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Abstract

Heavy metals with high chemical activity from sludge and waste release, agriculture, and 
mining activity are a major concern. They should be carefully managed before reaching the 
main water bodies. Excessive exposure to heavy metal may cause toxic effect to any types of 
organism from the biomolecular to the physiological level, and ultimately cause death. Moni-
toring is the best technique to ensure the safety of our environment before a rehabilitation is 
needed. Nowadays, enzyme-based biosensors are utilised in biomonitoring programmes as 
this technique allows for a real-time detection and rapid result. It is also inexpensive and easy 
to handle. Enzyme-based biosensors are an alternative for the preliminary screening of 
contamination before a secondary screening is performed using high-performance technology. 
This review highlights the current knowledge on enzyme-based biosensors, focusing on 
cholinesterase for toxic metal detection in the environment. 
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Introduction

 Several heavy metals work as a cofactor in 
metabolic functions in the living systems. Moreover, 
they can trigger a number of responses only in trace 
amounts. Examples of metabolic processes that require 
heavy metals as a mediator are the thermal stability 
regulation of human ceruloplasmin (Sedlák et al., 
2008), redox reaction (Miranda et al., 2000), mitochon-
drial respiration, iron absorption, free radical scaveng-
ing, and elastin crosslinking (Salvamani et al., 2016). 
Unfortunately, low and high concentration of heavy 
metals, either in the form of ion or salt in a biological 
system, will disrupt and slow down some reactions, 
thus damaging the main function of the system (Sabul-
lah et al., 2015). Heavy metal excess has become a 
public concern as compared to heavy metal deficiencies 
because of the adverse effect towards individuals and 
also possibility to be released into the environment 
(Ralph and McArdle, 2001). The major sources of 
heavy metal pollution are heavy industrial activities, 
agriculture, and mining. However, other sources of 
toxic metal ions have also been recorded from various 
types of industries, which are summarised in Table 1. 
Heavy metals exist in the ionic state which accidentally 
leads to leaching or being carried by runoff water into 
nearby waterways, eventually flowing into water 

resources. Aquatic organisms have high chances to be 
exposed to these contaminants, and the ones that do 
will exhibit a variety of symptoms, particularly a 
decrease in swimming activity (Waser et al., 2009), 
critical avoidance behaviour (Lopes et al., 2004; Padri-
lah et al., 2017), and reduced appetite, all of which 
affect their growth performance (Ali et al., 2003), 
which may then induce death (Lauer et al., 2012). This 
situation depends on the concentration levels and time 
of exposure (Dornfeld et al., 2009).
 Scopus indexed the number of papers 
published during 2008 - 2017 based on heavy metal 
toxicity, which has been increasing by year (Figure 1). 
Studies on lead (Pb) toxicity have the highest number 
of publications with a total of 22,884 papers in 10 years, 
followed by zinc (Zn), copper (Cu), cadmium (Cd), 
arsenic (As), mercury (Hg), chromium (Cr), and nickel 
(Ni) at 9,333, 9,133, 8,099, 5,156, 3,647, 3,567, and 
3,269, respectively. Based on fold popularity from 
2008 to 2017, studies on Pb, Cd, Cr, Ni, and Zn toxicity 
increased more than two-fold as compared to those on 
Cu, Hg, and As. However, a review by Tierney et al. 
(2010) focused more on copper toxicity as this com-
pound gives a negative impact on biological systems 
at a concentration lower than 10 µg/L. Tchounwou et 
al. (2012) mentioned that Hg ranks the highest in heavy 
metal toxicity, and other studies have proved this 
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Figure 1. The number of papers published during 2008 - 2017. The search was carried out on Scopus by using eight research 
queries: nickel, mercury, chromium, arsenic, cadmium, copper, zinc, and lead toxicity (Scopus, August 2018).
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statement, such as those by Apartin and Ronco (2001), 
Bellas et al. (2001), and Ramakritinan et al. (2012).
 However, other reports prove that Cu is the 
most toxic metal, such as the study done by 
Nałecz-Jawecki and Sawicki (1998), which showed 
that Cu is the most toxic metal on protozoans, followed 
by silver (Ag) and Hg, based on lethal response evoked 
by these compounds. The toxic effects of copper are 
proven by Daphnia magna (planktonic crustacean), 
which was sensitive towards this compound at a lower 
LC50 value as compared to Zn and lead Pb (Arambasic 
and Bjelic, 1995). Hutchinson and Williams (1994) 
also proved that a lower Cu concentration caused 50% 
mortality in Cyprinodon variegatus (sheepshead 

pupfish) as compared to Cd and chromium Cr. Regard-
ing the effects of heavy metals on plants, Fargašová 
(2004) reported that Cu showed the highest inhibition 
on Sinapis alba (white mustard) growth, followed by 
Cd, iron (Fe), Zn, and Pb. Manusadžianas et al. (2002) 
suggested that Hg, Cu, and Cd are in the group of the 
most toxic metal, as shown by their adverse effect on 
Nitellopsis obtusa (alga) at the cellular, cell membrane, 
and enzyme levels. On the other hand, a study by Bat 
et al. (1999), based on the calculation of lethality time 
(LT50) on Idotea balthica (marine isopod), reported 
that Zn was the most toxic compound as compared to 
Cu and Pb, and Pb was less toxic on this species. Toxi-
cology bioassay on the mortality rate (EC50) of two 

Industry 
  Metal   

As Cd Cr Cu Hg Ni Pb Zn 
Mining activity and ore processing √ √   √  √  

Alloys, electroplating, and metallurgy √ √ √ √ √ √ √ √ 
Chemical industries √ √ √ √ √  √ √ 

Ink, dye, and pigment manufacturing √ √  √ √ √ √  
Glass, ceramic, and porcelain √  √      

Print and photography  √ √   √ √ √ 
Pulp and paper mills   √ √ √    

Leather tanning √  √ √ √   √ 
Drugs and pharmaceuticals    √ √    
Fabric and textile industry √ √  √ √ √   

Nuclear technology  √       
Pesticides and fertilisers √ √ √ √ √ √  √ 

Chloralkali process √ √ √  √   √ 
Oil refining √ √ √  √ √  √ 

  

Table 1. Source of metal-based pollutants from various industries.



Sabullah, M. K., et al./IFRJ 27(4) : 597 - 609 599

marine microalgae, Isochrysis galbana and 
Tetraselmis chui, proved that Cu had toxic effect on 
these species at a lower concentration as compared to 
Pb (Liu et al., 2011). Verslycke et al. (2003) also 
reported that Pb was less toxic as compared to Cu 
based on acute 96 h toxicity tests on Neomysis integer 
(opossum shrimp). Arsenic (As) toxicity is also of 
concern; the trivalent form of this metal ion generally 
has higher solubility in water and is more toxic as com-
pared to pentavalent As (Hughes et al., 2011). Similar-
ly, As3+ exposure on human cells resulted in higher 
cytotoxicity as compared to As5+ (Styblo et al., 2000). 
Liebl et al. (1995) proved the capability of As3+ to 
block gluconeogenesis and inhibit glucose uptake in 
rat kidney tubules, while As5+ had no significant effect. 
Thus, more studies need to be conducted to reduce the 
hazardous impact to living organisms and their habitat. 
 
Biosensor development
 Inductively coupled plasma atomic emission 
spectroscopy (ICP-AES), inductively coupled plasma 
mass spectrometry (ICP-MS), and inductively coupled 
plasma optical emission spectrometry (ICP-OES) are 
the current mainstream test methods to identify and 
quantify the presence of metal ion in any samples. Shi 
et al. (2009) used ICP-AES to quantify trace elements 
in wheat grain, while Rui et al. (2008a) used ICP-MS 
to distinguish heavy metal contents in two different 
nitrogen fertilisers, ammonium sulphate-based and 
urea-based fertilisers. Other than that, ICP was used 
to determine heavy metal contamination level in soil 
and crop along the Yellow River basin (Rui et al., 
2008b). Unfortunately, this sensitive analytical 
method is too expensive, consumes much time, and 
needs skilful technician to operate the whole system. 
Nowadays, biomarkers have been developed as an 
alternative to measure the effect or stress level of heavy 
metals on the environmental. This test is a preliminary 
screening, which consists of various test levels from 
the molecular origin to physiological observation. For 
example, fish have been utilised as a biomarker to 
determine water contamination based on their 
biochemical reaction, cellular alteration, and behav-
iour (Albertsson et al., 2007; Farombi et al., 2007; 
Al-Ghais, 2013; Ahmad et al., 2016a; Hayat et al., 
2017). Each toxicant elicits a response from the 
biomarker, thus generating the idea of manipulating 
these biomaterials to develop a sensitive biosensor. A 
biosensor utilises naturally occurring recognition 
components isolated from the environment and biolog-
ical system through separation and purification 
processes, or is synthetically synthesised to enhance 
the function by increasing the sensitivity and stability 
of the component (Bohunicky and Mousa, 2011). A 

biosensor also gives convincing result, consumes 
cheaper cost and less time, and does not require skilful 
technician to handle the test, as compared to other 
analytical tests (Mascini and Tombelli, 2008; Tothill, 
2009). A biosensor is designed as a compact and sensi-
tive sensing device by the utilisation of biological com-
ponents such as enzyme and antibodies, with physico-
chemical detection of an analyte (Mascini and Tombel-
li, 2008; Bănică, 2012; Ngoepe et al., 2013). This 
device is also capable of generating full or semi-quanti-
tative analytical information based on the output 
(Thévenot et al., 2001). The development of biosensor 
technology is associated with the increasing develop-
ment of water companies, manufacturing industries, 
agricultural activities, mining activities, and urbanisa-
tion, in which this situation has demanded high quality 
and toxicant-free biosensors (Tothill, 2001). Biosen-
sors are widely applied in biomedical diagnostics such 
as for the detection of diseases (e.g. diabetes) and preg-
nancy (Yoo and Lee, 2010; Bohunicky and Mousa, 
2011; Mach et al., 2011). Biosensors are also utilised 
in the agricultural and food industries to detect the 
existence of allergens and pathogens in the products 
(Narsaiah et al., 2012; Rigi et al., 2013). In addition, 
biosensors have been developed to monitor environ-
mental pollutions, such as silage effluent (Stephens et 
al., 1997), pesticides (Arduini et al., 2006; Viswana-
than et al., 2009), heavy metals (Long et al., 2013; 
Shukor et al., 2013), bacterial pathogens (Liao et al., 
2007), and chlorinated solvents (Bhattacharyya et al., 
2005). In summary, the application of biosensors as a 
diagnostic tool has been used in various fields of study.

Cholinesterase-based biosensor for heavy metal 
detection
 Biomonitoring programmes using 
enzyme-based biosensor have been applied to assess 
toxicant level in food safety and the environment 
(Luque de Castro and Herrera 2003; Amine et al., 
2006). Heavy metal is one of the most abundant 
toxicants in our environment that are of concern, since 
acute or chronic exposure to this compound affects 
mortality. Thus, biosensor assays based on enzyme 
inhibition have been developed by various researchers 
to evaluate the toxicity level of heavy metals, such as 
the studies done by Lee and Lee (2002), Soldatkin et 
al. (2012), and Shukor et al. (2013). García Sánchez 
et al. (2003) reported that only a few types of enzyme 
are suitable to be a biosensor candidate for the detection 
of heavy metal contamination. Our review focuses on 
cholinesterase (ChE) studies as its considerable sensi-
tivity and ability to detect multiple toxicants have a 
great deal of potential for biosensor development. In 
vivo and in vitro studies using ChE in various species 
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have been implemented to elucidate adverse effects of 
toxicants; these studies enhance the information about 
the effects of heavy metals on ChE, especially the 
possibility for biosensor kit development (Table 2). 
ChE such as acetylcholinesterase (AChE) and butyryl-
cholinesterase (BChE) can be distinguished based on 
substrate and inhibitor specificity, kinetic properties, 
and distribution in tissue (Xiao et al., 2010; Romani 
et al., 2011; Yang et al., 2013). Hsiao et al. (2004) men-
tioned that AChE plays a big role in fast hydrolysis of 
the neurotransmitter acetylcholine in the synaptic cleft, 
while Giacobini (2003) and Reid et al. (2013) reported 
BChE as a co-regulator in the absence of AChE. Anoth-
er main function of BChE is as a defence mechanism 
which works as a detoxifying enzyme in the liver 
(Sparks et al., 1999; Çokuğraş, 2003). 
 
Anti-cholinesterase effects
 The activity of ChE is related to the effect of 
nerve agents, also called anti-cholinesterase, such as 
carbamate and organophosphate. The principle of 
using cholinesterase as a biosensor is based on the 
evaluation of the decrease in its enzymatic activity, 
since it is inhibited by anti-cholinesterase (Pohanka, 
2009). This means that the substrate acetylcholine is 
unable to be hydrolysed, resulting in a decrease of or 
no production of 2-nitrobenzoate-5-mercaptothiocho-
line and 5-thio-2-nitrobenzoate. This resulted in 
yellow colour production on both chromogens which 
can be measured at 405 nm (Aidil et al., 2013). Carba-
mate and organophosphate bind at the active site of 
cholinesterase through carbamylation and phosphoryl-
ation, respectively (Fukuto, 1990; Rosenberry et al., 
2005). Heavy metals such as As (Patlolla and Tchoun-
wou, 2005; Ali et al., 2010), Ag (Shukor et al., 2013), 
Cd (Devi and Fingerman, 1995), Cr (Elumalai et al., 
2002), Cu (Elumalai et al., 2002; Howcroft et al., 2011; 
Lima et al., 2013; Sabullah et al., 2013; Shukor et al., 
2013), Ni (Arduini et al., 2005), Pb (Mat-Jais and 
Mohamed, 2000), and Zn (Mat-Jais and Mohamed, 
2000; Diamantino et al., 2003) are capable of inhibiting 
ChE activity either in vitro or in vivo. Other metal ions 
such as aluminium (Al3+) and iron (Fe2+) cause the 
reduction of ChE activity in rat and human plasma, 
respectively (Yellamma et al., 2010; Karami et al., 
2010). 
 Metal ions that have a positive charge and 
facilitate enzyme-catalysed reactions are known as 
cofactors (Mones et al., 2007). The toxic level of metal 
ion may affect enzyme activity because of structure 
alteration, inhibition, and protein denaturation, caus-
ing cellular disorder (Blackwell et al., 1995). Tomlin-
son et al. (1981) noted two effects of heavy metal on 
ChE activity: (1) activation, such as by magnesium 

ion (Mg2+), calcium ion (Ca2+), manganese ion (Mn2+), 
and sodium ion (Na+); and (2) inactivation or inhibi-
tion, such as by Zn2+, Cd2+, Hg2+, Ni2+, Cu2+, and Pb2+. 
Ca2+ and Mg2+ have been demonstrated to reactivate 
ChE activity after being inhibited by Cd2+ and Zn2+ 
(Elkhashab, 2013). Romani et al. (2003) reported that 
in vitro exposition of Cu improved catalytic efficiency 
of ChE in the brain and muscle, while an in vivo test 
by Lima et al. (2013) showed a significant increase in 
ChE activity during the first two days the fish were 
exposed to 0.06 mg/L of Cu, and decreased after seven 
days of exposure. Other in vitro studies also proved 
Cu inhibition towards ChE activity (Shukor et al., 
2013; Sabullah et al., 2013). The effects of Cu on sea 
snails have only been shown in vitro but not in vivo 
(Cunha et al., 2007). These findings provide much 
information especially on the combination of in vivo 
and in vitro studies in the development of sensitive 
biosensor kits.
 Previous studies have shown that heavy metals 
block substrate metabolism, either by directly binding 
at the active site of the enzyme or at the allosteric site, 
which causes conformational change and substrate 
inability to form enzyme-substrate complex (Mathonet 
et al., 2006; Giedroc and Arunkumara, 2007; Ahmad 
et al., 2016b). Amino acid residue plays an important 
role in attracting the substrate or possible inhibitor to 
bind at the active or allosteric site of the protein (Glusk-
er et al., 1999; Armentrout et al., 2013). The ChE inhib-
itor organophosphate has the affinity to bind at the 
esteratic site, which contains a serine (Ser) residue 
(Sultatos and Kaushik, 2008), while carbamate inter-
acts with both esteratic and anionic subsites containing 
histidine (His), tyrosine (Tyr), and glutamate (Glu), or 
substitution by aspartate (Asp) (Nair and Hunter, 2004; 
Carolan et al., 2010; Pohanka, 2011). Frasco et al. 
(2007) reported the irreversible inhibition of Hg 
through binding at histidine (His), methionine (Met), 
tryptophan (Trp), threonine (Thr), and asparagine 
(Asn) residues. Cu, Ni, and Zn have been reported to 
be capable of binding at the imidazole group of His 
through strong cation-π attraction (Bhanumathy and 
Balasubramanian, 1998; Rajesh, 2009; Ralph et al., 
2011; Rodzik et al., 2020). 
 However, there is still no report on the interac-
tion of other heavy metals with amino acids of ChE, 
although several studies have proven their inhibitory 
effects. Other possible theories of enzyme inhibition 
have arisen, such as the covalent binding of metal ion 
with carbon to form metal-organic compounds or bind-
ing at the sulfhydryl or thiol group of amino acids (Van 
Assche and Clijsters, 1990; Flora and Pachauri, 2010). 
Sarkarati et al. (1999) reported that the negative charge 
of amino acids such as glutamic and aspartic acids may 
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Figure 2. Mechanism of reversible inhibition of ChE by a metal ion. E = ChE, S = acetylcholine substrate, I = metal ion 
which is ChE inhibitor, and P = product of reaction (choline and acetate). (A) Competitive inhibition where either ChE 
reversibly interacts with acetylcholine to form ES complex followed by product formation, or ChE is reversibly inhibit-
ed by a metal ion. (B) Uncompetitive inhibition where metal ion only reversibly inhibits the reaction after the forma-
tion of ES complex. (C) Non-competitive inhibition shows the metal ion’s ability to form ESI complex either by directly 
interacting with ChE or ES complex. Acetylcholine also shows the same interaction with metal ion but is only hydro-
lysed after complete formation of ES complex. (D) Mixed-type inhibition is similar to non-competitive inhibition in 

which acetylcholine is capable of being hydrolysed during the formation of ES or ESI complex.

interact with the metal ion, especially at the amino 
acid side chain that contains a carboxyl group. Another 
possibility is that the heavy metals attract the other 
side chain of Met (thioether), Ser, Thr, Tyr (hydroxyl 
groups), Asp, and Gln (carbonyl group) (Glusker et 
al., 1999; Armentrout et al., 2013). Frasco et al. (2007) 
investigated the inhibition of ChE by heavy metals 
through kinetic studies, X‐ray crystallography, and 
dynamic light scattering. Assis et al. (2015) deter-
mined the inhibitory effect of metal ion in Rachycen-
tron canadum (black kingfish) brain ChE through a 
kinetic study, where Hg2+ was competitively inhibit-
ing the enzyme activity. In contrast, Frasco et al. 
(2007) showed irreversible inhibition in ChE activity: 
Cu2+ and Cd2+ showed non-competitive inhibition 
while Zn2+, Pb2+, and As5+ displayed mixed-type 
inhibition. Similar results were reported by Sabullah 
et al. (2015) and Vivek et al. (2016) on Cu2+ and Cd2+, 
which non-competitively inhibited ChE in Puntius 
javanicus (Java barb) and male albino rat, respective-
ly. Pb2+ displayed uncompetitive inhibition of ChE in 
human erythrocytes (Gupta et al., 2015). Figure 2 
illustrates the main types of metal ion inhibition on 
ChE activity. 

Conclusion

 The application of the ChE inhibition test has 
become a significant interest in the development of a 
sensitive biosensor kit for toxicant detection. At 
present, ChE has been reported to be sensitive 
towards heavy metals either in vivo or in vitro. 
Hence, it will become a beneficial tool for real-time 
analysis in the future for multiple-toxicant detection 
in various industrial sectors such as food safety and 
medicine. 
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