

Vol. 14, No. 1, pp. 62-72, March 2020 doi: https://doi.org/10.5572/ajae.2020.14.1.062 ISSN (Online) 2287-1160, ISSN (Print) 1976-6912

Technical Information

OAJAE

Missing Value Imputation for PM₁₀ Concentration in Sabah using Nearest Neighbour Method (NNM) and Expectation-Maximization (EM) Algorithm

Muhammad Izzuddin Rumaling¹⁾, Fuei Pien Chee^{1),*}, Jedol Dayou¹⁾, Jackson Hian Wui Chang^{2),3)}, Steven Soon Kai Kong³⁾, Justin Sentian⁴⁾

¹⁾Faculty of Science and Natural Resources (FSNR), Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia ²⁾Preparatory Centre for Science and Technology, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia ³⁾Cloud and Aerosol Laboratory, Department of Atmospheric Science, National Central University, Taoyuan, Taiwan (ROC) ⁴⁾Climate Change Research Group (CCRG), FSNR, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia

*Corresponding author. Tel: +60-88-320-000 E-mail: fpchee06@gmail.com

Received: 28 November 2019 Revised: 28 January 2020 Accepted: 7 February 2020 ABSTRACT Missing data in large data analysis has affected further analysis conducted on dataset. To fill in missing data, Nearest Neighbour Method (NNM) and Expectation Maximization (EM) algorithm are the two most widely used methods. Thus, this research aims to compare both methods by imputing missing data of air quality in five monitoring stations (CA0030, CA0039, CA0042, CA0049, CA0050) in Sabah, Malaysia. PM₁₀ (particulate matter with aerodynamic size below 10 microns) dataset in the range from 2003–2007 (Part A) and 2008-2012 (Part B) are used in this research. To make performance evaluation possible, missing data is introduced in the datasets at 5 different levels (5%, 10%, 15%, 25% and 40%). The missing data is imputed by using both NNM and EM algorithm. The performance of both data imputation methods is evaluated using performance indicators (RMSE, MAE, IOA, COD) and regression analysis. Based on performance indicators and regression analysis, NNM performs better compared to EM in imputing data for stations CA0039, CA0042 and CA0049. This may be due to air quality data missing at random (MAR). However, this is not the case for CA0050 and part B of CA0030. This may be due to fluctuation that could not be detected by NNM. Accuracy evaluation using Mean Absolute Percentage Error (MAPE) shows that NNM is more accurate imputation method for most of the cases.

KEY WORDS Particulate matter, Missing data, Nearest neighbour method, Expectation maximization algorithm, Performance indicators

1. INTRODUCTION

Air quality monitoring in Malaysia is continuously conducted by Department of Environment (DOE) and is done in stations around Malaysia (Dominick *et al.*, 2012). These stations collect PM_{10} concentration data at one-hour interval. However, due to maintenance, calibration of monitoring instruments and power outage, data collected by monitoring stations may suffer missingness. Missing data mechanism can be categorized into three different types: Missing Completely at Random (MCAR), Missing at Random (MAR), and Missing Not at Random (MNAR) (Nakai and Ke, 2011). Missingness is categorized as MNAR when it depends on the missing value itself. MNAR is known to be non-ignorable and missing data due

This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons. org/licenses/by-nc/4.0/), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Copyright © 2020 by Asian Journal of Atmospheric Environment

to MNAR is not possible to be recovered (Graham, 2009). On the other hand, missingness due to MAR depends on the observed data. MAR is ignorable and missing data can be recovered because its missingness does not depend on missing data itself. MCAR is a special case of MAR, where missingness is independent of both missing data and observed data (Dong and Peng, 2013). A set of data containing missing data due to MCAR can be considered as complete dataset because the missingness does not introduce bias (Dong and Peng, 2013). Little's MCAR test can be used to determine whether the missingness is due to MCAR (Li, 2013). If the missingness is not MCAR instead, this test cannot be used to determine whether the missingness is due to MAR or MNAR (Dong and Peng, 2013). In terms of air quality data in Malaysia, missingness can be considered as MAR because the missingness is mainly caused by maintenance, calibration of monitoring instruments and power outage. It does not depend on whether the value of data is lower or higher than certain value. Missingness can affect further analysis that requires complete dataset such as Fourier analysis and principal component analysis.

Particulate matter (PM) is mixture of substances in the form of small particles suspended in the air. PM is one of the critical components of air pollution (Li et al., 2017b). Due to its small size, PM can enter respiratory system, thus becoming one of major concerns in public health (Chang et al., 2018). Because of this, scientific attraction has been attracted towards PM (Shahraiyni and Sodoudi, 2016). PM mainly comes from motor vehicles, dust from construction sites and landfills. It also comes from biomass burning and brought by haze, a typical challenge in Southeast Asia since 1980s (Shaadan et al., 2015). PM_{10} (particulate matter with aerodynamic diameter less than 10 microns) is one of major concern because it possesses hazardous properties towards human health compared to other pollutants such as carbon monoxide and nitrogen dioxide (Kim et al., 2015; Ny and Lee, 2010). This is because it can enter respiratory system while defending natural defences of human body (Chang *et al.*, 2018). PM_{10} can increase risk of asthma, aggravate bronchitis, respiratory syncytial virus (RSV) bronchiolitis and other lung diseases (Carugno et al., 2018; Lelieveld et al., 2015). This is especially true for children aged between 5-15 years (Cadelis et al., 2014). Other than respiratory problems, cardiovascular disease and cancer can be developed due to PM_{10} in the air (Li et *al.,* 2017a).

Many agencies around the world such as European Union (EU) and World Health Organization (WHO) implemented guidelines and set limit on air pollution concentration levels (Abd. Rani *et al.*, 2018). In Malaysia, the guidelines are implemented by DOE. According to New Malaysia Ambient Air Quality Standard, PM_{10} concentration has its standard set to 50 µg/m³ (1-year averaging time) on 2015 before it is gradually lowered to 40 µg/m³ by 2020 (Department of Environment, n. d.). The implementation of this standard is important in order to ensure that air quality can be maintained at safe level. Therefore, there is a need to continuously monitor ambient air quality around Malaysia.

This research focuses on evaluating performance of data imputation on air quality data from five monitoring stations around Sabah. To make performance evaluation possible, missingness is introduced to compare observed data with imputed data. Two methods of data imputation are studied in this research, namely Nearest Neighbour Method (NNM) and Expectation-Maximization (EM) algorithm. Many previous studies have employed nearest neighbour method and expectation-maximization algorithm to obtain complete dataset. However, not many of these studies emphasize on the efficiency of these two methods in data imputation. By comparing between both NNM and EM algorithm, further analysis that requires complete dataset can be made more accurate.

2. DATA AND METHODS

2.1 Study Area and Data

Five monitoring stations (CA0030, CA0039, CA0042, CA0049, CA0050) in Sabah are listed in Table 1. Respective cities of each monitoring station are located as shown in Fig. 1. Except for CA0049, other monitoring stations are located at low altitudes and are close to the sea. Furthermore, Labuan (CA0050) is situated on a small island located at western of Sabah. As shown in Fig. 2, PM₁₀ concentration in Sabah differs between seasons and location (Kanniah *et al.*, 2016). Western coast of Sabah generally has higher PM₁₀ concentration compared to other parts of Sabah all-year round. Also, PM₁₀ concentration in Sabah is generally lower during intermonsoon October. \bigcirc AJAE Asian Journal of Atmospheric Environment, Vol. 14, No. 1, 62-72, 2020

Station ID	Station name	Latitude	Longitude	Altitude (m)
CA0030	SM Putatan, Kota Kinabalu	5.9804° N	116.0735° E	13
CA0039	Pejabat JKR Tawau, Tawau	4.2447° N	117.8912° E	12
CA0042	Pejabat JKR Sandakan, Sandakan	5.8394° N	118.1172° E	10
CA0049	SMK Gunsanad, Keningau	5.3374° N	116.1567° E	288
CA0050	Taman Perumahan MPL, Labuan	5.3441° N	115.2404° E	13

Table 1. Location of monitoring stations in Sabah.

Fig. 1. Location of PM₁₀ monitoring stations at urban and suburban areas (Kota Kinabalu, Tawau, Sandakan, Keningau, Labuan) in Sabah.

These monitoring stations, operated by DOE, continuously measures PM_{10} concentration data at 1-hour interval. PM_{10} concentration is measured using tapered element oscillating microbalance (TEOM), with temporal resolution of 1 h. As wind direction is angular quantity, wind speed and direction must be converted into x-component (east-west) and y-component (northsouth) wind speed using equations (1) and (2). This prevents difficulty in analysis due to nature of angular quantity (Muhammad Izzuddin *et al.*, 2019; Kovač-Andrić *et al.*, 2009).

$$W_x = W_s \sin W_d \tag{1}$$

$$W_v = W_s \cos W_d \tag{2}$$

For the purpose of this research, 10-year hourly data from 2003 to 2012 are divided into two parts. The first

part (Part A) ranges from 2003 to 2007, while the second part (Part B) ranges from 2008 to 2012. Due to climate change, trends of PM_{10} concentration data may differ from both parts. Thus, both parts may have difference in these data.

2.2 Introduce Missingness to Data

In order to ensure that imputed data can be validated, a fraction of observed data must be replaced by missingness. Depending on complexity, missingness is introduced into data by percentage as conducted in previous research by Noor *et al.* (2014) as shown in Table 2. A sequence of zeros and ones (0 - do not replace observed data, 1 - replace observed data with missingness) is randomly generated using MATLAB 2018b and is used as a reference to introduce missingness to observed data. The actual percentage after introducing missingness may

Fig. 2. Spatial distribution of estimated PM₁₀ concentration in Sabah from 2007-2011 for (a) dry season (June-September), (b) wet season (November-March), (c) intermonsoon (April-May), and (d) intermonsoon (October) based on MODIS-AOD₅₀₀ and meteorological variables (Kanniah *et al.*, 2016).

Table 2. Percentage of missingness as conducted by Noor *et al.*(2014).

Degree of complexity	Percentage of missingness $(\%)$
Small	5
	10
Medium	15
	25
Large	40

deviate by up to 2% due to existing missingness in the data.

2.3 Data Imputation

A lot of data imputation method has been proposed for temporal dataset (Bai *et al.*, 2019). Due to simplicity, two of the most popular methods used in data imputation are NNM and EM. NNM is common in replacing missing air quality data (Li and Liu, 2014; Dominick *et al.*, 2012). For a stream of missing data bounded by observed data (x_1, y_1) in lower bound and (x_2, y_2) in upper bound, missing data is replaced with a value calculated using equations (3) and (4) (Abd Rani *et al.*, 2018; Zakaria and Noor, 2018; Siti Zawiyah *et al.*, 2010; Junninen *et al.*, 2004). NNM is performed by executing a code developed using MATLAB 2018b.

$$y = \begin{cases} y_1, \text{ when } x < x_1 + \overline{x} \\ y_2, \text{ when } x \ge x_1 + \overline{x} \end{cases}$$
(3)

$$\bar{x} = \frac{x_2 - x_1}{2} \tag{4}$$

EM algorithm employs a set of iterative equations to estimate mean vector and covariance matrix of multivariate distribution from exponential family (Junger and de Leon, 2015). This method maximizes log likelihood to find parameters when there are missing values (Nakai and Ke, 2011). The simplicity and smooth operation of EM algorithm makes it unique among present multiple imputation methods. In addition, its faster operation compared to the alternatives makes EM algorithm one of the most popular imputation methods (Abd Rani *et al.*,

AJAE Asian Journal of Atmospheric Environment, Vol. 14, No. 1, 62-72, 2020

Station	Missing-ness (%)	RN	RMSE		ÍAE	IC	DA	COD		
		NNM	EM	NNM	EM	NNM	EM	NNM	EM	
	5	18.130	17.161	11.765	11.699	0.760	0.649	0.495	0.509	
	10	17.022	16.864	11.279	11.728	0.782	0.646	0.536	0.505	
CA0030	15	16.887	16.672	11.422	11.715	0.784	0.651	0.540	0.503	
	25	16.862	16.205	11.496	11.488	0.782	0.660	0.538	0.505	
	40	17.362	16.412	11.745	11.504	0.769	0.660	0.521	0.506	
	5	21.701	23.367	13.371	15.648	0.787	0.582	0.522	0.517	
CA0039	10	21.000	23.001	13.213	15.517	0.783	0.566	0.527	0.484	
	15	21.591	22.702	13.640	15.389	0.770	0.572	0.504	0.487	
	25	21.526	22.648	13.756	15.376	0.776	0.569	0.526	0.497	
	40	22.654	22.742	14.220	15.406	0.750	0.569	0.488	0.485	
	5	15.712	17.525	10.841	11.761	0.804	0.511	0.595	0.370	
	10	15.393	16.923	10.609	11.637	0.801	0.530	0.586	0.397	
CA0042	15	15.229	16.543	10.588	11.574	0.795	0.544	0.577	0.407	
	25	14.930	16.151	10.506	11.510	0.798	0.556	0.585	0.428	
	40	15.328	16.313	10.824	11.656	0.792	0.553	0.574	0.425	
	5	13.560	14.797	13.371	10.451	0.841	0.645	0.630	0.566	
	10	13.861	15.218	13.213	10.609	0.835	0.626	0.611	0.534	
CA0049	15	13.707	15.099	13.640	10.639	0.834	0.619	0.613	0.520	
	25	13.883	15.305	13.756	10.640	0.830	0.610	0.599	0.514	
	40	14.302	15.163	14.220	10.597	0.819	0.619	0.586	0.518	
	5	14.937	13.258	10.666	10.095	0.719	0.676	0.482	0.473	
	10	15.685	13.314	10.856	10.093	0.702	0.665	0.451	0.467	
CA0050	15	15.552	13.161	10.818	9.953	0.698	0.664	0.453	0.464	
	25	15.251	13.266	10.752	9.903	0.711	0.663	0.469	0.471	
	40	15.239	13.351	10.843	9.957	0.707	0.661	0.468	0.467	

Fabl	e 3. Perf	ormance ind	dicators	for every	station and	l missing	gness	percenta	ge for	part A	١.
-------------	------------------	-------------	----------	-----------	-------------	-----------	-------	----------	--------	--------	----

Remark: Data ranges from year 2003 to 2007

2018).

Given a set of data consisting of observed data D^{obs} and missing data D^{mis} , EM algorithm starts by defining parameter θ as a random value. Then, E-step (expectation step) calculates the likelihood of each values of D^{mis} for every missingness. M-step (maximization step) uses computed values of D^{mis} to find better estimation of θ . Given the likelihood function L and expected value of log likelihood function $Q(\theta|\theta^{(t)})$, both E-step and M-step iterate until the value converges (Abd Rani *et al.*, 2018). Both E-step and M-step are executed using equations (5) and (6).

$$Q(\theta|\theta^{(t)}) = E\left[\log L\left(\theta; D^{obs}, D^{mis}\right)\right]$$
(5)

$$\theta^{(t+1)} = \arg\max Q(\theta|\theta^{(t)}) \tag{6}$$

2.4 Performance Evaluation

The performance of data imputation is evaluated by using performance indicators. The performance indicators that have been used are root mean square error (RMSE), mean absolute error (MAE), index of agreement (IOA), and coefficient of determination (COD). The performance indicators are calculated by using equations (7) to (10) (Abd. Rani *et al.*, 2018; Nuryazmin *et al.*, 2015; Ul-Saufie *et al.*, 2013; Junninen *et al.*, 2004):

$$RMSE = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (P_i - O_i)^2}$$
(7)

$$MAE = \frac{1}{n} \sum_{i=1}^{n} |P_i - O_i|$$
(8)

		Performance index								
Station	Missing-ness (%)	RM	RMSE		MAE)A	COD		
	. ,	NNM	EM	NNM	EM	NNM	EM	NNM	EM	
	5	16.676	14.553	12.117	10.864	0.734	0.698	0.506	0.521	
	10	16.299	14.486	12.003	10.864	0.751	0.703	0.526	0.533	
CA0030	15	16.578	14.595	12.075	10.933	0.743	0.703	0.512	0.528	
	25	16.971	14.660	12.247	10.975	0.726	0.695	0.495	0.519	
	40	17.758	14.988	12.506	11.055	0.706	0.688	0.461	0.508	
	5	13.996	18.965	9.867	15.145	0.860	0.666	0.661	0.535	
CA0039	10	14.383	18.737	9.9 77	15.062	0.846	0.672	0.629	0.531	
	15	14.365	18.913	9.994	15.164	0.849	0.668	0.647	0.528	
	25	14.602	19.104	10.187	15.258	0.852	0.669	0.654	0.522	
	40	15.484	18.984	10.753	15.246	0.830	0.673	0.632	0.530	
	5	10.615	12.535	7.450	9.652	0.845	0.616	0.640	0.476	
	10	10.308	12.533	7.260	9.675	0.847	0.606	0.642	0.466	
CA0042	15	10.430	12.699	7.287	9.712	0.851	0.602	0.647	0.461	
	25	10.505	12.602	7.368	9.729	0.847	0.602	0.644	0.469	
	40	10.722	12.809	7.526	9.770	0.835	0.591	0.632	0.451	
	5	18.255	17.987	9.86 7	12.430	0.756	0.529	0.457	0.400	
	10	16.754	17.404	9.9 77	12.274	0.780	0.551	0.492	0.428	
CA0049	15	16.966	18.046	9.994	12.457	0.777	0.530	0.486	0.399	
	25	16.771	18.225	10.187	12.574	0.780	0.521	0.495	0.394	
	40	17.564	18.143	10.753	12.629	0.758	0.523	0.462	0.396	
	5	23.646	16.463	14.435	11.360	0.693	0.795	0.405	0.609	
	10	23.071	16.22	14.070	11.317	0.701	0.798	0.427	0.616	
CA0050	15	23.210	16.007	14.114	11.272	0.695	0.809	0.418	0.633	
	25	23.163	16.279	14.173	11.278	0.696	0.800	0.414	0.622	
	40	22.865	16.203	14.213	11.319	0.698	0.800	0.424	0.625	

Table 4. Performance indicators for every station and missingness percentage for part B.

Remark: Data ranges from year 2008 to 2012

$$IOA = 1 - \frac{\sum_{i=1}^{n} (P_i - O_i)^2}{\sum_{i=1}^{n} (|P_i - \overline{O}| + |O_i - \overline{O}|)^2}$$
(9)

$$COD = R^2 = \left(\frac{\sum_{i=1}^{n} (P_i - \overline{P})(O_i - \overline{O})}{n \cdot s_p \cdot s_o}\right)^2 \tag{10}$$

where *n* is total number of data, P_i is predicted value of *i*th data, O_i is observed value of *i*th data, \overline{P} is mean predicted value, \overline{O} is mean observed value, s_p is standard deviation of predicted values, and s_o is standard deviation of observed values.

2.5 Mean Absolute Percentage Error (MAPE)

Mean absolute percentage error (MAPE) is a measure that evaluates accuracy of a prediction model (Khair *et* *al.*, 2017). MAPE indicates error in predicting the value of missing data when comparing to real value. MAPE is calculated using equation (11) as follows (Khair *et al.*, 2017).

$$MAPE = \frac{1}{n} \sum_{i=1}^{n} \frac{|O_i - P_i|}{O_i} \times 100\%$$
(11)

3. RESULT AND DISCUSSION

3.1 Performance Indicators

 PM_{10} concentration datasets for five monitoring stations in Sabah are analysed. RMSE, MAE, IOA, and COD are calculated for every percentage of missingness

Missingness (%)		Station												
	CA0030		CA0039		CA0042		CA0049		CA0050					
	NNM	EM												
5	0.593	0.569	0.633	0.575	0.653	0.406	0.714	0.604	0.524	0.363				
10	0.624	0.547	0.626	0.535	0.648	0.429	0.707	0.580	0.504	0.507				
15	0.626	0.552	0.606	0.539	0.639	0.438	0.704	0.561	0.497	0.504				
25 40	0.622 0.602	0.555 0.560	0.613 0.575	0.541 0.537	0.644 0.634	0.456 0.449	0.698 0.680	0.553 0.558	0.513 0.506	0.514 0.512				

Table 5. Coefficient of correlation for dataset in Part A.

Remark: Data ranges from year 2003 to 2007

 Table 6. Coefficient of correlation for dataset in Part B.

		Station												
Missingness (%)	CAC	CA0030		CA0039		CA0042		CA0049		CA0050				
	NNM	EM	NNM	EM	NNM	EM	NNM	EM	NNM	EM				
5	0.544	0.577	0.746	0.558	0.721	0.493	0.594	0.386	0.498	0.711				
10	0.570	0.587	0.723	0.566	0.725	0.487	0.628	0.412	0.506	0.716				
15	0.560	0.586	0.728	0.560	0.732	0.485	0.622	0.386	0.498	0.729				
25	0.533	0.571	0.732	0.565	0.724	0.490	0.625	0.369	0.500	0.723				
40	0.506	0.564	0.695	0.571	0.704	0.473	0.594	0.363	0.501	0.723				

Remark: Data ranges from year 2008 to 2012

and station for both part A and B. Tables 3 and 4 reveals performance indicators for NNM and EM at 5 missingness levels and 5 different stations for part A and part B respectively. The desirable attributes between these methods are highlighted in bold. In terms of missingness level, there is no definite relationship between performance of data imputation and missingness level. This is because both NNM and EM impute missing data based on available data. As long as available data is sufficient, missing data can still be effectively imputed.

Most of the data show that nearest neighbour method is better imputation method. This may be due to the nature of missingness in relation to ability of EM algorithm to impute data. EM algorithm works best for missing data caused by MCAR (Nakai and Ke, 2011; Graham, 2009). However, air quality data collected in monitoring stations are not caused by MCAR as the cause of missingness is known. This may attribute to lower performance of EM algorithm compared to NNM.

However, this is not the case for CA0050, where most of the performance indicators for that station show that EM algorithm is a better imputation method. This may

68 www.asianjae.org

be due to the fact that Labuan is surrounded by sea. One study has shown that air humidity is affected by bodies of water due to high heat capacity and strong evaporation (Zhu and Zeng, 2018). Furthermore, cold-wet air that surrounds a water body enhances air flow away from bodies of water by changing the local air circulation (Zhu and Zeng, 2018). The local air circulation highly affects humidity in Labuan. Another study suggests that different levels of humidity affects PM₁₀ concentration differently (Lou *et al.*, 2017). PM_{10} concentration increases with humidity up to 60%. Beyond that point, gravity deposition occurs and PM₁₀ concentration begins to drop (Lou et al., 2017). PM₁₀ concentration as monitored by CA0050 may fluctuate due to continually changing of humidity level, traffic congestion and active industrial activity. This fluctuation is not accounted by NNM, leading to indication that EM algorithm is better imputation method for data collected by CA0050.

As for PM_{10} concentration read by CA0030, several performance indicators show that EM algorithm is better imputation method especially for part B of the data. This may be due to fluctuation of PM_{10} concentration in Kota

Fig. 3. Scatter plot for imputation of data from CA0042 and CA0050 for part A and B at various missingness percentage. Blue indicates NNM, red indicates EM, while dashed line represents the point where predicted data equals observed data.

Kinabalu especially between year 2008 and 2012. One study shows that PM_{10} concentration from 16^{th} to 18^{th} January 2012 spiked at 7.00 a.m. and fluctuates at the other time (Chang *et al.*, 2018). When this portion of data is missing, NNM may not be able to restore the missing-

ness as well as EM algorithm.

3.2 Regression Analysis on Imputed Data

The performance of data imputation is further evaluated by calculating correlation of coefficient R on predict-

AJAE Asian Journal of Atmospheric Environment, Vol. 14, No. 1, 62-72, 2020

Set	Missing-ness (%)	Station										
		ng-ness %) Kota Kinabalu		Tawau		Sandakan		Keningau		Labuan		
		NNM	EM	NNM	EM	NNM	EM	NNM	EM	NNM	EM	
	5	35.771	38.619	25.091	27.545	33.003	36.986	26.217	31.333	37.707	39.461	
	10	34.874	39.585	24.925	27.759	32.558	37.109	25.916	31.282	38.180	38.842	
Α	15	35.260	39.367	26.160	27.763	32.853	37.231	25.717	31.038	38.274	38.285	
	25	35.835	38.428	26.496	27.745	32.794	37.773	25.935	31.108	37.627	37.652	
	40	36.051	37.932	27.407	27.668	33.795	37.859	26.467	30.888	37.645	37.812	
	5	42.717	44.935	28.481	59.879	25.373	40.454	27.214	42.656	40.381	37.333	
	10	43.452	46.053	28.743	59.450	25.204	41.661	26.583	43.593	39.701	37.232	
В	15	43.741	45.783	29.204	59.890	25.409	41.824	26.510	43.857	39.440	36.847	
	25	44.431	46.577	30.007	60.157	25.918	42.443	26.655	43.965	39.875	36.972	
	40	45.364	47.055	32.239	60.652	26.601	42.348	27.922	44.606	40.546	37.309	

Table 7. Mean absolute percentage error (MAPE) of stations in Sabah for various missingness level.

ed data against observed data. The most ideal case of imputed data occurs when predicted data equals observed data (R = 1). Tables 5 and 6 reveals coefficient of correlation of data in part A and B respectively, for all five missingness percentages and five stations.

Similar to performance indicators, coefficient of correlation shows that NNM is better imputation method for monitoring stations in Tawau, Sandakan and Keningau. As for CA0030, NNM is better imputation method for Part A, but not in Part B. Dataset recorded by CA0050 strongly suggests that EM algorithm is better imputation method.

Fig. 3 reveals scatter plot of data imputation for both CA0042 and CA0050. CA0042 and CA0050 are selected to be presented in the Fig. 3 because CA0042 is located at high altitude while CA0050 is located in a small island. The predicted-observed regression is shown for both stations due to different geographical condition in contrast to the other three stations. Coefficient of correlation for CA0042 shows relatively large difference between two methods compared to other stations. As shown in Fig. 3, all scatter plots for CA0042 shows that line representing NNM is closer to dashed line compared to line that represents EM algorithm. This shows that NNM has greater tendency to predict missing data closer to observed data compared to EM algorithm. This might be caused by missingness mechanism, in which data is Missing at Random. EM algorithm may not be able to impute MAR data as well as MCAR data (Nakai and Ke, 2011; Graham, 2009).

Meanwhile, CA0050 shows that EM algorithm gives

better coefficient of correlation in contrast to other stations. Despite that, Fig. 3 reveals that NNM has either greater tendency (Part A) or approximately similar to EM algorithm (Part B) to predict missing data. This is because the lines representing NNM and EM are plotted at best fit. However, the scatter plot shows that imputed data by NNM for CA0050 are more dispersed away from line of best fit compared to that of CA0042, which might contribute to lower R value of NNM compared to EM algorithm. Although best fit line for NNM is closer to dashed line, the dispersion of scatter plot shows that EM algorithm is better imputation method compared to NNM.

3.3 Mean Absolute Percentage Error (MAPE)

Performance of data imputation is further evaluated using MAPE. Data imputation is most accurate when MAPE approaches zero. Table 7 reveals accuracy of data imputation using NNM and EM for all stations and various level of missingness. According to Table 7, it is shown that NNM is generally more accurate data imputation method compared to EM (except for CA0050 in set B). This is reflected by lower values for NNM for most of the cases. This may be due to its ability to predict missing data closer to actual data compared to EM.

4. CONCLUSION

Generally, it has been shown that NNM is better imputation method for data from all the monitoring stations in Sabah except CA0050. NNM works most efficient for CA0049 in Part A (RMSE < 14.302, MAE < 10.640, IA>0.819 and COD>0.586) and CA0042 in Part B (RMSE < 10.722, MAE < 7.526, IA > 0.835 and COD >0.632). This may be due to missing data type of MAR. However, strong fluctuation which may be present in data from CA0050 and part B from CA0030 may cause NNM to impute data not as well as EM algorithm. This may be further confirmed by regression analysis for CA0050 (R > 0.711 for part B). Evaluation of accuracy using MAPE reveals that NNM is more accurate imputation method for most cases (except for set B in CA 0050). This shows that NNM can be used as data imputation for missing data found in dataset observed by stations in Sabah. Accurate data imputation is important for future research because this enables further analysis on air quality data to become more reliable.

ACKNOWLEDGEMENT

The authors would like to thank Universiti Malaysia Sabah for supporting this research by providing grant (SBK0324-2018, SGI0054-2018 and GUG0378-2018) and Department of Environment Malaysia for providing meteorological and pollutant data for research purpose.

REFERENCES

- Abd. Rani, N.L., Azid, A., Khalit, S.I., Juahir, H. (2018) Prediction Model of Missing Data: A Case Study of PM₁₀ across Malaysia Region. Journal of Fundamental and Applied Science, 10(1S), 182–203, https://doi.org/10.4314/jfas.v10 i1s.1.
- Bai, K., Li, K., Guo, J., Yang, Y., Chang, N.B. (2019) Filling the gaps of in-situ hourly PM_{2.5} concentration data with the aid of empirical orthogonal function constrained by diurnal cycles. Atmospheric Measurement Techniques, 1–29, https:// doi.org/10.5194/amt-2019-317.
- Cadelis, G., Tourres, R., Molinie, J. (2014) Short-Term Effects of the Particulate Pollutants Contained in Saharan Dust on the Visits of Children to the Emergency Department due to Asthmatic Conditions in Guadeloupe (French Archipelago of the Caribbean). PLOS ONE, 9(3), 1–11, https://doi. org/10.1371/journal.pone.0091136.
- Carugno, M., Dentali, F., Mathieu, G., Fontanella, A., Mariani, J., Bordini, L., Milani, G.P., Consonni, D., Bonzini, M., Bollati, V., Pesatori, A.C. (2018) PM₁₀ exposure is associated with increased hospitalizations for respiratory syncytial virus bronchiolitis among infants in Lombardy, Italy. Environ-

mental Research, 166, 452-457, https://doi.org/10.1016/ j.envres.2018.06.016.

- Chang, H.W.J., Chee, F.P., Kong, S.K.S., Sentian, J. (2018) Variability of the PM_{10} concentration in the urban atmosphere of Sabah and its responses to diurnal and weekly changes of CO, NO₂, SO₂ and Ozone. Asian Journal of Atmospheric Environment, 12(2), 109–126, https://doi. org/10.5572/ajae.2018.12.2.109.
- Department of Environment. (n. d.) New Malaysia Ambient Air Quality Standard. Available at http://www.doe.gov. my/portalv1/wp-content/uploads/2013/01/Air-Quality-Standard-BI.pdf.
- Dominick, D., Juahir, H., Latif, M.T., Zain, S.M., Aris, A.Z. (2012) Spatial assessment of air quality patterns in Malaysia using multivariate analysis. Atmospheric Environment, 60, 172–181, https://doi.org/10.1016/j.atmosenv.2012.06.021.
- Dong, Y., Peng, C.Y.J. (2013) Principled missing data methods for researchers. SpringerPlus, 2(222), 1–17. https://doi. org/10.1186/2193-1801-2-222.
- Graham, J.W. (2009) Missing Data Analysis: Making It Work in the Real World. Annual Review of Psychology, 60, 549–576, https://doi.org/10.1146/annurev.psych.58.110405.085530.
- Junger, W.L., de Leon, A.P. (2015) Imputation of missing data in time series for air pollutants. Atmospheric Environment, 102, 96–103, https://doi.org/10.1016/j.atmosenv.2014. 11.049.
- Junninen, J., Niska, H., Tuppurainen, K., Ruuskanen, J., Kolehmainen, M. (2004) Methods for imputation of missing values in air quality data sets. Atmospheric Environment, 38: 2895-2907, https://doi.org/10.1016/j.atmosenv.2004.02. 026.
- Kanniah, K.D., Kaskaoutis, D.G., Lim, H.S., Latif, M.T., Kamarul Zaman, N.A.F., Liew, J. (2016) Overview of atmospheric aerosol studies in Malaysia: Known and unknown. Atmospheric Research, 182, 302–318, https://doi.org/10.1016/ j.atmosres.2016.08.002.
- Khair, U., Fahmi, H., Al Hakim, S., Rahim, R. (2017) Forecasting Error Calculation with Mean Absolute Deviation and Mean Absolute Percentage Error. Journal of Physics, 930(1), 1–6, https://doi.org/10.1088/1742-6596/930/1/012002.
- Kim, K.H., Kabir, E., Kabir, S. (2015) A review on the human health impact of airborne particulate matter. Environment International, 74, 136–143, https://doi.org/10.1016/j.env int.2014.10.005.
- Kovač-Andrić, E., Brana, J., Gvozdić, V. (2009) Impact of meteorological factors on ozone concentrations modelled by time series analysis and multivariate statistical methods. Ecological Informatics, 4(2), 117-122, https://doi.org/10. 1016/j.ecoinf.2009.01.002.
- Lelieveld, J., Evans, J.S., Fnais, M., Giannadaki, D., Pozzer, A. (2015) The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature, 525(7569), 367–371, https://doi.org/10.1038/nature15371.
- Li, C. (2013) Little's test of missing completely at random. The Stata Journal, 13(4), 795–809, https://doi.org/10.1177/ 1536867X1301300407.
- Li, L., Liu, D.J. (2014) Study on an Air Quality Evaluation Model for Beijing City Under Haze-Fog Pollution Based on

🔾 AJAE Asian Journal of Atmospheric Environment, Vol. 14, No. 1, 62-72, 2020

New Ambient Air Quality Standards. International Joutnal of Environment Research and Public Health, 11, 8909–8923, https://doi.org/10.3390/ijerph110908909.

- Li, L., Wu, A.H., Cheng, I., Chen, J.C., Wu, J. (2017a) Spatiotemporal estimation of historical PM_{2.5} concentrations using PM₁₀, meteorological variables, and spatial effect. Atmospheric Environment. 166, 182–191, https://doi.org/10. 1016/j.atmosenv.2017.07.023.
- Li, X., Chen, X., Yuan, X., Zeng, G., León, T., Liang, J., Chen, G., Yuan, X. (2017b) Characteristics of Particulate Pollution (PM_{2.5} and PM₁₀) and Their Spacescale-Dependent Relationships with Meteorological Elements in China. Sustainability, 9(12), 2330–2443, https://doi.org/10.3390/su9122 330.
- Lou, C., Liu, H., Li, Y., Peng, Y., Wang, J., Dai, L. (2017) Relationships of relative humidity with PM_{2.5} and PM₁₀ in the Yangtze River Delta, China. Environmental Monitoring Assessment, 189(11), 1–16, https://doi.org/10.1007/s10 661-017-6281-z.
- Muhammad Izzuddin, R., Chee, F.P., Dayou, J., Chang, H.W.J., Soon, K.K.S., Sentian, J. (2019) Temporal Assessment on Variation of PM₁₀ Concentration in Kota Kinabalu using Principal Component Analysis and Fourier Analysis. Current World Environment, 14(3), 400–410, https://doi. org/10.12944/CWE.14.3.08.
- Nakai, M., Ke, W. (2011) Review of the Methods for Handling Missing Data in Longitudinal Data Analysis. International Journal of Mathematical Analysis, 5(1), 1-13.
- Noor, H.M., Nasrudin, N., Foo, J. (2014) Determinants of Customer Satisfaction of Service Quality: City bus service in Kota Kinabalu, Malaysia. Procedia - Social and Behavioral Sciences, 153, 595–605, https://doi.org/10.1016/j.sbspro. 2014.10.092.
- Nuryazmin, A.Z., Abdul Aziz, J., Nora, M. (2015) A Compari-

son of Various Imputation Methods for Missing Values in Air Quality Data. Sains Malaysiana, 44(3), 449–456.

- Ny, M.T., Lee, B.K. (2010) Size Distribution and Source Identification of Airborne Particulate Matter and Metallic Elements in a Typical Industrial City. Asian Journal of Atmospheric Environment, 4(1), 9–19, https://doi.org/10.4209/ aagr.2010.10.0090.
- Shaadan, N., Jemain, A.A., Latif, M.T., Mohd. Deni, S. (2015) Anomaly detection and assessment of PM₁₀ functional data at several locations in the Klang Valley, Malaysia. Atmospheric Pollution Research, 6, 365–375, https://doi.org/ 10.5094/APR.2015.040.
- Shahraiyni, H.T., Sodoudi, S. (2016) Statistical Modeling Approaches for PM₁₀ Prediction in Urban Areas; A Review of 21st-Century Studies. Atmosphere, 7, 1–24, https://doi. org/10.3390/atmos7020015.
- Siti Zawiyah, A., Mohd Talib, L., Aida Shafawati, I., Liew, J., Abdul Aziz, J. (2010) Trend and status of air quality at three different monitoring stations in the Klang Valley, Malaysia. Air Quality, Atmosphere and Health, 3, 53–64, https://doi. org/10.1007/s11869-009-0051-1.
- Ul-Saufie, A.Z., Yahaya, A.S., Ramli, N.A., Rosaida, N., Abdul Hamid, H. (2013) Future daily PM₁₀ concentrations prediction by combining regression models and feedforward backpropagation models with principle component analysis (PCA). Atmospheric Environment, 73, 621–630, https:// doi.org/10.1016/j.atmosenv.2013.05.017.
- Zakaria, N.A., Noor, N.M. (2018) Imputation Methods for Filling Missing, Data in Urban Air Pollution Data for Malaysia. Urbanism, 9(2), 159–166.
- Zhu, C., Zeng, Y. (2018) Effects of urban lake wetlands on the spatial and temporal distribution of air PM_{10} and $PM_{2.5}$ in the spring in Wuhan. Urban Forestry and Urban Greening, 31, 142–156. https://doi.org/10.1016/j.ufug.2018.02.008.