on the F	indings of Immiscible and Miscible Flooding	101
	Experime	ents.		100
4.3	Economic	: Analysis a and Challo	nges	108
4.4 Силот		ONCI USTO		118 110
5.1	Conclusio	on 0.0010		119
5.2	Recomme	endations		120
REFER	ENCES			121
APPEN	DICES			132

·

LIST OF TABLES

		Page
Table 2.1	Types of crude oil.	6
Table 2.2	API Gravity values of different types of crude oil.	7
Table 2.3	Hydrocarbon composition of crude oil from various parts of the world.	8
Table 2.4	Experimental values of MMP of carbon dioxide-crude	14
Table 2.5	The effect of injection scheme on oil recovery.	39
Table 2.6	Experimental conditions, residual oil saturations, and	46
	total oil recovery factors for three tests	
Table 2.7	Summary of the core flooding experiments under miscible conditions	47
Table 2.8	VI and SI of different chemical modifiers	48
Table 2.9	Summary of methods of Carbon Dioxide Injection for	51
	Enhanced Oil Recovery in the literature.	
Table 2.10	Results of injection of CO_2 at various pressures and temperatures with initial temperature of 60°C.	59
Table 2.11	Result of polymer flooding by using glass micro- model of different polymer concentrations and temperature.	61
Table 2.12	Result of polymeric surfactant flooding with different ratios.	63
Table 2.13	Effect of alkaline type on oil recovery.	65
Table 2.14	Summary of micro-model studies for enhancing oil recovery in the literature.	66
Table 3.1	List of Materials and Sources.	79
Table 3.2	Physical properties and result of hydrocarbon compositional analysis of the crude oil.	80
Table 3.3	Properties of toluene.	82
Table 3.4	Properties of dimethyl carbonate.	83
Table 3.5	Properties diethyl carbonate.	85
Table 3.6	Properties of glass core sample.	91
Table 3.7	Experimental runs using the micro-model system.	94
Table 3.8	Summary of the experimental conditions for the experiments.	96
Table 4.1	Final oil recovery (%) of immiscible EOR flooding experiments.	100
Table 4.2	Final oil recovery (%) of miscible EOR flooding experiments.	101
Table 4.3	Final oil recovery (%) of immiscible and miscible EOR flooding experiments.	102
Table 4.4	Unit price per litre of chemicals used in the flooding experiments in Ringgit Malaysia (RM).	108
Table 4.5	Amount of crude oil recovered (mL) per 16 mL of fluids injected of the different types of flooding.	109
Table 4.6	Amount of chemicals used (L) to retrieve 1 litre of crude oil of the different flooding types.	111

.

LIST OF FIGURES

		Page
Figure 2.1	Physical phase of carbon dioxide	11
Figure 2.2	MMP values (bar) against temperature (°C) based on data obtained from literature.	17
Figure 2.3	Bar chart of MMP of CO ₂ -crude oil-non polar modifiers system at the temperature of 142°C.	18
Figure 2.4	General structure of carbonate ester.	19
Figure 2.5	Cumulative oil and water production during tertiary live-crude oil recovery by injection of supercritical N_2 and supercritical CO ₂ .	24
Figure 2.6	The field data for Well H-10-4: CO_2 injection started in 2008-04; during 2008-5 to 2008-10 the well was shut in for pressure maintenance; and CO_2 breakthrough occurs in 2009-02.	27
Figure 2.7	Cumulative oil recovery as a function of fluid injection with different injection strategies in four core-flood tests.	28
Figure 2.8	Percentages of composition of gas samples.	29
Figure 2.9	Cumulative oil and water production during tertiary live-crude oil recovery by injection of SC-N ₂ and SC-CO ₂ .	30
Figure 2.10	Recovery of crude oil against pore volume of injected CO2 in isothermal injection displacements with different operating pressures	31
Figure 2.11	Oil recoveries of oil wet and water wet cores	32
Figure 2.12	Oil recovery factor and system pressure as a function of time.	33
Figure 2.13	Oil recovery factor in four-cycle operation.	34
Figure 2.14	Effect of concentration of gas-forming agent on incremental oil recovery	35
Figure 2.15	Effect of slug size of gas forming agent on incremental oil recovery	35
Figure 2.16	Comparison of final recovery factor (%) between experimental and simulation results at various pressures (psi).	36
Figure 2.17	Incremental oil production from six sets of CO ₂ huff and puff experiments	37
Figure 2.18	Half life time of foams versus NP concentration.	40
Figure 2.19	Comparison on ultimate oil recovery achieved after secondary (brine) and tertiary (NPs-CO ₂ foams flooding).	41
Figure 2.20	Oil Recovery versus PVI of NPs mixtures	42
Figure 2.21	Comparison of N_2 foam height at different times, in the absence of crude oil	43
Figure 2.22	Effect of addition of 10% crude oil 'J' on CO_2 foam stability and N_2 foam stability.	43
Figure 2.23	Sweep efficiency as a function of the capillary factor	45
Figure 2.24	Comparison of accumulative oil recovery under	
		CONTRACTOR ONDAL

	different injection pressure	
Figure 2.25	Oil recovery with joint injection of toluene	49
Figure 2.26	Oil recovery with pre-slug injection of toluene	49
Figure 2.27	Injection pressure and oil recovery of CO ₂ micro-	50
5	bubbles.	
Figure 2.28	Oil recovery profiles at the end of water, surfactant and foam/PEF injections.	64
Figure 3.1	Process flowchart for the study.	78
Figure 3.2	Chemical structure of toluene.	81
Figure 3.3	Chemical structure of dimethyl carbonate.	83
Figure 3.4	Chemical structure of diethyl carbonate.	84
Figure 3.5	Fluid displacement micro-model system in UMS	86
E	The micro-model system	97
Figure 3.6	Confining proceure operation	0/
Figure 3.7	Comming pressure operation.	00
Figure 3.8	Basic procedures to operate the micro-model system.	107
Figure 4.1	flooding experiments.	103
Figure 4.2	Final oil recovery (%) of immiscible and miscible flooding of non-polar chemical modifier.	104
Figure 4.3	Final oil recovery (%) of immiscible and miscible co- injection of CO_2 and non-polar chemical modifiers experiments.	105
Figure 4.4	Amount of crude oil retrieved (L) per 16000L of fluids injected by different types of EOR flooding.	110
Figure 4.5	Price of chemicals required (RM) to retrieve 1 litre of crude oil by the different type of EOR flooding.	112
Figure 4.6	Selling price (RM) of crude oil retrieved by 16000L of fluids injected by the different EOR flooding.	114
Figure 4.7	Cost (RM) of chemicals used for the injection of 16000L of fluids by the different types of EOR flooding.	115
Figure 4.8	Comparison of profit (RM) for the same amount of crude oil sold, 358.2L, by miscible CO ₂ flooding in the literature.	116

•

LIST OF EQUATIONS

		Page
Equation 2.1	Formula for API Gravity	6
Equation 3.1	Formula for calculating oil saturation	97
Equation 3.2	Formula for calculating oil recovery	98

.

LIST OF ABBREVIATIONS

AP	Alkaline-Polymer
AOS	alpha olefin sulfonates
API	American Petroleum Institute
ASP	Alkaline-Surfactant-Polymer
BHFP	Bottom Hole Flowing Pressure
BOPD	Barrels of oil per day
CCS	Carbon Capture and Storage
сP	centrePoise
СТАВ	cetytrimethylammoniumbromide
DEC	diethylcarbonate
DMC	dimethylcarbonate
EOR	Enhanced Oil Recovery
GC-FID	Gas Chromatography-Flame Ionisation Detector
HP	horsepower
НРАМ	Hydrolyzed Poly-Acrylamide
IOIP	Initial Oil In Place
IOR	Improved Oil Recovery
ISCGHP	In-Situ-CO ₂ -Generation-Huff-and-Puff
LAPB	Lauramidopropyl Betaine
ММР	Minimum Miscible Pressure
МРа	mega Pascal
MRI	Magnetic Resonance Imaging (MRI)
NA	Not Available
NP	nano-particles
NYMEX	New York Mercantile Exchange
OOIP	Original Oil In Place
PEF	Polymer Enhanced Foam
PETRONAS	Petroliam Nasional Berhad
PV	Pore Volume
PVI	Pore Volume Injected
RF	Recovery Factor
ROIP	Residual Oil in Place
SAG	Solution Alternating Gas
SC	supercritical
SDS	Sodium Dodecyl Sulfate
SI	Solubilization Enhancing Indicator
SP	Surfactant Polymer
STB	stock tank barrel
TSCF	trillions of standard cubic feet
VI	Vaporization Enhancing Indicator
WAG	Water Alternating Gas

LIST OF SYMBOLS

A _n	area of oil
A.	area of carbon dioxide or chemicals
Al ₂ O ₃	aluminium oxide
°C	degree Celcius
CaCl ₂	calcium chloride
CH₄	methane
C ₂ H ₆	ethane
C_3H_8	propane
C ₄ H ₁₀	butane
C ₅ H ₁₂	pentane
C ₆ H ₁₄	hexane
CO ₂	carbon dioxide
cm ³	cubic centimetre
CuO	copper oxide
D	Darcy
°F	degree Fahrenheit
H₂S	hydrogen sulfide
km²	square kilometres
КОН	potassium hydroxide
m ³	cubic metre
mD	mili Darcy
MgCl ₂	magnesium chloride
N ₂	nitrogen
NaCl	sodium chloride
Na ₂ CO ₃	sodium carbonate
Na-DDBS	sodium dodecylbenzenesulfonate
NaOH	sodium hydroxide
ppm	parts per million
Psi	pound force per square inch
S _{gr}	
So	Saturation of on
Sof	initial oil saturation
Soi	milial of saturation
Sor	initial water esturation
Swi	initial water saturation
Swr	cilicon diovido
SIO ₂	Silicon uluxide
l _{inj}	titanium dioxide
	woight percent
WT%	weight percent

.

LIST OF APPENDICES

		Page
Appendix A	Additional photos on the research	132
Appendix B	Image Analysis of Oil Recovery	147
Appendix C	Results of the Individual Experiments	154
Appendix D	Published article on Polymer Flooding	177
Appendix E	Copy of manuscript abstract in conference proceeding booklet for oral presentation of research findings	200
Appendix F	Copy of certificate of attendance of conference for oral presentation of research findings	202
Appendix G	Published article on the research findings	203
Appendix	Copy of API Gravity Value Analysis Result from Chemsain Consultant Sdn. Bhd.	213
Appendix I	Copy of Hydrocarbon Component and Physical Properties Analysis Result from Chemsain Consultant Sdn. Bhd.	214
Appendix J	Side Letter to the Confidentiality Agreement between PETRONAS and UMS for obtaining the crude oil sample for the research.	215

CHAPTER 1

INTRODUCTION

1.1 Research Background

Currently, due to the declining production of crude oil in mature reservoirs after extraction by primary and secondary oil recovery, which results in increase of number of idle reservoirs, more focus are directed at the tertiary and final oil recovery which is known as enhanced oil recovery (EOR) in the attempt of recovering more oil from the idle reservoirs. Among the types of EOR technologies used in the industry is chemical injection, gas injection, and thermal injection.

Currently, the potential for EOR technologies in Malaysia is promising. EOR efforts have been kick-started in 2012 by the signing of Production Sharing Contract between PETRONAS and Shell Malaysia for the use of EOR chemical injection technologies with an investment of \$USD12 billion for over 30 years to extend the production lives of Malaysia's oldest oilfields (Shell, 2012).

Although, so far, Malaysia has not ventured into EOR projects involving carbon dioxide flooding, its potential for oil production in Malaysia is promising as analysed by Sugiatmo and Idris (1997) with potential additional recovery of 500 million stock tank barrel (STB) of oil. The potential was supported by the fact that Malaysian oil fields are surrounded by large CO₂ reserves with the reserves of CO₂ from K5 gas field located offshore Sarawak and the surrounding area from Natuna gas field (Indonesia) which is located in Greater Sarawak basin.

Initial study by Hui (1995) indicated that the estimated minimum miscible pressure (MMP) of Malaysian reservoirs are in the range of 2300 and 4380 psig, which is higher than Malaysian reservoir pressures. However, the miscibility can be improved and MMP of crude oil and CO_2 can be reduced by blending the CO_2 with solvents such as ethane, propane and butane (Ikhsan *et. al.*, 1997). Another method proposed to reduce the MMP of high temperature reservoir (more than 38°C) is by

UNIVERSITI MALAYSIA SABAH

using cold CO_2 injection which is injected at temperature lower than critical temperature of CO_2 of 31°C which may lead to better efficiency and thus significantly reduce the MMP (Hamdi and Awang, 2014; 2013).

1.2 Problem Statement

In order to improve extraction capability of carbon dioxide (CO₂), in the chemistry industry, joint application of supercritical CO₂ with some chemical modifiers such as alcohols is usually employed. Polar chemical modifiers such as methanol, was well known for its capability in extracting polar components of crude oil such as asphaltic. However, most of the components in crude oils are non-polar, so there is a possibility for the significant influence of the addition of non-polar chemical modifiers with CO₂ on improving the extraction capability of CO₂ with crude oil, with regards to the solvents rule of 'like dissolves like', where polar solvents would dissolve polar solutes, and vice versa (Dobbs *et. al.*, 1986). In the previous studies, it was found that CO₂ extraction accompanied with chemical modifiers can yield crude oil extracts almost 3 times over the CO₂ extraction only (Hwang and Ortiz, 2000).

Therefore, it is worthy of investigating the influence of nonpolar chemical modifiers on the CO_2 injection displacement at the pore scale by using micro-model system for enhanced oil recovery. Through the work in this thesis, enhanced oil recovery through co-injection of carbon dioxide and non-polar chemical modifiers are studied in great detail by using a micro-model system. This is important because the flow on the pore scale decides the large scale flow patterns in the oil reservoirs, and thus by optimizing oil recovery at the pore scale in this research, the ultimate oil recovery can be achieved.

1.3 Research Objectives

- 1) To investigate the increase in oil recovery during CO₂ flooding, flooding of non-polar chemical modifiers, and co-injection of CO₂ non-polar chemical modifiers with CO₂ at immiscible conditions by using micro-model system.
- 2) To investigate the increase in oil recovery during CO₂ flooding, flooding of non-polar chemical modifiers, and co-injection of CO₂ non-polar chemical modifiers with CO₂ at miscible conditions by using micro-model system.
- 3) To conduct an economic analysis of the process of CO₂ flooding, nonpolar chemical modifiers flooding, and co-injection flooding of CO₂ and non-polar chemical modifiers in enhancing oil recovery at immiscible and miscible conditions by using micro-model system.

1.4 Novelty of Research

Research works on the utilization of non-polar chemical modifiers in carbon dioxide injection for enhanced oil recovery has not been done yet by any other researchers by using a micro-model system, and by conducting this research, the utilization of nonpolar chemical modifiers in carbon dioxide injection for enhanced oil recovery can be studied in great detail at the pore scale.

Other than that, this research will also investigate the effect of injection of non-polar chemical modifiers on oil recovery which has not been done yet by any other researchers. The findings from this research will also indicate of its potential for application in low and high pressure (20 bars to 85 bars) and low temperature reservoirs (25 to 32°C) in Malaysia as Malaysian crude oil was used in this research.

The improvement of crude oil recovery which is the main objective this research would also help to supply the increasing petroleum and energy demands in Malaysia, and thus can contribute to the society, economy, and nation. Furthermore, the utilization of carbon dioxide would also help to lessen the greenhouse gas emission in the atmosphere by using the carbon dioxide for enhancing oil recovery.

UNIVERSITI MALAYSIA SABAH

1.4 Scope of Work

The scope of work of this research was to conduct a series of experiments by using micro-model system to investigate the performance of the addition of non-polar chemical modifiers in CO_2 injection in enhancing oil recovery and the effect of miscibility on its performance. Experiments conducted compared the performance of co-injection of CO_2 with injection of CO_2 alone and non-polar chemical modifiers alone as well as oil recovery of the different phases of CO_2 which were gaseous or supercritical and was calculated by image analysis method using Adobe CC 2017 Photoshop software. The second part of the research was to conduct an economic analysis on the technology and process in this research to indicate of its potential for implementation in low temperature and low and high pressure Malaysian reservoirs as Malaysian crude was used in this research and the experiments were conducted at the temperature of 25 to 32°C and pressure of 20 to 85 bar.

The limitation of this research was that the experiments were conducted by using a micro-model glass instead of real core samples from the oil reservoir. Other than that, the glass was fabricated with symmetrical two dimensional imprint instead of being constructed from two dimensional thin-sections of real porous rocks due to the in-availability of the data. However, the glass is still reliable and capable of giving basic accurate data on the oil recovery in a real reservoir and is suitable for this research as the investigation of oil recovery performance at the pore scale with controlled flow conditions of the real reservoir is the main objective of this research.

Another limitation for this research was the temperature and pressure used for the experiments due to the limitation of the micro-model system used in this research. This is because the maximum pressure for the injection by the micro-model system is 120 bar and the maximum temperature that the system can withhold is 70°C. Due to this reason, the experimental temperature for the miscible experiment was chosen to be 32° C with the experimental pressure of 85 bar, to ensure that miscible displacement would occur during the experiments and that the CO₂ would be in supercritical phase at the lowest temperature possible while at the same time ensuring the safety while conducting the experiment by making sure the system would not be over-pressurized.

4

CHAPTER 2

LITERATURE REVIEW

2.1 Crude Oil

Crude oil is a naturally occurring hydrocarbon that is found accumulated in various porous rock formations within the Earth's crust that is extracted for fuel purposes and processed into chemical products. The colour of extracted crude oil varies from light golden yellow to red, green or most common dark brown to deep dark black. In its natural unrefined state, the extracted crude oil can vary considerably in its density and consistency from a very volatile and thin liquid to extremely thick, semi-solid heavy weight oil. In the United States, it is common practice by the petroleum industry to measure capacity of crude oil by volume and to utilize the English system of measurement. Due to this, in the United States, crude oil is measured in barrels, with each barrel containing 42 gallons of oil. In most other parts of the world, capacity of crude oil is measured by the weight of materials processed and measurements are recorded in metric units. Therefore, outside of the United States, crude oil is measured in metric tons.

2.1.1 Types of Crude Oil

According to Plainsman Manufacturing Inc. (2017), the four main types of crude oil are: very light oils, light oil, medium oil, and heavy fuel oils. It is discussed in **Table 2.1** below.

Types of	Descriptions		
Crude Oil			
Very light oil	It has a tendency to be very volatile. It evaporates within a few		
	days and as a consequence, evaporates its toxicity levels.		
	Examples of this type of oil are: jet fuels, gasoline, kerosene,		
	petroleum ether, petroleum naphtha, and petroleum spirit.		
Light oil	It is moderately volatile and toxic. Examples of this type of oil are		
	Grade 1 and Grade 2 fuel oils, diesel fuel oils and most domestic		
	fuel oils.		
Medium oil	It is the most common type of crude oil. It generally has low		
	volatility and higher viscosity than the light oils which in turn leads		
	to higher toxicity and causes greater environmental impact during		
	clean-up.		
Heavy fuel oil	It is the most viscous and least volatile crude oil and is the most		
	toxic. Examples of this type of oil are heavy marine fuels and the		
	heaviest Grade 3, 4, 5, and 6 fuel oils.		

Source: Plainsman Manufacturing Inc. (2017)

American Petroleum Institute (API) is a major United States trade association for oil and gas industry. One of the most important standards that was set by API is the API gravity which is a method used to measure the density of petroleum ("Petroleum - Classification - API", 2015). API gravity is calculated using the specific gravity of oil, which is the ratio of density of the oil relative to that of water. Specific gravity values for API measurements are always measured at 60 degrees Fahrenheit (^oF). **Equation 2.1** below shows the formula for API gravity.

$$API Gravity = \frac{141.5}{Specific Gravity} - 131.5$$
 Equation 2.1.

The API gravity is used to determine the categories of crude oil such as light, medium, heavy and extra heavy. API gravity is exceptionally important as the 'weight' of the oil is the biggest determinant of its market value. The API values for each category of crude oil are shown in **Table 2.2.** In the industry, less dense or

UNIVERSITI MALAYSIA SABAI

'light' oil is preferable as compared to more dense oil as it contains more quantity of hydrocarbons that can be converted to gasoline and diesel fuel.

Type of Crude Oil	API Gravity	
Light	API more than 31.1 ⁰	
Medium	API between 22.3 ^o and 31.1 ^o	
Неаvy	API less than 22.3 ^o	
Extra Heavy	API less than 10 ⁰	

Table 2.2: API Gravity values of different types of crude oil.

Source: "Petroleum - Classification - API" (2015)

2.1.2 Crude Oil Composition

Composition of crude oil varies depending on the location of the oil reservoir and the process performed to extract the oil. According to The Editors of Encyclopedia Britannica (2017), crude oil is a mixture of relatively volatile liquid hydrocarbon, and contains some oxygen, nitrogen and sulphur. Regardless of variations, almost all crude oil ranges from 82 to 87 percent carbon by weight and 12 to 15 percent hydrogen by weight.

Table 2.3 shows the hydrocarbon composition in mass percentage (% mass) of different types of crude oil from various parts of the world. As can be seen in the table, hydrocarbon composition varies according to the type of crude oil and the location of crude oil retrieved, with light crude oil having C12+ components within the range of 41-81 (%mass), while medium crude oil within the range of 74-84 (%mass) and one sample of heavy crude oil having 74.14 (%mass) of C12+ components.

The composition of the crude is also used to categorize the crude oil. This is because crude oil is sometimes categorized as sweet or sour depending on the amount of sulphur in its composition, which occurs as elemental sulphur or in compounds such as hydrogen sulphide. Sweet crudes contain 0.5 percent or less of sulphur, while sour crudes contain more than 1 percent of sulphur. During refining, excess sulphur is usually removed from the crude as sulphur oxides released into the atmosphere during combustion of oil are major pollutants.

7

REFERENCES

- Abedini, A., and Torabi, F. 2014. "Oil Recovery Performance of Immiscible and Miscible CO₂ Huff-and-Puff Processes." *Energy & Fuels* 28 (2): 774–84.
- Abedini,A., Nader, M., and Torabi, F. 2014. "Determination of Minimum Miscibility Pressure of Crude Oil–CO₂ System by Oil Swelling/Extraction Test." *Energy Technology* 2 (5): 431–39.
- Adekunle, O. 2014. "Experimental Approach to Investigate Minimum Miscibility Pressures in the Bakken." Master Thesis, Colorado School of Mines, Department of Petroleum Engineeering.
- Aksoy, M. 1989. "Haematotoxicity and Carcinogenicity of Benzene." *Environmental Health Perspectives* 82: 193–97.
- Alagorni, H. A., Yaacob, Z., and Nour, A.H. 2015. "An Overview of Oil Production Stages: Enhanced Oil Recovery Techniques and Nitrogen Injection." *International Journal of Environmental Science and Developmen* 6 (9): 693– 701.
- Al-Anazi, B.D. 2007. "Enhanced Oil Recovery Techniques and Nitrogen Injection." In , 29–33. CSEG Recorder.
- Al-Eid, M. I., Emmanuel, C. U., and Ali, M.S. 2013. Fluid Compositional Analysis by Combined Gas Chromatographic and Direct Flash Method. US 8,522,600 B2, filed October 12, 2010, and issued September 3, 2013.
- Al-Hinai, K., Al-Bemani, A., and Vakili-Nezhaad, G. 2014. "Experimental and Theoretical Investigation of the CO₂ Minimum Miscibility Pressurefor the Omani Oils for CO₂ Injection EOR Method." *International Journal of Environmental Science and Development*, January, 142–46.
- Alvarado, V., and Manrique, E. 2010. "Enhanced Oil Recovery: An Update Review." Energies 3 (9): 1529–75.
- Bayat, A. E., Rajaei, K., and Junin, K. 2016. "Assessing the Effects of Nanoparticle Type and Concentration on the Stability of CO₂ Foams and the Performance in Enhanced Oil Recovery." *Colloids and Surfaces A: Physicochemical and Engineering Aspects* 511 (December): 222–31.
- Bayat, M., Lashkarbolooki, M., Hezave, A.Z. and Ayatollahi, S. 2016. "Investigation of Gas Injection Flooding Performance as Enhanced Oil Recovery Method." Journal of Natural Gas Science and Engineering 29 (February): 37–45.

UNIVERSITI MALAYSIA SABAH

- Bikkina, P., Wan, J., Kim, Y., Kneafsy, T.J., and Tokunaga, T.K. 2016. "Influence of Wettability and Permeability Heterogeneity on Miscible CO₂ Flooding Efficiency." *Fuel*, no. 166: 219–26.
- Billiotte, J.A., De Moegen, H, and Oren, P.E. 1993. "Experimental Micromodeling and Numerical Simulation of Gas/water Injection/withdrawal Cycles as Applied to Underground Gas Storage." *SPE Advanced Tech. Series 1* 1: 133–39.
- Blunt, J.M., Jackson, D.M., Piri, M. and Valvatne, H.P. 2002. "Detailed Physics, Predictive Capabilities and Macroscopic Consequences for Pore Network Models of Multiphase Flow." *Advances in Water Resources* 25: 1069–89.
- Blunt, M., and King, P. 1991. "Relative Permeabilities from Two and Three-Dimensional Pore Scale Network Modelling." *Transport in Porous Media* 6: 407–33.
- Boud, D. C., and Holbrook, O. C. 1958. Gas drive oil recovery process. US2866507 A, filed December 24, 1956, and issued December 30, 1958. http://www.google.com/patents/US2866507.
- Buysch, H.J. 2000. "Carbonic Esters." In *Ullmann's Encyclopedia of Industrial Chemistry*, edited by Wiley-VCH Verlag GmbH & Co. KGaA. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA.
- Cao, M., and Gu, Y. 2013. "Oil Recovery Mechanisms and Asphaltene Precipitation Phenomenon in Immiscible and Miscible CO₂ Flooding Processes." *Fuel* 109 (July): 157–66.
- "Carbonate Ester (CHEBI:46722)." n.d. Accessed September 6, 2018. https://www.ebi.ac.uk/chebi/searchId.do?chebiId=46722.
- "CDC NIOSH Pocket Guide to Chemical Hazards Toluene." 2016. 2016. https://www.cdc.gov/niosh/npg/npgd0619.html.
- Cook, B. R. 2012. "The Economic Contribution of CO₂ Enhanced Oil Recovery in Wyoming's Economy." Enhanced Oil Recovery Institute, Department of Economic and Finance.
- Davis, D., Scott, M., Roberson, K., and Robinson, A. 2011. "Large Scale CO₂ Flood Begins Along Texas Gulf Coast." SPE.

UNIVERSITI MALAYSIA SABAH

- Dobbs, J. M., Wong, J.M. and Johnston, K.P. 1986. "Nonpolar Co-Solvents for Solubility Enhancement in Supercritical Fluid Carbon Dioxide." *Journal of Chemical & Engineering Data* 31 (3): 303–8.
- Dong, M., Huang, S., Dyer, S.B., and Mourits, F.M. 2001. "A Comparison of CO₂ Minimum Miscibility Pressure Determinations for Weyburn Crude Oil." *Journal* of Petroleum Science and Engineering 31 (1): 13–22.
- Dooley, J.J., Dahowski, R.T., and Davidson, C.L. 2010. "CO₂-Driven Enhanced Oil Recovery as a Stepping Stone to What?" PNNL-19557. United States of America: U.S Department of Energy.
- Elraies, K. A., Tan, I.M., Fathaddin, M.T., and Abo-Jabal, A. 2011. "Development of a New Polymeric Surfactant for Chemical Enhanced Oil Recovery." *Petroleum Science and Technology* 29 (14): 1521–28.

"Enhanced Oil Recovery | Department of Energy." 2016. 2016. http://energy.gov/fe/science-innovation/oil-gas-research/enhanced-oil-recovery.

- Enick, R., Beckman, E., and Johnson, J.K. 2009. "Synthesis and Evaluation of CO₂ Thickeners Designed with Molecular Modeling." Report. UNT Digital Library. August 31, 2009.
- Enick, R.M., Olsen, D.K, Ammer, J.R., and Schuller, W. 2012. "Mobility and Conformance Control for CO₂ EOR via Thickeners, Foams, and Gels -- A Literature Review of 40 Years of Research and Pilot Tests." Society of Petroleum Engineers.
- Farzaneh, S.A., and Sohrabi, M. 2015. "Experimental Investigation of CO₂-Foam Stability Improvement by Alkaline in the Presence of Crude Oil." *Chemical Engineering Research and Design* 94 (February): 375–89.
- Feng, H., Haidong, H., Yanqing, W., Jianfeng, R., Liang, Z., Bo, R., Butt, H., Shaoran, R., and Guoli, C. 2016. "Assessment of Miscibility Effect for CO₂ Flooding EOR in a Low Permeability Reservoir." *Journal of Petroleum Science and Engineering* 145 (September): 328–35.
- "GESTIS Substance Database." 2017. 2017. http://gestisen.itrust.de/nxt/gateway.dll/gestis_en/010070.xml?f=templates\$fn=default.h tm\$3.0.

- Glover, P. 2001. "Formation Evaluation MSc. Course Notes." In , 19–26. Aberdeen University.
- Golkari, A., and Riazi, M. 2017. "Experimental Investigation of Miscibility Conditions of Dead and Live Asphaltenic Crude oil–CO₂ Systems." *Journal of Petroleum Exploration and Production Technology* 7: 597–609.
- Grigg, R. B., and Schechter, D.S. 1994. "Improved Efficiency of Miscible CO₂ Floods and Enhanced Prospects for CO₂ Heterogeneous Reservoirs." US Department of Energy.
- Grigg, R. B., and Siagian, U.W.R. 1998. "Understanding and Exploiting Four-Phase Flow in Low-Temperature CO₂ Floods." In . Society of Petroleum Engineers.
- Guo, F., and Aryana, S. 2016. "An Experimental Investigation of Nanoparticle-Stabilized CO₂ Foam Used in Enhanced Oil Recovery." *Fuel* 186 (December): 430–42.
- Guru99. 2019. "What Is Photoshop CC? Complete Introduction." 2019. https://www.guru99.com/introduction-to-photoshop-cc.html.
- Hamdi, Z., and Awang, M. 2013. "Improving Oil Recovery by Cold CO₂ Injection: A Simulation Study." *International Journal of Petroleum and GeoScience Engineering* 1: 167–77.
- Hamdi, Z., and Awang, M. 2014. "CO₂ Minimum Miscibility Pressure Determination of Pure Hydrocarbons in Different Temperatures Using Slimtube Simulations." *Research Journal of Applied Sciences, Engineering and Technology* 7 (April): 3159–63.
- Hamdi, Z., and Awang, M. 2016. "Effect of Low Temperature CO₂ Injection in High Temperature Oil Reservoirs Using Slimtube Experiments." Jurnal Teknologi 78 (6–6): 35–39.
- Hamdi, Z., and Awang, M. 2017. "Oil Recovery Study by Low Temperature Carbon Dioxide Injection in High-Pressure High Temperature Micromodel." International Journal of Energy and Environmental Engineering 11: 1123–29.
- Hashemi Fath, A., and Pouranfard, A.R. 2014. "Evaluation of Miscible and Immiscible CO₂ Injection in One of the Iranian Oil Fields." *Egyptian Journal of Petroleum* 23 (3): 255–70.

- Hawthorne, S. B., Miller, D.J., Gorecki, C.D., Sorensen, J.A., Hamling, J., Roen, T.D., Harju, J.A. and Melzer, L.S. 2014. "A Rapid Method for Determining CO₂/oil MMP and Visual Observations of CO₂/Oil Interactions at Reservoir Conditions." *Energy Procedia*, 12th International Conference on Greenhouse Gas Control Technologies, GHGT-12, 63 (January): 7724–31.
- Hawthorne, S. B., Sorensen, J., Miller, D. and Gorecki, C.D. 2015. "Laboratory Studies of MMP and Hydrocarbon Mobilization in Conventional and Bakken Plays Using CO₂, Methane, and Ethane." presented at the 21st Annual CO₂ Flooding Conference, Midland, Texas, December 10.
- Holm, L. W., and Josendal, V.A. 1974. "Mechanism of Oil Displacement by Carbon Dioxide." *Journal of Petroleum Technology*, Transaction AIME 257, , December, 1427–38.
- Hornbrook, J. W., Castanier, L. M., and Pettit, P. A. 1991. "Observation of Foam/Oil Interactions in a New, High-Resolution Micromodel." In . Society of Petroleum Engineers.
- Hui, H.L. 1995. "Penganggaran Dan Penentuan MMP CO₂ Untuk Lapangan Minyak Malaysia." Thesis for Bachelor of Engineering, UTM.
- Husodo, W., Sudibjo, R., and Walsh, B.W. 1985. "Laboratory Experiment on CO₂ Injection." In *IPA Proceeding of The Fourteenth Annual Convention*. Vol. 1. Jakarta, Indonesia: Indonesian Petroleum Association.
- Hwang, R. J, and Ortiz, J. 2000. "Mitigation of Asphaltics Deposition during CO₂ Flood by Enhancing CO₂ Solvency with Chemical Modifiers." Organic Geochemistry 31 (12): 1451–62.
- Ikushima, Y., Saito, N., Arai, M. and Arai, K. 1991. "Solvent Polarity Parameters of Supercritical Carbon Dioxide as Measured by Infrared Spectroscopy." *Bulletin* of The Chemical Society of Japan - BULL CHEM SOC JPN 64 (July): 2224–29.
- Imad, A. A. 2016. "A Reliable and Rapid Technique for the Laboratory Determination of the Minimum Miscibility Pressure for CO₂ – Light Crude Oil Systems Using the Slim Tube Method." MASTERS OF SCIENCE, Texas, USA: Texas A&M University.
- Jamaloei, B.Y., Kharrat, R., Asghari, K. and Torabi, F. 2011. "The Influence of Pore Wettability on the Microstructure of Residual Oil in Surfactant-Enhanced Water Flooding in Heavy Oil Reservoirs: Implications for Pore Scale Flow Characterization." Journal of Petroleum Science and Engineering, no. 77: 121–34.

- Kanegsberg, B., and Kanegsberg, E. 2017. In *Handbook for Critical Cleaning: Cleaning Agents and Systems*, 2nded., 16. CRC Press.
- Khan, G. 2010. "Experimental Studies of Carbon Dioxide Injection for Enhanced Oil Recovery Technique." M.Sc Oil and Gas Technology, Niels Bohrs vej 8, 6700, Esbjerg, Denmark: Aalborg University Esbjerg.
- Kim, S., and Santamarina, J.S. 2014. "Engineered CO₂ Injection: The Use of Surfactants for Enhanced Sweep Efficiency." *International Journal of Greenhouse Gas Control* 20 (January): 324–32..
- Kulkarni, M.M. 2003. "Immiscible and Miscible Gas-Oil Displacements in Porous Media." Lousiana State University.

"KYOTO PROTOCOL." 1992. https://unfccc.int/resource/docs/convkp/kpeng.html.

- Laboureur, L., Ollero, M. and Touboul, D. 2015. "Lipidomics by Supercritical Fluid Chromatography." *International Journal of Molecular Sciences* 16 (12): 13868–84.
- Lake, L.W., and Venuto, P.B. 1990. "A Niche for Enhanced Oil Recovery in the 1990s." *Oil and Gas Journal* 88: 62–67.
- Lenormand, R., Touboul, E., and Zarcone, C. 1987. "Immiscible Displacements in Porous Media: Testing Network Simulators by Micromodel Experiments." In . Dallas, Texas: Society of Petroleum Engineers.
- Lenormand, R., Touboul, E., and Zarcone, C. 1988. "Numerical Models and Experiments on Immiscible Displacements in Porous Media." *Journal of Fluid Mechanics* 189: 165–87.
- Levitt, D., Heinson, A., Britton, C., Malik, T., Dwarakanath, V. and Pope, G. 2009. "Identification and Evaluation of High Performance EOR Surfactants." *SPE Reservoir Evaluation & Engineering* 12: 243–53.
- Li, S., and Luo, P. 2017. "Experimental and Simulation Determination of Minimum Miscibility Pressure for a Bakken Tight Oil and Different Injection Gases." *Petroleum*, Carbon Capture and Storage (CCUS), 3 (1): 79–86.

- Liu, Y., Mu, D., Dai, Y., Ma, K., Zheng, R, and Dai, C. 2016. "Analysis on Extraction Behaviour of Lithum-Ion Battery Electrolyte Solvents in Supercritical CO₂ by Gas Chromatography." *International Journal of Electrochemistry Science* 11: 7594–7604.
- Lu, P. 2012. "CO₂ Enhanced Oil Recovery Feasibility Evaluation for East Texas Oil Field." Master of Science, Kansas, USA: University of Kansas.
- Majlaton, N.I. 2012. "A Visual Study of CO₂ Injection at the Porescale Using Micromodels." University of Bergen.
- Mariappan, G.D. 2016. "Study of Oil Recovery Using Fluid Displacement Miromodel for Comparative Enhanced Oil Recovery (EOR) Methods." Bachelor of Engineering (Chemical Engineering) Thesis, Kota Kinabalu, Sabah, Malaysia: Universiti Malaysia Sabah.
- Mathiassen, O.M. 2003. "CO₂ as Injection Gas for Enhanced Oil Recovery." Master's Thesis. Norwegian University of Science and Technology.
- Mattax, C.C., and Kyte, J.R. 1961. "Ever See a Water Flood?" Oil & Gas Journal 59: 115–28.
- Maugeri, L. 2004. "Oil: Never Cry Wolf--Why the Petroleum Age Is Far from over." Science 304 (5674): 1114–15.
- Mitchell, D.L., and Speight, J.G. 1973. "The Solubility of Asphaltenes in Hydrocarbon Solvents." *Fuel* 52 (2): 149–52.
- "Oil and Gas Reserve Evaluation Report." 2017. RFLA 201703638. Petroleum Services Division Core Laboratories (U.K.) Limited.
- Ong, R.T.C. 2017. "Polymer Flooding for Enhanced Oil Recovery with Different Polymer Concentration and Mixture Through Micro Model Simulation." Master of Oil and Gas, Kota Kinabalu, Sabah, Malaysia: Universiti Malaysia Sabah.
- "OPEC Oil Prices 1960-2018 | Statistic." 2019. Statista. 2019. https://www.statista.com/statistics/262858/change-in-opec-crude-oil-pricessince-1960/.
- Oren, P.E., Billiotte, J., and Pinczewski, W.V. 1994. "Pore Scale Network Modeling of Residual Oil Recovery by Immiscible Gas Flooding." In . Tulsa, Oklahoma: SPE/DOE 27814.

- Oren, P.E., and Pinczewski, W.V. 1995. "Fluid Distribution and Pore Scale Displacement Mechanisms in Drainage Three Phase Flow." *Transport in Porous Media* 20: 105–33.
- Parry, I.W.H, and Mylonas, V. 2018. "IMF Working Paper: Canada's Carbon Price Floor." International Monetary Fund.
- *Petro Online*. 2014. "What Is the Difference between Primary, Secondary & Enhanced Recovery for Oil Extraction?," August 26, 2014.
- "Petroleum Classification API." 2015. 2015. http://www.petroleum.co.uk/api.
- Plainsman Manufacturing Inc. 2017. "The Four Main Types Of Crude Oil." *Plainsman Manufacturing* (blog). November 15, 2017. http://plainsmanmfg.com/blog/four-main-types-crude-oil/.
- "Properties of Organic Compounds and Crude Oil Refining." n.d. https://www.buckmountain.ca/eteacher_download/698/12347.
- Pu, W., Wei, B., Jin, F., Li, Y., Jia, H., Liu, P., and Tang, Z. 2016. "Experimental Investigation of CO₂ Huff-N-Puff Process for Enhancing Oil Recovery in Tight Reservoirs." *Chemical Engineering Research and Design* 111 (July): 269–76.
- Pubchem. n.d. "Dimethyl Carbonate." Accessed August 30, 2018a. https://pubchem.ncbi.nlm.nih.gov/compound/12021.
- Pubchem. n.d. "Ethyl Carbonate." Accessed August 30, 2018b. https://pubchem.ncbi.nlm.nih.gov/compound/7766.

"QUOTATION: TSI/QT-62457." 2016. Tay Scientific Instruments Sdn. Bhd.

- Riazi, M., Sohrabi, M., and Jamiolahmady, M. 2011. "Experimental Study of Pore-Scale Mechanisms of Carbonated Water Injection." *Transport in Porous Media* 86 (1): 73–86.
- Robin, M., Sygouni, V. and Behot, J. 2012. "CO₂ Injection in Porous Media: Observations Un Glass Micromodels Under Reservoir Conditions (PDF Download Available)." In *SPE 154165–PP*. Tulsa, Oklahoma.

Romero-Zerón, L. 2012. "Advances in Enhanced Oil Recovery Processes."

UNIVERSITI MALAYSIA SABAH

- Rudyk, S.N., Sogaard, E.G., Abbasi, W.A., and Jorgensen, L.W. 2009. "Determination of Minimum Miscibility Pressure in Supercritical Reactor Using Oil Saturated Sample." In *AIDIC Conference Series*, 9:253–60. Rome.
- Sakar, S. 2017. "Investigation of Synthesized Polymeric Surfactant Injection for Enhanced Oil Recovery: A Micromodel Study." Bachelor of Engineering (Chemical Engineering) Thesis, Kota Kinabalu, Sabah, Malaysia: Universiti Malaysia Sabah.
- Scottish Carbon Capture and Storage (SCCS). 2015. "CO₂ Storage and Enhanced Oil Recovery in the North Sea: Securing a Low-Carbon Future for the UK." Edinburgh, Scotland: University of Edinburgh.
- Sedaghat, M.H, Ahadi, A., Kordnejad, M. and Borazjani, Z. 2013. "Aspects of Alkaline Flooding: Oil Recovery Improvement and Displacement Mechanisms." *Middle-East Journal of Scientific Research* 18 (2): 258–63.
- Shell. 2012. "PETRONAS and Shell Sign Production Sharing Contracts for Enhanced Oil Recovery."
- Shu, G., Dong, M., Chen, S., and Luo, P. 2014. "Improvement of CO₂ EOR Performance in Water-Wet Reservoirs by Adding Active Carbonated Water." *Journal of Petroleum Science and Engineering* 121 (September): 142–48.
- Siagian, U. W. R., and Grigg, R. B. 1998. "The Extraction of Hydrocarbons from Crude Oil by High Pressure CO₂." In . Society of Petroleum Engineers.
- Sohrabi, M., Tehrani, D. H., Danesh A., and Henderson, G. D. 2004. "Visualization of Oil Recovery by Water-Alternating-Gas Injection Using High-Pressure Micromodels." SPE Journal 9 (3): 290–301.
- Song, Y., Lu, P., Liu, Y., Jiang, L., Zhao, Y, Shen, Z., and Chen, J. 2014. "A Study on Combination of Polymer and CO₂ Flooding Using Magnetic Resonance Imaging." *Energy Procedia*, International Conference on Applied Energy, ICAE2014, 61: 1589–92.
- Su, C., Sun, L., and Li, S. 2001. "Mechanism of CO₂ Miscible Flooding during Multiple Contact Procedure." *Journal of Southwest Petroleum Institute* 23 (2): 33–36.
- Sugiatmo, I.A, and Idris, A.K. 1997. "The CO₂ Flooding: Prospect and Challenges on Malaysian Oil Field," 388–93.

- Telmadarreie, A., Doda, A., Trivedi, J.J., Kuru, E., and Choi, P. 2016. "CO₂ Microbubbles – A Potential Fluid for Enhanced Oil Recovery: Bulk and Porous Media Studies." *Journal of Petroleum Science and Engineering* 138 (February): 160–73.
- Telmadarreie, A., and Trivedi, J.J. 2016. "Post Surfactant CO₂ Foam Flooding for Heavy Oil Recovery: Pore Scale Visualization in Fractured Micromodel." *Transport in Porous Media*, June.
- The Editors of Encyclopedia Britannica. 2017. "Crude Oil." Encyclopedia Britannica. July 24, 2017. https://www.britannica.com/science/crude-oil.
- Van Dijke, M.I.J, Lorentzen, M., and Sorbie, K.S. 2010. "Pore-Scale Simulation of WAG Floods in Mixed-Wet Micromodels." *SPE Journal* 15 (1): 238–47.
- Wang, G.C., and Knight, G.C. 1982. "Visual Study of Miscibility Development of CO₂-Crude System." In , 269–78. Paris, France: ARTEP.
- Wang, L., Bu, X.F. and Wu, R.D. 2010. "Research Status and Development Prospect of CO₂ Miscible Flooding Enhanced Oil Recovery." *Petroleum Industry Application* 29 (2): 4–7.
- Wang, Y., Jiao, Z., Surdam, R., Zhou, L., Gao, R., Chen, Y., Luo, T., and Wang, H. 2013. "A Feasibility Study of the Integration of Enhanced Oil Recovery (CO₂ Flooding) with CO₂ Storage in the Mature Oil Fields of the Ordos Basin, China." *Energy Procedia* 37: 6846 – 6853.
- Wang, Y., Hou, J., and Tang, Y. 2016. "In-Situ CO₂ Generation Huff-N-Puff for Enhanced Oil Recovery: Laboratory Experiments and Numerical Simulations." *Journal of Petroleum Science and Engineering* 145 (September): 183–93.
- Whittaker, S., Rostron, B., Hawkes, C., Gardner, C., White, D., Johnson, J., Chalaturnyk, R., and Seeburger, D. 2011. "A Decade of CO₂ Injection into Depleting Oil Fields: Monitoring and Research Activities of the IEA GHG Weyburn-Midale CO₂ Monitoring and Storage Project." *Energy Procedia* 4: 6069–6076.
- "Workplace Safety and Health Guidelines : Laboratories Handling Chemicals." 2014. WSH Council. www.wshc.sg.
- Wu, Y. 2015. Lithium-Ion Batteries: Fundamentals and Applications. CRC Press.

- Xu, X., Saeedi, A., and Liu, K. 2016. "Laboratory Studies on CO₂ Foam Flooding Enhanced by a Novel Amphiphilic Ter-Polymer." *Journal of Petroleum Science and Engineering* 138 (February): 153–59.
- Xu, X., Saeedi, A., and Liu, K. 2017. "An Experimental Study of Combined Foam/surfactant Polymer (SP) Flooding for Carbon Dioxide-Enhanced Oil Recovery (CO2-EOR)." *Journal of Petroleum Science and Engineering* 149 (January): 603–11.
- Yang, Y., Li, X., Guo, P., Zhuo, Y., and Sha, Y. 2016. "Improving Oil Recovery in the CO₂ Flooding Process by Utilizing Nonpolar Chemical Modifiers." *Chinese Journal of Chemical Engineering* 24 (5): 646–50.
- Yin, D. D., Li, Y. Q., and Zhao, D. F. 2014. "Utilization of Produced Gas of CO₂ Flooding to Improve Oil Recovery." *Journal of the Energy Institute* 87 (4): 289–96.
- Yu, W., Lashgari, H.R., Wu, K., and Sepehrnoori, K. 2015. "CO₂ Injection for Enhanced Oil Recovery in Bakken Tight Oil Reservoirs." *Fuel*, 354–363.
- Zhao, D. F., Liao, X. W., and Yin, D.D. 2014. "Evaluation of CO₂ Enhanced Oil Recovery and Sequestration Potential in Low Permeability Reservoirs, Yanchang Oilfield, China." *Journal of the Energy Institute* 87 (4): 306–13.
- Zhou, X. 2015. "Novel Insights into IOR/EOR by Seawater and Supercritical CO₂ Miscible Flooding Using Dual Carbonate Cores at Reservoir Conditions." In .
- Zhou, X., AlOtaibi, F., Kokal, S., Alhashboul, A., and Al-Qahtani, J. 2017. "A New Approach of Pressure Profile and Oil Recovery during Dual and Single Carbonate Core Flooding by Seawater and CO₂ Injection Process at Reservoir Conditions." In . Society of Petroleum Engineers.
- Zolghadr, A., Escrochi, M. and Ayatollahi, S. 2013. "Temperature and Composition Effect on CO₂ Miscibility by Interfacial Tension Measurement." Journal of Chemical & Engineering Data 58 (March): 1168–1175.

