SUPPLEMENTARY MATERIAL

Two new epimers of C_{15} -acetogenin, 4-*epi*-isolaurallene and 4-*epi*-itomanallene as diastereomeric model

Chin-Soon Phan¹, Takashi Kamada² & Charles S. Vairappan¹*

¹Laboratory of Natural Products Chemistry, Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, 88400 Kota Kinabalu, Sabah, Malaysia

²Laboratory of Natural Products Chemistry, Department of Materials and Life Science, Faculty of Science and Technology, Shizuoka Institute of Science and Technology, 2200-2 Toyosawa, Fukuroi, Shizuoka 437-8555, Japan

*Author to whom correspondence should be addressed; *E-Mail: csv@ums.edu.my

Tel.: +60-88-320-000 ext. 2384; Fax: +60-88-320-291.

Two new C_{15} -acetogenins, 4-*epi*-isolaurallene (1) and 4-*epi*-itomanallene A (2) were isolated from a population of marine red alga *Laurencia nangii* Masuda from Carrington Reef. The structures of these compounds were determined intensively by NMR and HRESIMS data. Their configurations were elucidated by detailed comparison of chemical shifts, germinal protons splitting and nOe correlations with known and synthesized analogues. In addition, antibacterial activities of these compounds were evaluated. These compounds would serve as diastereomeric models for future reference. Since the isolaurallene, neolaurallene, 9-acetoxy-1,10,12-tribromo-4,7:6,13-bisepoxypentadeca-1,2-diene, itomanallene A and laurendecumallene A were isolated, compounds 1 and 2 were the sixth example of C_{15} -acetogenin with dioxabicyclo[7.3.0]dodecene skeleton.

Keywords: Laurencia nangii; red alga; Borneo; C15-acetogenin; antibacterial

Supplementary Information

Table S1. ¹³C (150 MHz) and ¹H NMR (600 MHz) of **1** and **2** (CDCl₃, δ in ppm, J in Hz).

Table S2. Key positions different in chemical shifts (CDCl₃, δ in ppm)

Figure S2. The ¹H-¹H COSY, HMBC and NOE correlations of **1** and **2**.

Figure S3. ¹H NMR spectrum of **1** in CDCl₃ (600 MHz). Figure S4. ¹³C NMR spectrum of **1** in CDCl₃ (150 MHz).

Figure S5. HSQC spectrum of 1 in CDCl₃.

Figure S6. ¹H-¹H COSY spectrum of **1** in CDCl₃.

Figure S7. HMBC spectrum of **1** in CDCl₃.

Figure S8. NOESY spectrum of 1 in CDCl₃.

Figure S9. HRESIMS spectrum of 1.

Figure S10. ¹H NMR spectrum of **2** in CDCl₃ (600 MHz). Figure S11. ¹³C NMR spectrum of **2** in CDCl₃ (150 MHz). Figure S12. HSQC spectrum of **2** in CDCl₃. Figure S13. ¹H-¹H COSY spectrum of **2** in CDCl₃.

Figure S14. HMBC spectrum of 2 in CDCl₃.

Figure S15. NOESY spectrum of 2 in CDCl₃.

Figure S16. HRESIMS spectrum of 2.

		1	2			
No.	¹³ C	¹ H	¹³ C	¹ H		
1	73.8	6.04 dd (5.9, 1.8)	73.3	6.07 dd (5.6, 1.1)		
2	201.5		201.6			
3	101.9	5.54 t (5.9)	102.1	5.61 dd (7.6, 5.6)		
4	73.6	4.36 tdd (6.9, 5.9, 1.8)	75.1	4.53 td (7.6, 6.2)		
5	40.7	2.44 dt (13.1, 6.9)	39.3	2.29-2.31 m		
		1.84-1.85 m		2.03-2.04 m		
6	82.9	3.92-3.94 m	73.3	4.04 br		
7	82.1	3.94-3.96 m	80.9	3.76-3.77 m		
8	29.4	2.81 q (11.0)	27.1	2.78-2.80 m		
		2.27 dt (11.0, 5.5)		2.31-2.33 m		
9	128.5	5.68 td (11.0, 5.5)	127.6	5.59 q (10.0)		
10	126.8	5.78 td (11.0, 5.5)	129.0	5.76 q (9.6)		
11	32.2	3.44 ddd (14.4, 11.0, 4.1)	34.5	3.13 br		
		2.37 ddd (14.4, 5.5, 2.1)		2.74-2.76 m		
12	52.5	4.14 m	53.0	3.79-3.78 m		
13	84.9	3.34 dt (9.6, 4.1)	83.8	3.74-3.75 m		
14	23.9	1.79-1.81 m	23.5	2.03-2.04 m		
				1.64 septet (6.9)		
15	7.6	0.92 t (6.9)	11.2	1.08 t (6.9)		

Table S1. $^{13}\mathrm{C}$ (150 MHz) and $^{1}\mathrm{H}$ NMR (600 MHz) of 1 and 2 (CDCl₃, δ in ppm, J in Hz).

	1	2	Isolaurallene	Revised	Neolaurallene
No.				itomanallene A	
3	$\delta_{ m H}$ 5.54	$\delta_{\rm H}$ 5.61	$\delta_{\rm H}$ 5.39	$\delta_{\rm H}$ 5.48	$\delta_{\rm H}$ 5.46
4	$\delta_{\rm H} 4.36$	$\delta_{\rm H} 4.53$	$\delta_{ m H}$ 4.75	$\delta_{ m H}$ 4.86	$\delta_{ m H}$ 4.86
6	$\delta_{\rm C}$ 82.9	δ _C 73.3	δ _C 82.3	$\delta_{\rm C}$ 72.6	$\delta_{\rm C}$ 72.8
14	$\delta_{ m H}$ 1.79-1.81	$\delta_{\rm H} 2.04$	$\delta_{ m H}$ 1.85	$\delta_{ m H} 2.07$	$\delta_{ m H} 2.06$
		$\delta_{\rm H}$ 1.62		$\delta_{ m H}$ 1.56-1.68	$\delta_{ m H}$ 1.63
15	$\delta_{\rm C}$ 7.6	δ _C 11.2	δ _C 7.7	δ _C 11.4	δ _C 11.4

Table S2. Key positions different in chemical shifts (CDCl₃, δ in ppm).

Figure S2. The 1 H- 1 H COSY, key HMBC and NOE correlations of **1** and **2**.

Figure S3. ¹H NMR spectrum of **1** in CDCl₃ (600 MHz).

Figure S4. ¹³C NMR spectrum of 1 in CDCl₃ (150 MHz).

Figure S5. HSQC spectrum of 1 in CDCl₃.

Figure S6. ¹H-¹H COSY spectrum of **1** in CDCl₃.

Figure S7. HMBC spectrum of 1 in CDCl₃.

Figure S8. NOESY spectrum of 1 in CDCl₃.

Figure S9. HRESIMS spectrum of 1.

Figure S10. ¹H NMR spectrum of 2 in CDCl₃ (600 MHz).

Figure S11. ¹³C NMR spectrum of 2 in CDCl₃ (150 MHz).

Figure S12. HSQC spectrum of 2 in CDCl₃.

Figure S13. ¹H-¹H COSY spectrum of 2 in CDCl₃.

Figure S14. HMBC spectrum of 2 in CDCl₃.

Figure S15. NOESY spectrum of 2 in CDCl₃.

Figure S16. HRESIMS spectrum of 2.

Intens.					392.988	30		+MS,	10.9-11.1min	#(653-662)	
6000- 4000- 2000-			391.2 A	392	2.2861	393.99	394.9 09	866	395.9923		
4000-	4000-392						9883 C 15 H 21 Br 2 O 2 ,390				
2000-			390.9903		A		394.9	862			
			Λ	391.993	36 /	393.99	16		395.9895	12	
0	3	89 390	391	392	393	394	39	5	396	m/z	
Meas. m/z	#	Formula	Score	m/z	err [mDa]	err [ppm]	mSigma	rdb	e ⁻ Conf	N-Rule	
390.9893	1	C 15 H 21 Br 2 O 2	100.00	390.9903	1.0	2.6	10.9	4.5	even	ok	
	2	C 10 H 16 Br O 11	0.00	390.9871	-2.2	-5.7	297.8	2.5	even	ok	
	3	C 17 H 12 Br O 6	0.00	390.9812	-8.1	-20.7	299.9	11.5	even	ok	
	4	C 21 H 12 Br O 3	0.00	390.9964	7.2	18.3	302.8	15.5	even	ok	
	5	C 16 H 7 O 12	0.00	390.9932	3.9	10.1	548.0	13.5	even	ok	
	6	C 23 H 3 O 7	0.00	390.9873	-1.9	-5.0	550.3	22.5	even	ok	