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Abstract
Warehouse robots have been widely used by manufacturers and online retailer to automate good delivery process. One of

the fundamental components when designing a warehouse robot is path finding algorithm. In the past, many path finding

algorithms had been proposed to identify the optimal path and improve the efficiency in different conditions. For example,

A* path finding algorithm is developed to obtain the shortest path, while D* obtains a complete coverage path from source

to destination. Although these algorithms improved the efficiency in path finding, dynamic obstacle that may exist in

warehouse environment was not considered. This paper presents AD* algorithm, a path finding algorithm that works in

dynamic environment for warehouse robot. AD* algorithm is able to detect not only static obstacle but also dynamic

obstacles while operating in warehouse environment. In dynamic obstacle path prediction, image of the warehouse

environment is processed to identify and track obstacles in the path. The image is pre-processed using perspective

transformation, dilation and erosion. Once obstacle has been identified using background subtraction, the server will track

and predict future path of the dynamic object to avoid the obstacle.

Keywords Path finding � Dynamic obstacle avoidance � Warehouse robot

1 Introduction

In recent years, warehouse robots have been used as

e-commerce bloom. The state-of-the-art innovation has

reduced the number of workforce required and increased

the efficiency of warehouse management system. E-com-

merce companies such as Amazon and Alibaba utilised

warehouse robot to automate the process of picking, sorting

and navigation assistance of goods. Thus, the robots have

replaced human workloads especially in performing

repetitive tasks. According to Dubois and Hamilton [1], the

demand of warehouse robot is increasing and expect to

growth 12% in 2018 in the USA. These warehouse robots

helped to pick and pack USD 394.8 billion worth of goods

in 2017. Markets and Markets [2] projected that the value

will further increase to USD4.44 billion by 2022.

To achieve the tasks required in logistic arrangement,

warehouse robots need to navigate autonomously to reach

destination without predefined path. Unlike other industrial

robots that work in fixed locations or follow specific line

only, warehouse robots need to rely on navigation algo-

rithm to manoeuvre in the warehouse. This is due to the
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uncertainty in warehouse caused by moving obstacle or

moving human. As such, it is important that the warehouse

robot should have the capability of moving from one place

to another with optimisation, shorter time and avoid

dynamic obstacle. The navigation of warehouse robot need

to provide collision free path to the mobility of the robot

while satisfying certain optimisation conditions such as

energy consumption, processing time and communication

delay [3].

Path finding algorithm is a sequence of actions that

transform initial state to desired goal state with an associ-

ated cost. An optimal path refers to a path which has the

minimal sum of its transition costs among all possible paths

[4]. The accuracy of path finding ensures the safety of

autonomous warehouse robots. A variety of path finding

algorithms and approaches have been introduced consis-

tently with the valuable market trend in mobility robots.

Most path finding approaches are static path findings,

where information is retrieved from predefined environ-

ment. One of the concerns of path finding method is the

responsiveness of mobility robots with the dynamic infor-

mation in real scenario. An ideal path planner must be able

to handle or response with these uncertainties, preventing

any undesired accidents occurred [5]. This can be accom-

plished only if path planner provides updated path to

mobility robots while the system receiving dynamic

information on the movement of obstacles.

The most common techniques used in path computation

are deterministic, heuristic-based algorithms [4]. Heuristic

search algorithms guide the search trajectory within the

search space using information from the problem. With the

use of certain functions, heuristic search determines the

cost of the current state to the goal state, which can reduce

the computational work [6]. Therefore, heuristic search

focuses on time reduction in path finding. Heuristic-based

methods with additional modifications can overcome

dynamic real-world problem, but it may fail in uncertain

environment as well [7]. The imperfection of heuristic

search can be resolved using vision and sensor

technologies.

2 Related work

There are several criteria that need to be considered before

deploying path finding algorithm, namely [8]:

• Completeness: the ability of path finding algorithm to

find the path from source to destination.

• Optimality: finding the path with the lowest cost.

• Time complexity: time taken for the path finding

algorithm to obtain the path.

• Space complexity: total memory consumed to obtain

the optimal path.

Path finding algorithms can be broadly categorised as

uninformed search and informed search as shown in Fig. 1.

In uninformed search, the algorithm does not have the

concept of location of the destination relative to existing

location [5]. Examples of uninformed search are depth-first

search and breadth-first search. Unlike uninformed search,

informed search will search for optimal path using the

location of destination relative to existing location [8]. The

most popular informed search algorithms are greedy

search, Dijkstra’s algorithm, A*, lifelong planning A* and

D* Lite.

2.1 Uninformed search

Depth-first search is an algorithm for traversing a finite

graph. It visits the child vertices before visiting the sibling

vertices. Stack is usually used in depth-first search algo-

rithm, in which the most research node is chosen for

expansion. In the algorithm, the beginning vertex will be

marked as start. It will iterate from current position to

adjacent vertex and checks whether adjacent vertex has

been visited. The search algorithm will continue to explore

the path and backtrack to previous vertex after finishing

exploration of a path [8]. One of the advantages of depth-

first search is the ability to find the solution without

examining all the vertex.

Breadth-first search is an algorithm for traversing or

searching tree or graph. It is based on queuing concept,

which is first-in first-out basis. Breadth-first search is

accomplished by enqueueing each level of tree sequen-

tially. It will start with the first-level search which is the

adjacent vertex of start vertex. It will check the child vertex

of the level-one vertex. It continues to explore until the

destination is reached [13]. Since breadth-first search

explores level by level, the search algorithm may consume

more memory and CPU usage. Figure 2 shows the com-

parison between depth-first search and breadth-first search.

2.2 Informed search

Unlike uninformed search, informed search utilises the

concept of location of destination relative to existing

location. It is a guided search with information. Greedy

search is one of the informed searches where it seeks to

minimise the estimated cost to reach a destination node [9].

Greedy search always takes the closest node towards the

destination of search. The function used to estimate the

operating cost is called heuristic function. Greedy searches

are useful because they often find destination states quickly

although the route taken to reach the destination may not
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be optimised in terms of path cost. One of the assumptions

in greedy search algorithm is that the destination node will

eventually be found. The algorithm continues if destination

node is not found. The best cost means the lowest cost from

neighbour node to destination node. The lowest cost node

will record and allow current node to traverse to it. Once

the best cost node is found, a back pointer is set to track

back the previous node and ready to move on to another

iteration [10]. Figure 3 shows the greedy search in a grid

map. Greedy search will approach the destination as pri-

mary objective. For the case where no obstacle is detected

in the grid map, greedy search always can directly find the

shortest path from start node to destination node.

Dijkstra’s algorithm is one of the earliest algorithms that

fulfil search criteria [11]. In Dijkstra’s algorithm, the cost

to travel from start node to destination for each node n is

obtained. There are two set of lists that are captured during

the search, namely CLOSED and OPEN lists as shown in

Algorithm 1. The cost of node in CLOSED list is consid-

ered final, or the node that has been explored will put into

CLOSED list. The node that has not been explored will

remain in OPEN list with a cost of infinity, except for the

starting node nodestart which is assigned a path cost

gðnodestartÞ = 0.

During the node expansion phase, the four (4) neighbour

nodes are evaluated. The node with the lowest path cost,

g(n), is removed from the OPEN list, and its cost is

propagated to its neighbours. The cost of neighbour of node

n, g(n0), is calculated by g(n) ? cost travel from n to n0,
c(n, n0). If the new cost is smaller than g(n0), then n will set

as its predecessor. The whole process is referring as node

expansion. Once the node expansion has occurred, n is

added into the CLOSED list as it has been explored. Then,

Fig. 1 Path finding algorithms

Fig. 2 Comparison between

depth-first search and breadth-

first search

Fig. 3 Greedy search [10]
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another least path cost is chosen as new n if n = nodegoal or

no node is OPEN list. The algorithm will be terminated

during the absence of node in OPEN list. In this case, the

algorithm is unable to find the solution for current situation

[12].

If the destination is found, path extraction phase will be

conducted. This phase starts from destination node and

back to start node by selecting predecessor of current node.

This process occurs recursively until start node is found.

Figure 4 illustrates the path extraction phase conducted.

Once the algorithm is iterated in the map, the shortest path

will be determined if the destination is located in a

traversal place. The algorithm guarantees the shortest path

using this method. However, the drawback of Dijkstra

algorithm is that the memory and number of iterations

required may be large and long.

A* is a best-first search algorithm that combines Dijk-

stra’s algorithm with a heuristic function [13]. Dijkstra’s

algorithm, g(n), represents the exact cost of the path from

the starting point to any vertex n, whereas heuristic, h(n),

estimates the costs of travelling from n to the goal node. A*

inherited both characteristics by forming a new function

f(n) = g(n) ? h(n). A* algorithm is a compact and effi-

cient algorithm as compared to other artificial intelligence

algorithm [14]. It has the advantage of shorter running time

and easier to implement on system as compared to tradi-

tional artificial intelligence system. Many applications

have adopted A* algorithm for path finding in the past [15].

Unlike Dijkstra’s algorithm that focuses on path cost g(n),

A* prioritises the nodes by f(n). Since heuristic function is

considered in f(n), the time complexity during search

improved dramatically.

A* is restricted by eight connectivity, and it could not

perform every angle search. [16] modified A* algorithm so

that it is used in a mobile robot with shorter computational

time and path. The modified A* is able to achieve any

angle search shown in Fig. 5. One of the drawbacks of

modified A* is that dynamic environment and dynamic

obstacle are not taken into consideration. In addition, some

application such as warehouse robot may not require the

feature of any angle because item in warehouse must be

organised.

Abiyev [17] improved A* algorithm to avoid static

obstacle. Even though it is able to navigate to reach the

Fig. 4 Path extraction [10]
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destination, the algorithm is unable to detect and avoid

dynamic object. This is because A* does not have the

ability to re-plan the path when the environment changes

and avoid dynamic obstacle.

D* Lite is designed to perform dynamic path re-plan-

ning in unknown terrain [18]. It reverses the order and re-

plans the path from destination to start node. This allows

the start point moving from one block to another. When the

robot is moving, the start point is updated with the current

location of the node. Hence, the travelled node is excluded

from the re-planning. As a result, only a small section of

node is needed to re-plan and it is more efficient. Since D*

Lite starts from destination node, the successor node

becomes predecessor node and vice versa.

To avoid reorder priority queue, heuristic function must

satisfy the following:

hðn; n0Þ � hðn; n0Þ þ hðn; n00Þ ð1Þ

hðn; n0Þ � c � ðn; n0Þ ð2Þ

hðn; n0Þ � 0 ð3Þ

where n, n0, n 00 2 nodes and c� (n, n0) is the shortest path

between nodes n and n0. D* Lite uses annealing approach

to identify the moving obstacle. Ganeshmurthy [3] evalu-

ated D* Lite, and it is undeniable that D* Lite has an

advantage over A* as it is dynamic version of A*.

3 Adaptive dynamic path finding algorithm
(AD*)

Adaptive dynamic path finding algorithm, AD*, is pro-

posed to find optimal path that can avoid dynamic obstacle

in warehouse robot. AD* algorithm enhanced from D* Lite

algorithm so that warehouse robot can work not only in

dynamic environment but also when dynamic obstacle

exists. AD* has additional advantage as compared to D*

Lite because it can predict location of dynamic obstacle

and avoid dynamic obstacle. There are several processes

involved in finding the optimal path for the warehouse

robot as shown in Fig. 6, namely:

• Construction of world map

• Robot detection

• Offline path planning

• Online path planning

• Robot movement correction

3.1 Construction of world map

Before the image of the warehouse can be processed, the

world map needs to be constructed using image processing.

Perspective transformation is used to transfer different

perspectives image into top view of world map. The per-

spective transformation formula is applied to acquire

transformation metric with output image denoted as

dst(i) and source image denoted as src(i).

ti xi
tiyi
ti

2
4

3
5 ¼ mapmatric

xi
yi
1

2
4

3
5 ð4Þ

where

dstðiÞ ¼ ðx0i ; y0iÞ; srcðiÞ ¼ ðxi; yiÞ; i ¼ 0; 1; 2; 3.

The world map is then separated into x and y coordinates

as shown in Fig. 7. Since AD* algorithm is tested in

85 9 65 pixels environment, the map is divided into

10 9 10 grid with each block consists of 85 9 65 pixels.

3.2 Robot detection

Before path planning algorithm is executed, the location of

the robot (or in short ADSeekerbot) needs to be identified.

The top of ADSeekerbot is labelled with ‘‘R1’’ as the

identity of robot as shown in Fig. 8. If multiple robots exist

in the environment, ADSeekerbot will identified based on

the label ID on top of the robot using machine vision. The

location of ADSeekerbot is detected using speeded up

robust features (SURF) and fast library for approximate

nearest neighbours (FLANN) matcher. SURF is a patented

local feature detector and descriptor that used for object

recognition [19]. The algorithm started with detection. A

blob detector based on Hessian matrix is used for point of

interest detection. The Hessian matrix Hðx; rÞ is given in

Eq. 5:

Hðx; rÞ ¼ Lxxðx; rÞ Lxyðx;rÞ
Lxyðx; rÞ Lyyðx;rÞ

� �
ð5Þ

where Lxxðx; rÞ is the convolution of the Gaussian second

order with image I in point x.

An image of ADSeekerbot and image of ADSeekerbot

in world map are provided to the detector so that keypoint

of both images is computed. FLANN used nearest neigh-

bour search technique that will retrieve the nearest data

according to input [20]. It is used to compute the nearest

Fig. 5 A* algorithm versus any angle search
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keypoint of both image and map using the template image

in world map.

3.3 Offline path finding

In order to navigate the warehouse robot without hitting

any obstacle, AD* should be able to detect static obstacle.

Offline path planning is an initial path planning for the

ADSeekerbot to reach destination from the current posi-

tion. The offline path planning focuses on detecting static

obstacle when re-planning the path. There are two com-

ponents in offline re-planning algorithm, namely static

obstacle detection and path finding. For the static object

detection, adaptive Gaussian threshold is used to segment

between static object and floor. The threshold value T(x,

y) is a weighted sum of block size neighbourhood of (x,

y) minus constant, C, and it is denoted as:

Tðx; yÞ ¼
Xk
u¼�k

Xk
v¼�k

Gðu; vÞPðxþ u; yþ vÞ � C ð6Þ

where K is the block size of neighbourhood of pixel and

P function is the pixel value. T(x, y) is obtained by con-

volution between the Gaussian Kernel.

Gi ¼ a � e�ði�ðk�1Þ=2Þ2=2�signma2 ð7Þ

where i = 0 ... k - 1 and a is the scale factor chosen so

that
P

Gi ¼ 1:

Adaptive thresholding is used because it can recover

image with a strong illumination gradient. Adaptive

Fig. 6 AD* algorithm

Fig. 7 Perspective transformation

Fig. 8 ADSeekerbot label
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Gaussian thresholding produces lesser noise and better-

quality image as compared to other method [21]. Hence, it

is used to segment between static obstacle and floor. After

image segmentation of the static obstacle and floor, noise

filtering is used to filter the noise in the image. Firstly,

erosion is used to remove small particles in the image.

Erosion will ‘‘grow’’ the darker part by shrinking the white

dot in the image using Eq. 8:

dstðx; yÞ ¼ minðx0;y0Þ:elementðx0;yÞ6¼0srcðxþ x0; yþ y0Þ ð8Þ

Once the small particles are removed, dilation connects

the component that is connected by ‘‘shrink’’ the darker

part and connects the nearby bright component together

using Eq. 9:

dstðx; yÞ ¼ maxðx0;y0Þ:elementðx0;yÞ6¼0srcðxþ x0; yþ y0Þ ð9Þ

After the detection of static objects, the cost map is

constructed based on heuristic function and operation cost

function.

f ðnÞ ¼ gðnÞ þ hðnÞ ð10Þ

where g(n) is the cost of the path from the start node to

n and h(n) is a heuristic function that estimated the cost of

the cheapest path from n to destination node [12]. The node

expansion is used to expand from current node to find its

predecessor from its eight neighbourhoods. The algorithm

is terminated once ADSeekerbot reaches destination node.

3.4 Online path finding

Once static object has detected, ADSeekerbot starts to

move towards destination node and trigger online path

finding. Online path finding is designed for dynamic

environment and dynamic obstacle avoidance. Before new

path is determined, surrounding information is needed such

as moving obstacle or change in destination node. There

are two types of moving obstacle, either a moving object

that does not exist in the world map in the beginning or a

static obstacle that starts moving from its original position

to another position. Moving obstacles are given an ID, and

its movement is tracked. The centre of the obstacle is used

as reference for the location.

In order to detect dynamic object, background subtrac-

tion is used. Current frames are subtracted from previous

frame to indicate the movement of any object. Gaussian

mixture-based background segmentation algorithm is used

for dynamic object detection [22], and it is denoted as:

pðxNÞ ¼
XK
j¼1

wjgðx; h Þ ð11Þ

The threshold T is the minimum fraction of the back-

ground model. The Gaussian component that matches the

test value will be updated using Eq. 16.

wNþ1
k ¼ ð1� aÞwN

k þ apðwkjxNþ1Þ ð12Þ

lNþ1
k ¼ ð1� aÞlNk þ qxðN þ 1Þ ð13Þ

XNþ1

k

¼ ð1� aÞ
XN
k

þqðxNþ1 � lNþ1
k ÞðxNþ1 � lNþ1

k ÞT

ð14Þ

q ¼ ag xNþ1; l
N
k ;
XN
k

 !
ð15Þ

pðxkjxNþ1Þ ¼
1; if wk is the first matchGaussian component

0; otherwise

�

ð16Þ

where xk is the kth Gaussian component. 1=a defines the

time constant which determines change. Background sub-

traction is crucial as it can detect only new dynamic object

but also static object that starts moving during the path

planning process. Kernelised correlation filter (KCF) is

used to track the location for both ADSeekerbot and

dynamic obstacle. KCF is separated into three steps [23]. In

the first step, blocks are built to find minimum squared

error over sample using linear regression.

minw
X
i

ðf ðxiÞ � yiÞ2 þ #jjwjj2 ð17Þ

w ¼ ½wi; . . .;wN �T ð18Þ

where # is the regularisation parameter

In the second step, KCF is cyclic shift to calculate the

position shift of the object. The full set of shifted signals is

obtained from Eq. 19. It is a permutation of an identity

matrix with last row starts with 1 and ends with zero.

Pu
��u ¼ 0; . . .n� 1

� �
ð19Þ

In the third step, KCF applies linear regression together

with cyclic shifts to find error over sample.

XHX ¼ Fdiagðx̂�ÞFHFdiagðx̂ÞFH ð20Þ

For warehouse robot, it is crucial to predict the future

location of the moving object. If the location of obstacle is

intersected with robot or the shorter path than before is

found, the path is needed to be re-planned to avoid colli-

sion. Line of best fit is used to predict future movement of

the detected obstacle. The movement prediction utilises

minimum three to five history points of the detected

obstacle to plot line of best fit of x- and y-axes with respect

to time, t. The history point is acquired from each frame.

The time taken between each frame is consistent; it is used

as time t. Line of best fit is calculated using least square
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regression method to find the relationship of x-axis or y-

axis of moving object to time, t.

m ¼ ðN
P

tu�
P

t
P

uÞ
Nð
P

t2Þ � ð
P

tÞ2
ð21Þ

b ¼
P

u� m
P

t

N
ð22Þ

u ¼ mt þ b ð23Þ

where N is the number of points. u represents x and

y. Assume t = 0 as present location. To calculate future

five points, t is iterated from t = 0 with increment by 1

until t = 5 to predict five points ahead of current position.

Based on the prediction information, AD* may need to

re-plan the path so that it can avoid the static and dynamic

obstacle. The node need to be updated with new G-cost.

G-cost represents the cost for the robot to travel from one

point to another. RHS is a value that is used to determine

whether G-cost must be updated. All RHS values must

satisfy the following relationship:

rhs nð Þ ¼ min g n0ð Þ þ c n0; nð Þð Þ ð24Þ

If the cost of the node changed, the update node function

will recalculate the G-cost and RHS cost. If there are no

changes in G-cost and RHS cost, recalculation is not

required. If the both costs are inconsistent, recalculation is

required. The path from start node to destination node

becomes worse or intraversal when the RHS cost is higher.

If RHS cost is lower, the path is easier to travel.

Once the G-cost is determined, AD* will extract the

path and calculate the shortest path. COMPUTE-

SHORTESTPATH function will identify the shortest path

and reflect the RHS value to G-cost to identify whether the

cell getting worse will initiate it as non-travel cell with

infinity cost.

Both algorithms UPDATENODE and COMPUTE-

SHORTESTPATH allow ADSeekerbot to navigate in

dynamic environment and avoid dynamic obstacles.

Dynamic obstacle is avoided using obstacle movement

prediction to determine intersection point and perform path

re-planning.
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3.5 Robot movement correction

After path planning is carried out, robot is tracked and

navigated according to the planned path with movement

correction. For the robot movement correction, PD con-

troller is used for position correction. PD controller is a

control system with feedback. Based on current state error,

ADSeekerbot corrects its course accordingly. Figure 9

shows the control system of ADSeekerbot.

The controller gain is summation of proportional error

and derivative error.

Proportional error ¼ Kp eðtÞ ð25Þ

Derivative error ¼ Kd

deðtÞ
dt

ð26Þ

controller gain ¼ Proportional errorþ Derivative error

ð27Þ

The determined path from path planning is as a setpoint

to ADSeekerbot current location. The error of position is

obtained with the difference of current position and

expected position. The error is used to navigate the left and

right motor of the ADSeekerbot.

left motor ¼ base speedþ controller gain ð28Þ
rightmotor ¼ base speed� controller gain ð29Þ

The ADSeekerbot can correct its error in position by

varying the left–right motor speed. If car current position

equals to destination, the car will stop. The direction of

moving robot is used to compute position error. A circle is

drawn surrounding of robot, and a small dot is used to

indicate the direction of robot. When the robot is moving, a

blue indicator with green arrow will indicate the direction

of moving robot as shown in Fig. 10. This information is

provided to controller system of current system direction

and location.

The direction indicator is calculated using dot product of

vector with itself. The vector is obtained from previous

frame of centre of circle to current frame of centre of circle.

Previous location of ADSeekerbot is denoted as O, current

indicator is denoted as A, and current location of

ADSeekerbot is denoted as k. By using the dot product

with itself from centre of circle to circumference,

OA � OA ¼ OAj j OAj j cos h ð30Þ

h ¼ 0, hence cos h ¼ 1

OA � OA ¼ OAj j OAj j
OA ¼ t �Ok

Assuming Ok is unit vector,

t �Ok � t �Ok ¼ r2

t2 ðkx � OxÞ2 þ ðky � OyÞ2
� 	

¼ r2

t2 ¼ r2

ðkx � OxÞ2 þ ðky � OyÞ2
� 	

ð31Þ

Solve

A ¼ t �Okþ O ð32Þ

The direction indicator is calculated by solving the

vector problem. Once the location and direction of robot

are determined, error of position is calculated from current

location and desire location. The location error is the

shortest distance between direction indicator of robot and

the shortest path. The red line in Fig. 11 shows the shortest

distance between the line and robot centroid. The distance

between line and ADSeekerbot is found using Eq. 33 with

the given point of each line segment:

Distance ¼ ðy2 � y1Þxo � ðx2 � x1Þyo þ x2y1 � y2x1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðy2 � y1Þ2 þ ðx2 � x1Þ2

q ð33Þ

The line passing through P1ðx1; y1Þ and P2ðx2; y2Þ and the

centroid of ADSeekerbot is ðx0; y0Þ
The robot movement correction calculates the direction

of following point with positive and negative sign, which

will feedback to PD controller to correct its location. In a

path containing many lines segment, a separate line (blue

line) is drawn to separate each line region as shown in

Fig. 11. It allows ADSeekerbot to determine which path

segment to refer from one segment to another. The blue

line, which is the line segment, is determined by the

resultant vector three points (green line) and gradient is

perpendicular with the resultant vector. The blue line acts

as a borderline between each path segment. If the

ADSeekerbot’s position is detected before the blue line,

ADSeekerbot will reference to the path segment before the

blue line. The direction determination equation is as

follows:

direction ¼ axo þ by0 þ c ð34Þ

Given ADSeekerbot is ðx0; y0Þ and a is x constant, b is

y constant and c is y-intercept of blue line equation. The

Fig. 9 Robot control system
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positive sign of direction indicates that ADSeekerbot is in

front of the line and negative sign of direction indicates

that it is behind the line. The ADSeekerbot will stop

moving if direction indicator is within 40-pixel diameter of

destination node.

4 Results and discussion

AD* algorithm is tested in four different environments, and

the performance is compared with A* and D* Lite. The

four test cases are:

1. environment where static obstacle exists only

2. environment where dynamic obstacle is present with-

out intercepting with ADSeekerbot

3. environment where dynamic obstacle intercepts with

ADSeekerbot

4. environment where static obstacle exists in and the

dynamic obstacle intercepts with ADSeekerbot

The dynamic obstacle that was used is a round plate

with the radius 6 cm moving at 5 m/s. The aim of setting

up the four test cases is to test the performance of the

proposed AD* algorithm to fulfil the completeness, opti-

mality, time complexity and space complexity in different

environment [8]. Since the path taken for every run is the

same, these experiments were only conducted in single run.

4.1 Test case 1: static obstacle only

In test case 1, a static or non-moving obstacle is placed on

the world map. As shown in Fig. 12, the obstacle is placed

along the original path of ADSeekerbot (blue line).

During path finding process, A*, D* and AD* algo-

rithms can detect the object and reconstructed a new

shortest path (pink line) to reach destination without hitting

the obstacle. The distance from start node to destination

and time taken to reach from start node to destination for

each algorithm are shown in Table 1.

As shown in Table 1, the distance from start to desti-

nation for all the algorithms is the same. This is expected

because all three algorithms implement the same cost map;

thus, the path is the same when static obstacle is detected.

There is 0.1 second difference for the time taken by

ADSeekerbot to reach destination from the start. Although

the path is the same, the speed of ADSeekerbot relies on

the power source, in this case, the Li-ion battery. The

battery level may vary from time to time, causing incon-

sistent motor speed. As such, the time to reach the desti-

nation may vary even when the path is the same.

Nevertheless, the 2% time difference does not impact the

behaviour as none of the robot hit the obstacle when a

different algorithm is used. The path before grid coordinate

x = 4, while x starts from 0, the path length of pink path is

4.2426, and the path length of blue is 3.4142. The blue path

is shorter than pink path in 24.26%. However, after x = 4

the pink path started to pick up blue path and eventually

they are having the same path length to reach goal. Table 2

shows the initial cost map of all three algorithms. Zero cost

in the map indicates destination.

After taking in consideration of static obstacle, the cost

map is shown in Table 3 where all algorithm produces

same final cost map for test case 1. Inf indicated the static

obstacle. Because three of the algorithms have same cost

map, the shortest path found is the same and having almost

the same time taken. This shows three algorithms per-

forming the same under simple static obstacle environment.

4.2 Test case 2: dynamic obstacle—non-
intercept

In Test case 2, there is a dynamic obstacle across the world

map. The dynamic obstacle is not blocking ADSeekerbot to

move forward with the shortest path. Figure 13 shows the

ADSeekerbot moving from start to destination with the

presence of dynamic obstacle. Before dynamic obstacle is

detected in the environment, the path length is 8.2426

which is same as the path length in static obstacle. The

result of dynamic obstacle is tabulated in Table 4.

As shown in Table 4, the distance from start to desti-

nation for all the algorithms is the same. This is expected

because all the algorithms implemented the same cost map
Fig. 10 Indicator for direction of robot

Fig. 11 Path following
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before dynamic obstacle appears. There is 0.1 s difference

for the time taken by ADSeekerbot to reach destination

from the start. Although the path is the same, the speed of

ADSeekerbot relies on the power source, in this case, the

Li-ion battery. The battery level may vary from time to

time, causing inconsistent motor speed. As such, the time

to reach the destination may vary even when the path is the

same. Nevertheless, the difference is too small and does not

impact the behaviour as none of the robot hit the obstacle

when a different algorithm is used.

When dynamic obstacle appears on the path, A* algo-

rithm did not show any difference even when dynamic

obstacle intercepts with its future path as shown in Fig. 14.

However, D* algorithm will instruct ADSeekerbot to take

different paths as compared to A* algorithm, if dynamic

obstacle intercepts with its future path. It will re-plan the

path according to the dynamic obstacle and always route

over the obstacle. In another hand, AD* algorithm pre-

dicted that the dynamic obstacle may intercept with its

future path. As such, AD* has better prediction and

Fig. 12 Static obstacle only

Table 3 Test case 1: final cost

map
10.0710 9.6568 9.2426 8.8284 7.8284 6.8284 5.8284 5.4142 5 5.4142

9.6568 8.6568 8.2426 7.8284 Inf Inf Inf 4.4142 4 4.4142

9.2426 8.2426 7.2426 6.8284 Inf Inf Inf 3.4142 3 3.4142

8.8284 7.8284 6.8284 5.8284 Inf Inf Inf 2.4142 2 2.4142

8.4142 7.4142 6.4142 5.414 4.4142 3.4142 2.4142 1.4142 1 1.4142

8 7 6 5 4 3 2 1 0 1

Table 2 Initial cost map
10.0710 9.0710 8.0710 7.0710 6.6568 6.2426 5.8284 5.4141 5 5.4142

9.6568 8.6568 7.6568 6.6568 5.6568 5.2426 4.8284 4.4142 4 4.4142

9.2426 8.2426 7.2426 6.2426 5.2426 4.2426 3.8284 3.4142 3 3.4142

8.8284 7.8284 6.8284 5.8284 4.8284 3.8284 2.8284 2.4142 2 2.4142

8.4142 7.4142 6.4142 5.4142 4.4142 3.414 2.4142 1.4142 1 1.4142

8 7 6 5 4 3 2 1 0 1

Table 1 Result for test case 1
A* algorithm D* algorithm AD* algorithm

Distance from start to destination (grid unit) 8.2426 8.2426 8.2426

Time taken to reach destination from start 4.35 s 4.45 s 4.40 s

Hit obstacle No No No

Fig. 13 Dynamic obstacle (non-intercept)
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Table 4 Result for test case 2
A* algorithm D* algorithm AD* algorithm

Distance from start to destination (grid unit) 8.2426 8.2426 8.2426

Time taken to reach destination from start 4.25 s 4.28 s 4.30 s

Hit obstacle No No No

Fig. 14 Dynamic obstacle that

does not intercept with

ADSeekerbot

Table 5 A* final cost for test

case 2
10.0710 9.0710 8.0710 7.0710 6.6568 6.2426 5.8284 5.4141 5 5.4142

9.6568 8.6568 7.6568 6.6568 5.6568 5.2426 4.8284 4.4142 4 4.4142

9.2426 8.2426 7.2426 6.2426 5.2426 4.2426 3.8284 3.4142 3 3.4142

8.8284 7.8284 6.8284 5.8284 4.8284 3.8284 2.8284 2.4142 2 2.4142

8.4142 7.4142 6.4142 5.4142 4.4142 3.414 2.4142 1.4142 1 1.4142

8 7 6 5 4 3 2 1 0 1
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estimation about future path if obstacle intercepts with

ADSeekerbot.

Tables 5, 6 and 7 show the final cost map of each

algorithm. In Table 5, the cost map did not change from

case 1 to case 2 as compared with Table 3. Since the cost

map of A* algorithm did not change, A* algorithm will

react towards dynamic obstacle. On the other hand, D* Lite

and AD* show different cost maps as compared with A*

once dynamic obstacle is detected. D* Lite and AD* will

re-route the path as illustrated in Fig. 14. Both D* Lite and

AD* show same path length after re-routing. Therefore, D*

Lite and AD* algorithms are better than A* algorithm

when dynamic obstacle presents in the environment.

4.3 Test case 3: dynamic obstacle—intercept

In test case 3, a dynamic obstacle moves across the world

map with the aim to collide with ADSeekerbot as shown in

Fig. 15. Before the presence of dynamic obstacle, the path

length that is calculated from path finding algorithm is

8.2363, which is same as the path length in static obstacle.

As shown in Table 8, the distance from start to desti-

nation for all the algorithms is the same, which is 8.2426.

This is expected because all three algorithms implement

the same cost map. When dynamic obstacle is detected, a

new path is reconstructed when AD* algorithm is used.

The path is almost the same when A* and D* algorithms

are used. However, the robot hit the obstacle, causing delay

or slowdown to reach the destination. AD* did not hit the

obstacle; therefore, it is the fastest to reach destination.

Compared with other method, AD* is faster than other for

8% for one dynamic obstacle. If more obstacles are

detected, there will be further delay for the robot to reach

destination. When dynamic obstacle is detected, the path

changed at location where both dynamic obstacle and

ADSeekerbot might intercept as shown in Fig. 16.

There is no path re-planning in A* algorithm even when

dynamic obstacle intercepts. As such, when A* algorithm

is used, ADSeekerbot will hit the dynamic obstacle. On the

other hand, D* algorithm will re-plan the path when

dynamic obstacle is detected. However, since there is no

Table 6 D* Lite final cost for

test case 2
10.0710 9.0710 8.0710 7.0710 6.6568 6.2426 5.8284 5.4141 5 5.4142

9.6568 8.6568 7.6568 6.6568 6.2426 5.2426 4.8284 4.4142 4 4.4142

9.2426 8.2426 7.2426 6.2426 5.2426 4.8284 3.8284 3.4142 3 3.4142

8.8284 7.8284 6.8284 5.8284 4.8284 3.8284 Inf 2.4142 2 2.4142

8.4142 7.4142 6.4142 5.4142 4.4142 3.414 2.4142 1.4142 1 1.4142

8 7 6 5 4 3 2 1 0 1

Table 7 AD* final cost for test

case 2
10.0710 9.0710 8.0710 7.0710 6.6568 6.2426 5.8284 5.4141 5 5.4142

9.6568 8.6568 7.6568 6.6568 5.6568 5.2426 4.8284 4.4142 4 4.4142

9.2426 8.2426 7.2426 6.2426 Inf 4.2426 3.8284 3.4142 3 3.4142

8.8284 7.8284 6.8284 5.8284 4.8284 Inf 2.8284 2.4142 2 2.4142

8.4142 7.4142 6.4142 5.4142 4.4142 3.414 2.4142 1.4142 1 1.4142

8 7 6 5 4 3 2 1 0 1

Fig. 15 Dynamic obstacle (intercept)

Table 8 Results of test case 3
A* algorithm D* algorithm AD* algorithm

Distance from start to destination(grid unit) 8.2426 8.2426 8.2426

Time taken to reach destination from start 4.85 s 4.91 s 4.5 s

Hit obstacle Yes Yes No
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prediction about the future path of the dynamic obstacle

during the path planning process, ADSeekerbot will hit the

obstacle. In another hand, AD* algorithm shows better

reaction as it will direct the ADSeekerbot to manoeuvre at

different paths in order to avoid the dynamic obstacle.

Tables 9, 10 and 11 show the final cost map of all three

algorithms. A* algorithm did not show any changes on the

cost map even when dynamic obstacle approached the

robot. On the other hand, D* Lite and AD* cost map

changed when dynamic obstacle approached the robot.

Since the cost map of A* did not change, A* algorithm

cannot avoid dynamic obstacle. For D* Lite algorithm,

Fig. 16 Dynamic obstacle

intercepts with ADSeekerbot

Table 9 A* final cost for test

case 3
10.0710 9.0710 8.0710 7.0710 6.6568 6.2426 5.8284 5.4141 5 5.4142

9.6568 8.6568 7.6568 6.6568 5.6568 5.2426 4.8284 4.4142 4 4.4142

9.2426 8.2426 7.2426 6.2426 5.2426 4.2426 3.8284 3.4142 3 3.4142

8.8284 7.8284 6.8284 5.8284 4.8284 3.8284 2.8284 2.4142 2 2.4142

8.4142 7.4142 6.4142 5.4142 4.4142 3.414 2.4142 1.4142 1 1.4142

8 7 6 5 4 3 2 1 0 1
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although the cost map changed, the changes were small. In

addition, the re-routing plan is slow, making it unable to

avoid obstacle. AD* cost map changes using dynamic

obstacle future path information and re-routes correctly to

avoid dynamic obstacle.

4.4 Test case 4: dynamic and static obstacle

In test case 4, a static obstacle and a dynamic obstacle

move across the world map. The dynamic obstacle is meant

to intercept with ADSeekerbot as shown in Fig. 17.

As shown in Table 12, the distance from start to desti-

nation for all the algorithms is the same before dynamic

obstacle appears. This is expected because all three algo-

rithms implement the same cost map; thus, the path is the

same before dynamic obstacle appears. After dynamic

obstacle appears, with the consideration of dynamic

obstacle AD* changed the path to avoid dynamic obstacle.

The path for AD* is slightly longer than D* and A* about

0.8284 or 9.1%, but there is no much difference for the

time taken by ADSeekerbot to reach destination from the

source between different algorithms. Although the path of

AD* algorithm is longer than A* and D*, time taken by

ADSeekerbot to reach destination node using A* and D* is

longer because the robot hit the dynamic object as shown in

Fig. 18 (Tables 13, 14).

As shown in Table 15, when AD* is used, the cost map

changes accordingly to the location of dynamic obstacle

and its future path. Due to the dynamic obstacle, AD* re-

routes longer path to avoid dynamic obstacle. The changes

in cost map influence the shortest path to destination and

hence avoid dynamic obstacle. Since A* cost map did not

change from beginning to end, ADSeekerbot is unable to

avoid dynamic obstacle. Although the cost map and path

for D* algorithm changed, the changes are too late to allow

robot react and avoid the dynamic obstacle.

5 Conclusion

In a nut shell, AD* algorithm works perfectly in both static

and dynamic environment. In addition, AD* is able to

avoid hitting the dynamic obstacle due to the online path

Table 10 D* Lite final cost for

test case 3
10.0710 9.0710 8.0710 7.0710 6.6568 6.2426 5.8284 5.4141 5 5.4142

9.6568 8.6568 7.6568 6.6568 6.2426 5.2426 4.8284 4.4142 4 4.4142

9.2426 8.2426 7.2426 6.2426 5.2426 4.8284 3.8284 3.4142 3 3.4142

8.8284 7.8284 6.8284 5.8284 4.8284 3.8284 2.8284 Inf 2 2.4142

8.4142 7.4142 6.4142 5.4142 4.4142 3.414 2.4142 1.4142 1 1.4142

8 7 6 5 4 3 2 1 0 1

Table 11 AD* final cost for test

case 3
10.0710 9.6667 8.0710 7.0710 6.6568 6.2426 5.8284 5.4141 5 5.4142

9.6568 8.6568 8.2426 6.6568 5.6568 5.2426 4.8284 4.4142 4 4.4142

9.2426 8.2426 7.2426 6.8284 Inf 4.2426 3.8284 3.4142 3 3.4142

8.8284 7.8284 6.8284 5.8284 Inf 3.8284 2.8284 2.4142 2 2.4142

8.4142 7.4142 6.4142 5.4142 4.4142 3.414 2.4142 1.4142 1 1.4142

8 7 6 5 4 3 2 1 0 1

Fig. 17 Dynamic and static obstacle

Table 12 Test result for test

case 4
A* algorithm D* algorithm AD* algorithm

Distance from start to destination (grid unit) 8.2426 8.2426 9.071

Time taken to reach destination from start 4.88 s 4.95 s 4.93 s

Hit obstacle Yes Yes No
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planning capability. The future location of obstacle pro-

vides useful information to AD* algorithm so that it can

avoid the dynamic obstacle. The existing AD* algorithm

depends on the cameras for re-planning process; thus, blind

spot issue may occur and affect the path planning process.

Nevertheless, the algorithm can be a base in developing

new algorithm that can avoid dynamic obstacle to obtain

the shortest path. Thus, it is suitable to be used in ware-

house robot.

Fig. 18 Dynamic and static

obstacle result

Table 13 A* final cost for test

case 4
10.0710 9.6568 9.2426 8.8284 7.8284 6.82843 5.8284 5.4142 5 5.4142

9.6568 8.6568 8.2426 7.8284 Inf Inf 4.828 4.4142 4 4.4142

9.2426 8.2426 7.2426 6.8284 Inf Inf 3.828 3.4142 3 3.4142

8.8284 7.8284 6.8284 5.8284 Inf Inf 2.828 2.4142 2 2.4142

8.4142 7.4142 6.4142 5.4142 4.4142 3.4142 2.4142 1.4142 1 1.4142

8 7 6 5 4 3 2 1 0 1
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