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Abstract 

 

The following research describes the potential in classifying emotions using wearable EEG headset 

while using a virtual environment to stimulate the responses of the users. Current developments on 

emotion classification have always steered towards the use of a clinical-grade EEG headset with a 2D 

monitor screen for stimuli evocations which may introduce additional artifacts or inaccurate readings 

into the dataset due to users unable to provide their full attention from the given stimuli even though 

the stimuli presentated should have been advantageous in provoking emotional reactions. Furthermore, 

the clinical-grade EEG headset requires a lengthy duration to setup and avoiding any hindrance such 

as hairs hindering the electrodes from collecting the brainwave signals  or electrodes coming loose 

thus requiring additional time to work to fix the issue. With the lengthy duration of setting up the EEG 

headset, the user may expereince fatigue and become incapable of responding naturally to the emotion 

being presented from the stimuli. Therefore, this research introduces the use of a wearable low-cost 

EEG headset with dry electrodes that requires only a trivial amount of time to set up and a Virtual 

Reality (VR) headset for the presentation of the emotional stimuli in an immersive VR environment 

which is paired with earphones to provide the full immersive experience needed for the evocation of the 

emotion. The 360 video stimuli are designed and stitched together according to the arousal-valence 

space (AVS) model with each quadrant having an 80-second stimuli presentation period followed by a 

10-second rest period in between quadrants. The EEG dataset is then collected through the use of a 

wearable low-cost EEG using four channels located at TP9, TP10, AF7, AF8. The collected dataset is 

then fed into the machine learning algorithms, namely KNN, SVM and Deep Learning with the dataset 

focused on inter-subject test approaches using 10-fold cross-validation. The results obtained found that 

SVM using Radial Basis Function Kernel 1 achieved the highest accuracy at 85.01%. This suggests that 

the use of a wearable low-cost EEG headset with a significantly lower resolution signal compared to 

clinical-grade equipment which utilizes only a very limited number of electrodes appears to be highly 

promising as an emotion classification BCI tool and may thus spur up open up myriad practical, 

affordable and cost-friendly solutions in applying to the medical, education, military, and entertainment 

domains.   
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1. INTRODUCTION  

 

Although the human emotional experience plays a central part in our daily lives, our scientific 

knowledge relating to such human emotions are still rather limited. Additionally, progress in the 

affective sciences is crucial for the development of machine intelligence models that are able to 

understand the human psychology for the benefit and successful application of advanced technology to 

everyday human activities and human society in general. Humans have been evolving throughout the 

ages since the early times resulting in society becoming more and more complex as well as diverse. 

While emotions seem to have been imprinted into a human’s innate being, both man and machine still 

struggle to decipher human emotions at times, the latter being significantly being more challenging. 

Because of the imprinted emotions that our body seems to depend on and hold on to, the notion here 

proposes that brain signals may be our key to solving emotion modelling and subsequently emotion 

recognition. To understand how our brain activity works, we require equipment that are sensitive 

enough to pick up the small signals that are transmitted throughout our central nervous system, in 
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particular for regions around our brains. Medical technology has evolved rapidly in the last decade and 

devices are now capable of scanning our brain using functional magnetic resonance imaging (fMRI) 

(Mann, Janzen, Wu, Lu, & Guleria, 2016; Subramanian et al., 2018) or through picking up small 

electrical brain signals using non-invasive EEG headsets.  

 There are many attempts by researchers experimenting emotion classification using 

combinations of different medical-grade neurophysiological devices such as GSR (Shahnaz, Masud, & 

Hasan, 2017), ECG (Soleymani, Asghari-Esfeden, Pantic, & Fu, 2014; B. Zhang, Wang, & Fuhlbrigge, 

2010), EMG and EEG (Tran, Thuraisingham, Wijesuriya, Craig, & Nguyen, 2014; Wang, Nie, & Lu, 

2014) to detect the changes in our body function when a stimuli is presented to the user. The use of a 

2D monitor to evoke the emotional responses have been greatly utilized thanks to the available open-

source datasets such as DEAP (Koelstra et al., 2012), IAPS (Khalili & Moradi, 2008), IADS (W. Zhang, 

Shu, Xu, & Liao, 2017), ASCERTAIN (Subramanian et al., 2018), SEED (Yang, Wu, Zheng, & Lu, 

2018) and SEED IV (T. H. Li, Liu, Zheng, & Lu, 2019). With the availability of these datasets, 

researchers have access to the contents used to stimulate the responses of the users and the recorded 

data of their physiological signals such as their heart rate, skin conductance, body temperature, and their 

brainwave signals. 

 Many of the researchers have extracted their raw recorded data of the physiological signals and 

attempted to improve the emotion classification rate through different methods such as pre-processing 

of the dataset, feature smoothing, feature selections, the types of classifiers used to classify the emotions 

and many others. Many of their studies showed some improvements to the accuracy of the classification 

while others have experienced reductions in their classification accuracy. 

 The collection of these recorded physiological signals does come at a cost such as the 

deployment time required for the researcher to collect the EEG signals from multiple channels required 

to be placed according to the international standards of the 10-20 system and the price of these systems 

per channel (Alotaiby, El-Samie, Alshebeili, & Ahmad, 2015; Portelli, Daly, Spencer, & Nasuto, 2011). 

The users have to withstand the lengthy time of setting up the EEG headset due to its sensitive and 

fragile electrodes that require trained personnel to attach them onto the participants while the wires 

hanging over the heads of the participants also weighs them down and causing further stress and fatigue 

on them which may introduce inaccuracies of the EEG signals during recording of the emotional 

responses. Furthermore, the contents that were presented to the participant may have some artifacts 

hidden within the recordings because of the shifted attention away from the monitor screen and this 

method of presentation for the user are not immersive which should be advantageous for stimulating 

strong emotional reactions in subjects. 

 To avoid the possibilities of the inaccuracy which may be caused from either the lack of stimuli, 

fatigue or lack of concentration or immersion to the stimuli, the proposed work then uses a head 

mounted device (HMD) such as a VR headset to provide an immersive experience (Freina & Ott, 2015) 

where the attention of the user are purely on the two screens within the HMD to stimulate the emotional 

reactions. Additionally, the use of a low-cost EEG headset could be the alternative solutions to the more 

expensive and sensitive clinical-grade EEG headset (Mheich, Guilloton, & Houmani, 2017). The 

portable EEG headsets would have no wires hanging over the participants head and would require 

almost no time to set up the headset and is worn over the head easily without any hindrance.  

 

2. METHODOLOGY 

 

2.1 Stimuli Preparation 

 

The stimuli are prepared from collecting various virtual reality capable videoswould be able to provide 

the necessary stimulations according to the four-quadrant system from the arousal-valence space (AVS) 

model (Aguinaga, Lopéz Ramírez, & Rosaria Baltazar Flores, 2015; Bai et al., 2017). The model was 

used to generalized emotional gestures and it provides tags to the respective emotional states as provided 

by Ekman and Friesen (Ekman et al., 1987). The arousal scale ranges from calm to stimulated or excited 

emotion while the valence scale ranges from positive emotions to negative emotions (Verma & Tiwary, 

2017). Fig 2.0 presents the model and its respective emotion tags. The collected VR videos are then 

stitched into 20-second clips with a total of 16 video clips where each quadrant has a total of four video 

clips presented to the participants. 
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Fig 2.0: Arousal-Valence Space Model 

 

2.2 Dataset Collection 

 

The EEG dataset were collected over 31 participants from university students to young working adults 

with no health issues during the collection. The EEG dataset is collected through the use of a 

commercially-off-the-shelf EEG headset where the products are publicly available and is not sensitive 

equipment and is made portable and easy to setup (Kovacevic, Ritter, Tays, Moreno, & McIntosh, 2015; 

Z. Li, Xu, & Zhu, n.d.). The EEG headset used in this experiment is Muse 2016 EEG headset where it 

is capable of collecting sampling rate of 256Hz with four-channels concentrating on the frontal and 

temporal lobe (TP9, TP10, AF7, AF8) with a reference channel at Fpz (Hashemi et al., 2016). The 

electrodes are dry type and does not require extensive amount of time to set up thus making the process 

quick and easy. The dataset is transmitted over a Bluetooth connection to a smartphone installed with a 

Muse Monitor application that helps records the brainwave data and inertial movements (gyroscope and 

accelerometer data) and are then stored in an Excel spreadsheet file (CSV format) and saved over the 

cloud storage for ease of access to be later used for analysis. 

 

 
Fig 2.1: Experimental Setup with EEG headset and VR Headset 
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Fig 2.2: Electrode Positions from Muse EEG Headset 

 

2.3 Classifiers 

 

There are three classifiers which were used to conduct the emotion classifications, namely KNN, SVM 

and Deep Learning due to their prior success in emotion classification tasks (Ben & Wiem, 2017; J. Li, 

Zhang, & He, 2018). SVM was trained using kernel functions including Class Weights, Linear Kernel, 

Polynomial Kernel and three different Radial Basis Function Kernels (RBFK). These classifiers were 

compiled through the use of a statistical analysis platform called R with its sizable repositories of 

classification libraries which was accessed and programmed via its IDE called R Studio.  

 

2.4 Overall Process 

 

Fig 2.1 describes the overall process of the emotion classification from the collections of VR videos to 

the setup of EEG headset and training, testing and predicting the four-class emotion classification. 

While setting up the VR headset for the participants, it is important the users are able to view the videos 

comfortably by adjusting the interpupillary distance (PD) to achieve eye balance of left and right as 

well as the focus on the lens. During the setup of the EEG headset, it was paramount to check the 

connections of the dry electrodes obtaining the brainwave signals from the participants and making sure 

the participants were comfortable wearing the headset. Once the setup is complete, the stimuli videos 

are then shown to the participants and the brainwave sampling begins. Afterward, the collected 

brainwave samples are then passed over to the machine learning algorithms for emotion classification. 
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Fig 2.3: Overall Process of the EEG Emotion Classification Experiment 

 

3. RESULTS AND DISCUSSION 

 

According to Fig 3.0, it can be seen here that Deep Learning algorithms were performing the lowest at 

34.62% in terms of accuracy while KNN performed better at 75.30% compared to Deep Learning. The 

best performing algorithm obtained prior to fine-tuning was from using the Class Weight kernel in SVM 

algorithms, where it obtained an accuracy of 77.36%. In order to see how much of an improvement the 

performance of an emotion classifier could be enhanced, the investigation then focused solely on the 

SVM kernels by fine-tuning its parameters.  
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Fig 3.0: Results from machine learning algorithms (KNN, SVM and DL) prior to fine tuning 

 

While working through the fine-tuning of the parameters for SVM, since it provided the most promising 

results from the initial findings in Fig 3.0, the results after parameter tuning are as shown Fig 3.1 where 

the Radial Basis Function Kernel 1 achieved a performance increase of up to 85.01% followed closely 

by Class Weight kernel at 84.80% and Radial Basis Function Kernel 3 at 84.44%. This shows that for 

a four-class emotion classification, a machine learning approach can properly predict emotions in a 

virtual reality environment given the correct stimuli is presented and an immersive experience is 

presented to the participant properly.  

 

 
Fig 3.1: Tuned Parameters for Kernels from SVM Results. 

 

To further justify whether the machine learning can truly differentiate the emotion classes, the Tables 

3.0, 3.1, 3.2 and 3.3 show the confusion matrices for Class Weight and the three different Radial Basis 

Function Kernels. It can be seen that RBFK for overall performance was able to predict with good 

accuracy for calm, bored and angry emotions, while happy emotions were lower. The same pattern can 
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be seen over the other 3 kernels as well except for RBFK 2 which seems to perform poorly on angry 

and happy emotions. However, as an overall output, happy emotions seem to have difficulty being 

predicted properly even though this happy emotion seemed to be the easiest to provoke. Looking back 

on Fig 2.0, a high arousal state and positive valence are required to provoke that specific happy emotion. 

It could be that the user was not aroused and may have been in the non-arousal state whereby it may 

have contributed to the higher accuracy state for calm and bored.  

 

Table 3.0: Confusion Matrix Table for Five Band Class Weight Classifier in Inter-Subject 

Classification (After Tuning) 

 Calm Bored Angry Happy 

Calm 416 (87.58%) 12 19 21 

Bored 15 406 (85.12%) 13 32 

Angry 30 31 417 (87.42%) 47 

Happy 14 28 28 378 (79.08%) 

 

Table 3.1: Confusion Matrix Table for Five Band RBFK Weight Classifier in Inter-Subject 

Classification (After Tuning) 

 Calm Bored Angry Happy 

Calm 420 (88.42%) 6 18 15 

Bored 20 425 (89.10%) 13 42 

Angry 23 36 422 (88.47%) 67 

Happy 12 10 24 354 (74.06%) 

 

Table 3.2: Confusion Matrix Table for Five Band RBFK 2 Weight Classifier in Inter-Subject 

Classification (After Tuning) 

 Calm Bored Angry Happy 

Calm 370 (77.86%) 38 96 40 

Bored 31 365 (76.52%) 35 89 

Angry 19 47 283 (59.33%) 63 

Happy 55 27 63 286 (58.83%) 

 

Table 3.3: Confusion Matrix Table for Five Band RBFK3 Weight Classifier in Inter-Subject 

Classification (After Tuning) 

 Calm Bored Angry Happy 

Calm 418 (88.00%) 6 22 15 

Bored 22 425 (89.10%) 14 44 

Angry 24 38 419 (87.84%) 71 

Happy 11 8 22 348 (72.80%) 

 

 

4. CONCLUSION & FUTURE WORK 

 

In this research, we have shown that we are able to do a four-class emotion classification on a virtual 

reality environment for emotional stimulations and using only a four-channel low-cost EEG headset. 

The experiments used KNN, SVM and Deep Learning for emotion classification and it was found that 

SVM is superior in emotion classification as is shown in the results and discussion section with the 

confusion matrix provided.  

For future work, integration with the eye-tracker system may increase the accuracy of the emotion 

classification accuracy and assist in tracking the users’ eye movements towards an object they are 

focused on. Furthermore, the combination of different electrode positions for classification such as 

frontal lobe electrodes only or temporal lobe electrodes only may present some evidence of where the 

emotional experience and reactions are processed and generated in the brain.  
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