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Emotions are fundamental for human beings and play an important role in human cognition. Emotion is commonly associated
with logical decision making, perception, human interaction, and to a certain extent, human intelligence itself. With the growing
interest of the research community towards establishing some meaningful “emotional” interactions between humans and
computers, the need for reliable and deployable solutions for the identification of human emotional states is required. Recent
developments in using electroencephalography (EEG) for emotion recognition have garnered strong interest from the research
community as the latest developments in consumer-grade wearable EEG solutions can provide a cheap, portable, and simple
solution for identifying emotions. Since the last comprehensive review was conducted back from the years 2009 to 2016, this paper
will update on the current progress of emotion recognition using EEG signals from 2016 to 2019.*e focus on this state-of-the-art
review focuses on the elements of emotion stimuli type and presentation approach, study size, EEG hardware, machine learning
classifiers, and classification approach. From this state-of-the-art review, we suggest several future research opportunities in-
cluding proposing a different approach in presenting the stimuli in the form of virtual reality (VR). To this end, an additional
section devoted specifically to reviewing only VR studies within this research domain is presented as the motivation for this
proposed new approach using VR as the stimuli presentation device. *is review paper is intended to be useful for the research
community working on emotion recognition using EEG signals as well as for those who are venturing into this field of research.

1. Introduction

Although human emotional experience plays a central part
in our daily lives, our scientific knowledge relating to the
human emotions is still very limited. *e progress for af-
fective sciences is crucial for the development of human
psychology for the benefit and application of the society.
When machines are integrated into the system to help
recognize these emotions, it would improve productivity
and reduce the cost of expenditure in many ways [1], for
example, integrations of machines into the society such as
education where observations of student’s mental state to-
wards the contents of the teaching materials being engaging
or nonengaging can be detected. Medical doctors would be
able to assess their patients’ mental conditions and provide
better constructive feedback to improve their health

conditions. *e military will be able to train their trainees in
simulated environments with the ability to assess their
trainees’ mental conditions in combat situations.

A person’s emotional state may become apparent
through subjective experiences, internal and external ex-
pressions. Self-evaluation reports such as the Self-Assess-
ment Manikin (SAM) [2] is commonly used for evaluating
the mental state of a person by measuring the three inde-
pendent and bipolar dimensions [3], presented visually to
the person by reflecting images of pleasure-displeasure,
degree of arousal, and dominance-submissiveness. *is
method provides an alternative to the sometimes more
difficult assessment of psychological evaluations of a patient
done by a medical profession where they would require
thorough training and experience to understand the pa-
tient’s mental health conditions. However, the validity and
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corroboration of the information provided from the patient
using the SAM report are unreliable given that many people
have difficulty expressing themselves honestly or lack of
knowledge or grasp towards their mental state. SAM is also
not feasible to be conducted on young children or elders due
to the limitation of literacy skills [4]. *erefore, the phys-
iological signals that are transported throughout the human
body can provide health information directly from patients
to medical professionals and evaluate their conditions al-
most immediately. *e brainwave signal of a human being
produces insurmountable levels of neuron signals that
manage all functionalities of the body. *e human brain
stores the emotional experiences that are gathered
throughout their lifetime. By tapping directly into the
brainwave signals, we can examine the emotional responses
of a person when exposed to certain environments. With this
information provided from the brainwave signals, it can help
strengthen and justify the person is physically fit or may be
suffering from mental illness.

*e architectural design and cost of the EEG headset
differ differently. *e difference here is that the type of
electrodes used to collect the brainwave signals affects the
quality as well as the duration of setup [5–7].*ere are also a
different number of electrodes placed across the human
scalp, and the resolution of these EEG headsets differs
depending on the build quality and technological accessi-
bility [8–10]. Due to the sensitivity of the electrodes, many
users are required to be very static when the brainwave
collection procedure is initiated, and any small body or head
movements may accidentally detach the electrodes out from
the scalp and require to be reattached to the head which
could waste time and materials. Any hair strands where the
electrodes would be placed had to be removed to receive
proper connection of the brainwave signals. *erefore,
people with large hair volumes would face difficulty as the
hair would need to be shifted or removed. Artefacts are
noises produced from muscle movements such as eye
blinking, jaw clenching, andmuscle twitches which would be
picked up by the electrodes [11–14]. Furthermore, external
interferences such as audio noise or sense of touch may also
introduce artefacts into the brainwave signals during col-
lection, and these artefacts will need to be removed by the
use of filtering algorithms [15–20]. Finally, the brainwave
signals will need to be transformed from time domain to
frequency domain using fast Fourier transform (FFT) [21] to
assess and evaluate the specific brainwave bands for emotion
recognition with machine learning algorithms.

Since the last comprehensive review for emotion rec-
ognition was published by Alarcao and Fonseca [22], this
review paper will serve as an update on the previously
reviewed paper. *e paper is organized as follows: Section 2
includes the methodology of reviewing this paper by using
specific keywords search. Section 3 will cover the definition
of what emotion is, EEG, brainwave bands, general positions
of EEG electrodes, comparison between clinical and low-cost
wearable EEG headset, emotions in the brain, and virtual
reality (VR). Section 4 will review past studies of emotion
classification by comparing the types of stimulus, emotion
classes, dataset availability, common EEG headset used for

emotion recognition, common algorithms and perfor-
mances of machine learning in emotion recognition, and
participants involved. Section 5 provides discussion, and
finally, Section 6 concludes the study.

2. Methodology

*e approach adopted in this state-of-the-art review firstly
performs queries on the three most commonly accessed
scholarly search engine and database, namely, Google
Scholar, IEEE Explore, and ScienceDirect, to collect papers
for the review using the keywords “Electroencephalography”
or “EEG”+ “Emotion”+ “Recognition” or “Classification” or
“Detection”with the publication year ranging only from 2016
to 2019. *e papers resulting from this search are then
carefully vetted and reviewed so that works that were similar
and incremental from the same author were removed,
leaving only distinctly significant novel contributions to
EEG-based emotion recognition.

2.1. State of the Art. In the following paragraphs, the paper
will introduce the definitions and representations of emo-
tions as well as some characteristics of the EEG signals to
give some background context for the reader to understand
the field of EEG-based emotion recognition.

3. Emotions

Affective neuroscience is aimed to elucidate the neural
networks underlying the emotional processes and their
consequences on physiology, cognition, and behavior
[23–25]. *e field has been historically centered around
defining the universal human emotions and their somatic
markers [26], clarifying the cause of the emotional process
and determining the role of the body and interoception in
feelings and emotions [27]. In affective neuroscience, the
concept of emotions can be differentiated from various
constructs such as feelings, moods, and affects. Feelings can
be viewed as a personal experience that associates itself with
that emotion. Moods are diffuse affective states that gen-
erally last longer than emotions and are less intense than
emotions. Lastly, affect is an encompassing term that de-
scribes the topics of emotions, feelings, and moods alto-
gether [22].

Emotions play an adaptive, social, or motivational role in
the life of human beings as they produce different charac-
teristics indicative of human behavior [28]. Emotions affect
decision making, perception, human interactions, and hu-
man intelligence. It also affects the status of humans
physiologically and psychologically [29]. Emotions can be
expressed through positive and negative representations,
and from them, it can affect human health as well as work
efficiency [30].

*ree components influence the psychological behavior
of a human, which are personal experiences, physiological
response, and behavioral or expressive response [31, 32].
Emotions can be described as being responsive to discrete or
consistent responses of events with significance for the
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organisms [33] which are brief in duration and corresponds
to a coordinated set of responses.

To better grasp the kinds of emotions that are being
expressed daily, these emotions can be viewed from cate-
gorical perspective or dimensional perspective. *e cate-
gorical perspective revolves around the idea of basic
emotions that have been imprinted in our human physi-
ology. Ekman [34] states that there are certain characteristics
of basic emotions: (1) humans are born with emotions that
are not learned; (2) humans exhibit the same emotions in the
same situation; (3) humans express these emotions in a
similar way; and (4) humans show similar physiological
patterns when expressing the same emotions. *rough these
characteristics, Ekman was able to summarize the six basic
emotions of happiness, sadness, anger, fear, surprise, and
disgust, and he viewed the rest of the emotions as a
byproduct of reactions and combinations of the basic
emotions. Plutchik [35] proposes that there are eight basic
emotions described in a wheel model, which are joy, trust,
fear, surprise, sadness, disgust, anger, and anticipation. Izard
(Izard, 2007; Izard, 2009) describes that (1) basic emotions
were formed in the course of human evolution and (2) each
basic emotion corresponded to a simple brain circuit and
there was no complex cognitive component involved. He
then proposed his ten basic emotions: interest, joy, surprise,
sadness, fear, shyness, guilt, anger, disgust, and contempt.
On the other hand, from the dimensionality perspective, the
emotions are mapped into valence, arousal, and dominance.
Valence is measured from positive to negative feelings,
arousal is measured from high to low, and similarly,
dominance is measured from high to low [38, 39].

Understanding emotional signals in everyday life envi-
ronments becomes an important aspect that influences
people’s communication through verbal and nonverbal
behavior [40]. One such example of emotional signals is
expressed through facial expression which is known to be
one of the most immediate means of human beings to
communicate their emotions and intentions [41]. With the
advancement of technologies in brain-computer interface
and neuroimaging, it is now feasible to capture the brain-
wave signals nonintrusively and to measure or control the
motions of devices virtually [42] or physically such as
wheelchairs [43], mobile phone interfacing [44], or pros-
thetic arms [45, 46] with the use of a wearable EEG headset.
Currently, the advancement of artificial intelligence and
machine learning is being actively developed and researched
to adopt to newer applications. Such applications include
neuroinformatics field which studies the emotion classifi-
cation by collecting brainwave signals and classifying them
using machine learning algorithms. *is would help im-
prove human-computer interactions to meet human needs
[47].

3.1. .e Importance of EEG for Use in Emotion Classification.
EEG is considered a physiological clue in which electrical
activities of the neural cells cluster across the human cerebral
cortex. EEG is used to record such activities and is reliable
for emotion recognition due to its relatively objective

evaluation of emotion compared to nonphysiological clues
(facial expression, gesture, etc.) [48, 49]. Works describing
that EEG contains the most comprehensive features such as
the power spectral bands can be utilized for basic emotion
classifications [50]. *ere are three structures in the limbic
system as shown in Figure 1, where the brain heavily im-
plicates emotion and memory: the hypothalamus, amygdala,
and hippocampus.*e hypothalamus handles the emotional
reaction while the amygdala handles external stimuli that
process the emotional information from the recognition of
situations as well as analysis of potential threats. Studies have
suggested that amygdala is the biological basis of emotions
that store fear and anxiety [51–53]. Finally, the hippocampus
integrates emotional experience with cognition.

3.2. Electrode Positions for EEG. To be able to replicate and
record the EEG readings, there is a standardized procedure
for the placements of these electrodes across the skull, and
these electrode placement procedures usually conform to the
standard of the 10–20 international system [54, 55]. *e “10
and “20” refers to the actual distances between the adjacent
electrodes either 10% or 20% of the total front to back or
right to the left of the skull. Additional electrodes can be
placed on any of the existing empty locations. Figure 2 shows
the electrode positions placed according to the 10–20 in-
ternational system.

Depending on the architectural design of the EEG
headset, the positions of the EEG electrodes may differ
slightly than the standard 10–20 international standard.
However, these low-cost EEG headsets will usually have
electrodes positioned at the frontal lobe as can be seen from
Figures 3 and 4. EEG headsets with a higher number of
channels will then add electrodes to the temporal, parietal,
and occipital lobe such as the 14-channel Emotiv EPOC+
and Ultracortex Mark IV. Both these EEG headsets have
wireless capabilities for data transmission and therefore have
no lengthy wires dangling around their body which makes it
feasible for this device to be portable and easy to setup.
Furthermore, companies such as OpenBCI provide 3D-
printable designs and hardware configurations for their EEG
headset which provides unlimited customization to their
headset configurations.

3.3. Clinical-Grade EEG Headset vs. Wearable Low-Cost EEG
Headset. Previously, invasive electrodes were used to record
brain signals by penetrating through the skin and into the
brain, but technology improvements have made it possible
for electrical activity of the brain to be recorded by using
noninvasive electrodes placed along the scalp of the brain.
EEG devices focus on event-related (stimulus onset) po-
tentials or spectral content (neural oscillations) of EEG.*ey
can be used to diagnose epilepsy, sleep disorders, enceph-
alopathies (brain damage or malfunction), and other brain
disorders such as brain death, stroke, or brain tumors. EEG
diagnostics can help doctors to identify medical conditions
and appropriate injury treatments to mitigate long-term
effects.
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EEG has advantages over other techniques because of the
ease to provide immediate medical care in high traffic
hospitals with lower hardware costs as compared to mag-
netoencephalography. In addition, EEG does not aggravate
claustrophobia in patients, can be used for patients who
cannot respond, or cannot make a motor respond or at-
tending to a stimulus where EEG can elucidate stages of
processing instead of just final end results.

tMedical-grade EEG devices would have channels ranging
between 16 and 32 channels on a single headset or more
depending on the manufacturer [58] and it has amplifier
modules connected to the electrodes to amplify these
brainwave signals which can be seen in Figure 5. *e EEG
devices that are used in clinics help to diagnose and char-
acterize any symptoms obtained from the patient and these
data are then interpreted by a registered medical officer for
medical interventions [60, 61]. A study conducted by Obeid

and Picone [62] where the clinical EEG data stored in secure
archives are collected andmade publicly available.*is would
also help establish a best practice for curation and publication
of clinical signal data. Table 1 shows the current EEG market
and the pricing of its products available for purchase.
However, the cost of EEG headsets is not disclosed from the
middle-cost range most likely due to the sensitivity of the
market price or they would require clients to specifically order
according to their specifications unlike the low-cost EEG
headsets, which disclosed the cost of their EEG headsets.

A low-cost, consumer-grade wearable EEG device
would have channels ranging from 2 to 14 channels [58]. As
seen from Figure 6, the ease of setup while wearing a low-
cost, consumer-grade wearable EEG headset provides
comfort and reduces the complexity of setting up the device
on the user’s scalp, which is important for both researchers
and users [63]. Even with the lower performance of
wearable low-cost EEG devices, it is much more affordable
compared to the standard clinical-grade EEG amplifiers
[64]. Interestingly, the supposedly lower performance EEG
headset could outperform a medical-grade EEG system
with a lesser number of electrodes [65]. *e lower cost of
wearable EEG systems could also detect artefacts such as
eye blinking, jaw clenches, muscle movements, and power
supply line noises which can be filtered out during pre-
processing [66]. *e brain activity of the wireless portable
EEG headset can also assist through the imagined direc-
tional inputs or hand movements from a user, which was
compared and shown to perform better than medical-grade
EEG headsets [67–70].

3.4. Emotions in the Brain. In recent developments, a high
number of neurophysiological studies have reported that
there are correlations between EEG signals and emotions.
*e two main areas of the brain that are correlated with
emotional activity are the amygdala and the frontal lobe.
Studies showed that the frontal scalp seems to store more
emotional activation compared to other regions of the brain
such as temporal, parietal, and occipital [71].
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Figure 1: *e limbic system (source: https://courses.lumenlearning.com/boundless-psychology/chapter/biology-of-emotion/#:∼:text�*e
%20limbic%20system%20is%20the,thalamus%2C%20amygdala%2C%20and%20hippocampus).
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Figure 2: *e 10–20 EEG electrode positioning system (source:
[56]).
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In a study regarding music video excerpts, it was ob-
served that higher frequency bands such as gamma were
detected more prominently when subjects were listening to
unfamiliar songs [72]. Other studies have observed that
high-frequency bands such as alpha, beta, and gamma are
more effective for classifying emotions in both valence and
arousal dimensions [71, 73] (Table 2).

Previous studies have suggested that men and women
process emotional stimuli differently, suggesting that men
evaluate current emotional experiences relying on the recall
of past emotional experiences, whereas women seemed to
directly engage with the present and immediate stimuli to
evaluate current emotional experiences more readily [74].
*ere is also some evidence that women share more similar
EEG patterns among them when emotions are evoked, while
men have more individual differences among their EEG
patterns [75].

In summary, the frontal and parietal lobes seem to store
the most information about emotional states, while alpha,
gamma, and beta waves appear to be most discriminative.

3.5. What Is Virtual Reality (VR)? VR is an emerging
technology that is capable of creating some amazingly re-
alistic environments and is able to reproduce and capture
real-life scenarios. With great accessibility and flexibility, the
adaptation of this technology for different industries is
limitless. For instance, the use of a VR as a platform to train
fresh graduates to be better in soft skills while applying for a
job interview can better prepare them for real-life situations
[76].*ere are also applications where moods can be tracked
based on their emotional levels while viewing movies, thus
creating a list of databases for movie recommendations for
users [77]. It is also possible to improve social skills for
children with autism spectrum disorder (ASD) using virtual
reality [78]. To track all of the emotion responses of each
person, the use of a low-cost wearable EEG that is wireless is
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Figure 3: A 14-channel low-cost wearable EEG headset Emotiv EPOC worn by subject (source: [57]).

Figure 4: 8- to 16-channel Ultracortex Mark IV (source: https://
docs.openbci.com/docs/04AddOns/01-Headwear/MarkIV).

Figure 5: A medical-grade EEG headset B-Alert X10, 10 channels
(source: [59]).
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now feasible to record the brainwave signals and then
evaluate the mental state of the person with the acquired
signals.

VR is used by many different people with many
meanings. Some of the people would refer to this technology
as a collection of different devices which are a head-mounted
device (HMD), glove input device, and audio [79]. *e first
idea of a virtual world was presented by Ivan Sutherland in
1965 which he was quoted as saying: “make that (virtual)
world in the window look real, sound real, feel real and
respond realistically to the viewer’s actions” [80]. Afterward,
the first VR hardware was realized with the very first HMD
with appropriate head tracking and has a stereo view that is

updated correctly according to the user’s head position and
orientation [81].

From a study conducted by Milgram and Kishimo [82]
regarding mixed reality, it is a convergence of interaction
between the real world and the virtual world. *e term
mixed reality is also used interchangeably with augmented
reality (AR) but most commonly referred to as AR nowa-
days. To further understand what AR really is, it is the
incorporation of virtual computer graphic objects into a real
three-dimensional scene, or alternatively the inclusions of
real-world environment elements into a virtual environment
[83]. *e rise of personal mobile devices [84] especially in
2010 accelerated the growth of AR applications in many

Table 1: Market available for EEG headset between low and middle cost.

Product tier Products Channel positions Sampling
rate Electrodes Cost

Low-cost range
(USD99-USD 1,000)

Emotiv EPOC+ AF3, F7, F3, FC5, T7, P7, O1, O2, P8, T8, FC6, F4,
F8, AF4 32Hz–64Hz 14 USD 799.00

NeuroSky
MindWave FP1 512Hz 1 USD 99.00

Ultracortex “Mark
IV” EEG headset FP2, FP1, C4, C3, P8, P7, O2, O1 128Hz 8–16 USD 349.99

Interaxon Muse AF7, AF8, TP9, TP10 256Hz 4 USD 250.00

Middle-cost range
(USD 1,000-USD
25,000)

B-Alert X Series Fz, F3, F4, Cz, C3, C4, P3, P4, Poz 256Hz 10 (Undisclosed)

ANT-Neuro eego rt

AF7, AF3, AF4, AF8, F5, F1, F2, F6, FT7, FC3, FCZ,
FC4, FT8, C5, C1, C2, C6, TP7, CP3, CPz, CP4,
TP8, P5, P1, P2, P6, PO7, PO5, PO3, PO4, PO6,

PO8

2048Hz 64 (Undisclosed)

Figure 6: 21-channel OpenBCI electrode cap kit (source: https://docs.openbci.com/docs/04AddOns/01-Headwear/ElectrodeCap).

Table 2: EEG signals and its frequency bands.

Band name Frequency band (Hz) Functions
Delta <4 Usually associated with the unconscious mind and occurs in deep sleep
*eta 4–7 Usually associated with the subconscious mind and occurs in sleeping and dreaming
Alpha 8–15 Usually associated with a relaxed mental state yet aware and are correlated with brain activation
Beta 16–31 Usually associated with active mind state and occurs during intense focused mental activity
Gamma >32 Usually associated with intense brain activity

6 Computational Intelligence and Neuroscience

https://docs.openbci.com/docs/04AddOns/01-Headwear/ElectrodeCap


areas such as tourism, medicine, industry, and educations.
*e inclusion of this technology has been nothing short of
positive responses [84–87].

In VR technology, the technology itself opens up to
many new possibilities for innovations in areas such as
healthcare [88], military [89, 90], and education [91].

4. Examining Previous Studies

In the following section, the papers obtained between 2016
and 2019 will be analyzed and categorized according to the
findings in tables. Each of the findings will be discussed
thoroughly by comparing the stimulus types presented,
elapsed time of stimulus presentation, classes of emotions
used for assessments, frequency of usage, the types of
wearable EEG headsets used for brainwave collections and
its costs, the popularity usage of machine learning algo-
rithms, comparison of intra- and intersubject variability
assessments, and the number of participants conducted in
the emotional classification experiments.

4.1. Examining the Stimulus Presented. Recent papers col-
lected from the years 2016 to 2019 found that the common
approach towards stimulating user’s emotional experience
was music, music video, pictures, video clips, and VR. Of the
five stimuli, VR (31.03%) was seen to have the highest
common usage for emotion classification followed by music
(24.14%), music videos and video clips (both at 20.69%), and
pictures (3.45%) which can be observed in Table 3.

*e datasets the researchers used to collect for their
stimulation contents are ranked as follows: first is Self-
Designed at 43.75%, second is DEAP at 18.75%, third are
SEED, AVRS, and IAPS at 6.25%, and lastly, IADS,
DREAMER, MediaEval, Quran Verse, DECAF, and NAPS
all at 3.13%. *e most prominent use for music stimuli all
comes from the DEAP dataset [121] which is highly regarded
and commonly referred to for its open access for researchers
to conduct their research studies. While IADS [122] and
MediaEval [123] are both open-source content for their
music database with labeled emotions, it does not seem that
researchers have utilized the database much or might be
unaware of the availability of these datasets. As for video-
related contents, SEED [124–126], DREAMER [127], and
ASCERTAIN [107] do provide their video database either
openly or upon request. Researchers who designed their own
stimulus database used two different stimuli, which are
music and video clips, and of those two stimuli approaches,
self-designed with music stimuli have 42.86% and self-
designed video clips have 57.14%. Table 3 provides the in-
formation for accessing the mentioned databases available
for public usage.

One of the studies was not included in the clip length
averaging (247.55 seconds) as this paper reported the total
length instead of per clip video length. *e rest of the papers
in Table 4 have explicitly mentioned per clip length or the
range of the video length (taken at maximum length) that
were used to average out the length per clip presented to the
participants. Looking into the length of the clips whether it is

in pictures, music, video clips, or virtual reality when
measured on average, the length per clip was 107 seconds
with the shortest length at 15 seconds (picture) while the
longest was at 820 seconds (video clip). *is may not reflect
properly with the calculated average length of the clip since
some of the lengthier videos were only presented in one
paper and again because DEAP was referred repeatedly (60
seconds).

Looking into VR focused stimuli, the researchers
designed their own stimuli database that would fit into their
VR environment since there is a lack of available datasets as
those currently available datasets were designed for viewing
from a monitor’s perspectives. Affective Virtual Reality
System (AVRS) is a new database designed by Zhang et al.
[114] which combines IAPS [128], IADS, and China Af-
fective Video System (CAVS) to produce a virtual envi-
ronment that would accommodate VR headset for emotion
classification. However, the dataset has only been evaluated
using Self-Assessment Manikin (SAM) to evaluate the ef-
fectiveness of the AVRS system delivery of emotion and
currently is still not made available for public access. Nencki
Affective Picture System (NAPS) developed by Marchewka
et al. [129] uses high-quality and realistic picture databases
to induce emotional states.

4.2. Emotion Classes Used for Classification. 30 papers
studying emotion classification were identified, and only 29
of these papers are tabulated in Table 4 for reference on its
stimuli presented, the types of emotions assessed, length of
their stimulus, and the type of dataset utilized for their
stimuli presentation to their test participants. Only 18
studies have reported the emotional tags used for emotion
classification and the remaining 11 papers use the two-di-
mensional emotional space while one of the papers did not
report the emotional classes used but is based on the DEAP
dataset, and as such, this paper was excluded from Table 4.
Among the 18 investigations that reported their emotional
tags, an average number of 4.3 emotion classes were utilized
and ranged from one to nine classes that were used for
emotion classifications. *ere were a total of 73 emotional
tags used for these emotional classes with some of the
commonly used emotional classes such happy (16.44%), sad
(13.70%), and fear (12.33%), which Ekman [34] has de-
scribed in his six basic emotions research, but the other three
emotion classes such as angry (5.48%), surprise (1.37%), and
disgust (5.48%) were not among the more commonly used
tags for emotional classifications. *e rest of the emotional
classes (afraid, amusement, anger, anguish, boredom, calm,
contentment, depression, distress, empathy engagement,
enjoyment, exciting, exuberance, frightened, frustration,
horror, nervous, peaceful, pleasant, pleased, rage, relaxation,
tenderness, workload, among others) were used only be-
tween 1.37% and 5.48% and these do not include valence,
arousal, dominance, and liking indications.

Emotional assessment using nonspecific classes such as
valence, arousal dominance, liking, positive, negative, and
neutral had been used 28 times in total. Emotional assess-
ment using the two-dimensional space such as valence and
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arousal where valence was used to measure the positive or
negative emotions showed about 32.14% usage in the ex-
periment and arousal where the user’s level of engagement
(passive or active) was also seen to have 32.14% usage in
these papers. *e lesser evaluated three-dimensional space
where dominance was included showed only 7.14% usage.
*is may be due to the higher complexity of the emotional
state of the user and requires them to have a knowledgeable
understanding of their mental state control. As for the re-
mainder nonspecific tags such as positive, negative, neutral,
liking, these usages range between 3.57% and 10.71% only.

Finally, there were four types of stimuli used to evoke
emotions in their test participants consisting solely of music,
music videos, video clips, and virtual reality with one report
that combines both music and pictures together. Music
contains audible sounds that can be heard daily such as rain,
writing, laughter, or barking as done from using IAPS
stimulus database while other auditory sounds used musical
excerpts collected from online musical repositories to induce
emotions. Music videos are a combination of rhythmic songs
with videos with dancing movements. Video clips pertaining
to Hollywood movie segments (DECAF) or Chinese movie
films (SEED) were collected and stitched according to their
intended emotion representation needed to entice their test
participants. Virtual reality utilizes the capability of being
immersed in a virtual reality environment with users being
capable of freely viewing its surroundings. Some virtual
reality environments were captured using horror films or a
scene where users are only able to view objects from its static
position with environments changing its colours and pat-
terns to arouse the users’ emotions. *e stimuli used for
emotion classification were virtual reality stimuli having
seen a 31.03% usage, music at 24.14%, both music videos and
video clips at 20.69% usage, and finally the combination of
music and picture at 3.45% single usage.

4.3.CommonEEGHeadsetUsed forRecordings. *e tabulated
information on the common usage of wearable EEG headsets is

described in Table 5. *ere were 6 EEG recording devices that
were utilized for EEG recordings. *ese headsets are NeuroSky,
Emotiv EPOC+, B-Alert X10, Ag Electrodes, actiChamp, and
Muse. Each of these EEG recording devices is ranked according
to their usages: BioSemi ActiveTwo (40.00%), Emotiv EPOC+,
and NeuroSky MindWave (13.33%), while the remainder had
6.67% usage from actiChamp, Ag/AgCK Sintered Ring Elec-
trodes, AgCl Electrode Cap, B-Alert X10, andMuse. Among the
six EEG recording devices here, only the Ag Electrodes are
required to manually place its electrodes on the scalp of their
subjects while the remaining five EEG recording devices are
headsets that have preset electrode positions for researchers to
place the headset easily over their subject’s head. To obtain better
readings from the electrodes of these devices, the Emotiv
EPOC+ and Ag Electrodes are supplied with an adhesive gel to
improve the signal acquisition quality from their electrodes and
Muse only required to use a wet cloth applied onto the skin to
improve their signal quality due to its dry electrode technology
while the other three devices (B-Alert X10, actiChamp, and
NeuroSky) do not provide recommendations if there is any need
to apply any adhesive element to help improve their signal
acquisition quality. All of these devices are capable of collecting
brainwave frequencies such as delta, theta, alpha, beta, and
gamma, which also indicates that the specific functions of the
brainwave can be analyzed in a deeper manner especially for
emotion classification, particularly based on the frontal and
temporal regions that process emotional experiences. With
regard to the regions of the brain, Emotiv EPOC+ electrode
positions can be placed at the frontal, temporal, parietal, and
occipital regions, B-Alert X10 and actiChamp place their
electrode positions at the frontal and parietal region, Muse
places their electrode positions at the frontal and temporal
region, andNeuroSky places their electrode positions only at the
frontal region. Ag Electrodes have no limitations on the number
of electrodes provided as this solely depends on the researcher
and the EEG recording device only.

Based on Table 5, of the 15 research papers which dis-
closed their headsets used, only 11 reported on their col-
lected EEG brainwave bands with 9 of the papers having

Table 3: Publicly available datasets for emotion stimulus and emotion recognition with different methods of collection for neurophys-
iological signals.

Item
No. Dataset Description

1 DEAP
“Dataset for Emotion Analysis using Physiological and Video Signals” is an open-source dataset to analyze
human affective states. *e dataset consists of 32 recorded participants watching 40 music video clips with a

certain level of stimuli evaluated

2 IADS “*e International Affective Digital Sounds” system is a collection of digital sounds that is used to stimulate
emotional responses through acoustics and is used in investigations of emotion and attention of an individual

IAPS “*e International Affective Picture” system is a collection of the emotionally evocative picture that is used to
stimulate emotional responses to investigate the emotion and attention of an individual

4 DREAMER A dataset that has collected 23 participants with signals from EEG and ECG using audio-visual stimuli responses.
*e access of this dataset is restricted and can be requested upon filling a request form to the owner

5 ASCERTAIN A “database for implicit personality and affect recognition” that collects signals from EEG, ECG, GSR, and facial
activities from 58 individuals using 36 movie clips with an average length of 80 seconds

6 SEED *e “SJTU Emotion EEG Dataset” is a collection of EEG signals collected from 15 individuals watching 15 movie
clips and measures the positive, negative, and neutral emotions

7 SEED-IV An extension of the SEED dataset that now specifically targets the labels of the emotion specifically, happy, sad,
fear, and neutral with an additional eye tracking feature added into the collection data inclusive of the EEG signal
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collected all of the five bands (delta, theta, alpha, beta, and
gamma) while 2 of the papers did not collect delta band and
1 paper did not collect delta, theta, and gamma bands. *is
suggests that emotion classification studies, both lower
frequency bands (delta and theta) and higher frequency
bands (alpha, beta, and Gamma) are equally important to
study and are the preferred choice of brainwave feature
acquisition among researchers.

4.4. Popular Algorithms Used for Emotion Classification.
*e recent developments on human-computer interaction
(HCI) that allows the computer to recognize the emotional
state of the user provide an integrated interaction between
human and computers. *is platform propels the tech-
nology forward and creates vast opportunities for

applications to be applied in many different fields such as
education, healthcare, and military applications [131].
Human emotions can be recognized through various
means such as gestures, facial recognition, physiological
signals, and neuroimaging.

According to previous researchers, over the last decade
of research on emotion recognition using physiological
signals, many have deployed numerous methods of classi-
fiers to classify the different types of emotional states [132].
Features such as K-nearest neighbor (KNN) [133, 134],
regression tree, Bayesian networks, support vector machines
(SVM) [133, 135], canonical correlation analysis (CCA)
[136], artificial neural network (ANN) [137], linear dis-
criminant analysis (LDA) [138], and Marquardt back-
propagation (MBP) [139] were used by researchers to
classify the different emotions. However, the use of these

Table 4: Comparison of stimuli used for the evocation of emotions, length of stimulus video, and emotion class evaluation.

Research
author Stimuli Dataset Clip length Emotion classes

[92] Music IADS (4 songs) 60 sec per clip Pleasant, happy, frightened, angry
[93] Music Self-Designed (40 songs) — Happy, angry, afraid, sad

[94] Music Self-Designed (301 songs collected
from different albums) 30 sec per clip Happy, angry, sad, peaceful

[95] Music Self-Designed (1080 songs) —
Anger, sadness, happiness, boredom,
calm, relaxation, nervousness, pleased,

and peace

[96] Music Self-Designed (3552 songs from
Baidu) — Contentment, depression, exuberance

[97] Music 1000 songs from MediaEval 45 sec per clip Pleasing, angry, sad, relaxing

[98] Music Self-Designed (25
songs +Healing4Happiness dataset) 247.55 sec Valence, arousal

[99] Music + picture IAPS, Quran Verse, Self-Designed
(Musicovery, AMG, Last.fm) 60 sec per clip Happy, fear, sad, calm

[100] Music videos DEAP (40 music videos) 60 sec per clip Valence, arousal, dominance, liking
[101] Music videos DEAP (40 music videos) — Valence, arousal
[102] Music videos DEAP (40 music videos) 60 sec per clip Valence, arousal
[103] Music videos DEAP (40 music videos) 60 sec per clip —
[104] Music videos DEAP (40 music videos) 60 sec per clip Valence, arousal
[105] Music videos DEAP (40 music videos) 60 sec per clip Valence, arousal, dominance
[106] Video clips Self-Designed (12 video clips) 150-sec per clip Happy, fear, sad, relax
[107] Video clips DECAF (36 video clips) [108] 51–128 sec per clip Valence, arousal
[109] Video clips Self-designed (15 video clips) 120–240 sec per clip Happy, sad, fear, disgust, neutral

[110] Video clips SEED (15 video clips), DREAMER
(18 video clips)

SEED (240 sec per clip),
DREAMER (65–393 sec

per clip)

Negative, positive, and neutral (SEED).
Amusement, excitement, happiness,

calmness, anger, disgust, fear, sadness,
and surprise (DREAMER)

[111] Video clips SEED (15 video clips) 240 sec per clip Positive, neutral, negative
[112] Video clips Self-Designed (20 video clips) 120 sec per clip Valence, arousal
[113] VR Self-Designed (4 scenes) — Arousal and valence
[114] VR AVRS (8 scenes) 80 sec per scene Happy, sad, fear, relaxation, disgust, rage
[115] VR Self-Designed (2 video clips) 475 sec + 820 sec clip Horror, empathy

[116] VR Self-Designed (5 scenes) 60 sec per scene Happy, relaxed, depressed, distressed,
fear

[117] VR Self-Designed (1 scene) — Engagement, enjoyment, boredom,
frustration, workload

[118] VR Self-Designed (1 scene that changes
colour intensity) — Anguish, tenderness

[114] VR AVRS (4 scenes) — Happy, fear, Peace, disgust, sadness

[119] VR NAPS (Nencki Affective Picture
System) (20 pictures) 15 sec per picture Happy, fear

[120] VR Self-Designed (1 scene) 90 sec per clip Fear
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different classifiers makes it difficult for systems to port to
different training and testing datasets, which generate dif-
ferent learning features depending on the way the emotion
stimulations are presented for the user.

Observations were made over the recent developments
of emotion classifications between the years 2016 and 2019
and it shows that many techniques described earlier were
applied onto them with some other additional augmen-
tation techniques implemented. Table 6 shows the classi-
fiers used and the performance achieved from these
classifications, and each of the classifiers is ranked ac-
cordingly by popularity: SVM (31.48%), KNN (11.11%), NB
(7.41%), MLP, RF, and CNN (5.56% each), Fisherface
(3.70%), BP, Bayes, DGCNN, ELM, FKNN, GP, GBDT,
Haar, IB, LDA, LFSM, neural network, neuro-fuzzy net-
work, WPDAI-ICA, and HC (1.85% each) while one other
used Biotrace+ (1.85%) software to evaluate their classifi-
cation performance and it was unclear as to which algo-
rithm technique was actually applied for the performance
obtained.

As can be seen here, SVM and KNN were among the
more popular methods for emotion classification and the
highest achieved performance was 97.33% (SVM) and
98.37% (KNN). However, there were other algorithms
used for emotion classification that performed very suc-
cessfully as well and some of these classifiers which crossed

the 90% margin were CNN (97.69%), DGCNN (90.40%),
Fisherface (91.00%), LFSM (92.23%), and RF (98.20%).
*is suggests that other classification techniques may be
able to achieve good performance or improve the results of
the classification. *ese performances only show the
highest performing indicators and do not actually reflect
the general emotion consensus as some of these algorithms
worked well on the generalized arousal and/or valence
dimensions and in other cases used very specific emotional
tags, and therefore, it is difficult to directly compare the
actual classification performance across all the different
classifiers.

4.5. Inter- and Intrasubject Classification in the Study of
Emotion Classification. *e definition of intersubject vari-
ability is the differences in brain anatomy and functionality
across different individuals whereas intrasubject variability
is the difference in brain anatomy and functionality within
an individual. Additionally, intrasubject classification con-
ducts classification using the training and testing data from
only the same individual whereas intersubject classification
conducts classification using training and testing data that is
not limited to only from the same individual but from across
many different individuals. *is means that in intersubject
classification, testing can be done without retraining the

Table 5: Common EEG headset recordings, placements, and types of brainwave recordings.

Research
author

EEG headset model
used Brief description of electrode placements Frequency bands recorded

[102] BioSemi ActiveTwo
Prefrontal, prefrontal-frontal, frontal, frontal-central,
temporal, central, central-parietal, parietal, parietal-

occipital, occipital

*eta, alpha, lower-beta, upper-beta,
gamma

[130] NeuroSkyMindWave Prefrontal
Delta, theta, low-alpha, high-alpha,
low-beta, high-beta, low-gamma, mid-

gamma
[120] actiChamp Frontal, central, parietal, occipital Delta, theta, alpha, beta, gamma
[109] AgCl Electrode Cap — Delta, theta, alpha, beta, gamma
[103] BioSemi ActiveTwo Frontal Delta, theta, alpha, beta, gamma

[104] BioSemi ActiveTwo
Prefrontal, prefrontal-frontal, frontal, frontal-central,
temporal, central, central-parietal, parietal, parietal-

occipital, occipital
Delta, theta, alpha, beta, gamma

[105] BioSemi ActiveTwo
Prefrontal, prefrontal-frontal, frontal, frontal-central,
temporal, central, central-parietal, parietal, parietal-

occipital, occipital
Delta, theta, alpha, beta, gamma

[117] Emotiv EPOC+ Prefrontal-frontal, frontal, frontal-central, temporal,
parietal, occipital, frontal-central Delta, theta, alpha, beta, gamma

[58] Muse Temporal-parietal, prefrontal-frontal Delta, theta, alpha, beta, gamma
[107] NeuroSkyMindWave Prefrontal Delta, theta, alpha, beta, gamma

[119] Emotiv EPOC+ Prefrontal-frontal, frontal, frontal-central, temporal,
parietal, occipital, frontal-central

Alpha, low-beta, high-beta, gamma,
theta

[101] BioSemi ActiveTwo
Prefrontal, prefrontal-frontal, frontal, frontal-central,
temporal, central, central-parietal, parietal, parietal-

occipital, occipital
Alpha, beta

[112] Ag/AgCK Subtered
Ring Electrodes Fp1, T3, F7, O1, T4, Fp2, C3, T5, F3, P3, T6, P4, O2, F4, F8 —

[113] B-Alert X10 Frontal, central, parietal —

[100] BioSemi ActiveTwo
Prefrontal, prefrontal-frontal, frontal, frontal-central,
temporal, central, central-parietal, parietal, parietal-

occipital, occipital
—
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classifier for the individual being tested. *is is clearly a
more challenging task where the classifier is trained and
tested using different individuals’ EEG data. In recent
studies, there has been an increasing number of studies that
focused on appreciating rather than ignoring classification.
*rough the lens of variability, it could gain insight on the
individual differences and cross-session variations, facili-
tating precision functional brain mapping and decoding
based on individual variability and similarity. *e applica-
tion of neurophysiological biometrics relies on the inter-
subject variability and intrasubject variability where
questions regarding how intersubject and intrasubject var-
iability can be observed, analyzed, and modeled. *is would
entail questions of what differences could researchers gain
from observing the variability and how to deal with the
variability in neuroimaging. From the 30 papers identified,
28 indicated whether they conducted intrasubject, inter-
subject, or both types of classification.

*e nonstationary EEG correlates of emotional re-
sponses that exist between individuals, namely, intersubject
variability would be affected by the intrinsic differences in
personality, culture, gender, educational background, and
living environment, and individuals may have distinct

behavioral and/or neurophysiological responses even when
perceiving the same event. *us, each individual is not likely
to share the common EEG distributions that correlate to the
same emotional states. Researchers have highlighted the
significant challenges posed by intersubject classification in
affective computing [140, 142–147]. Lin describes that for a
subject-dependent exercise (intersubject classification) to
work well, the class distributions between individuals have to
be similar to some extent. However, individuals in real life
may have different behavioral or physiological responses
towards the same stimuli. Subject-independent (intrasubject
classification) was argued and shown to be the preferable
emotion classification approach by Rinderknecht et al. [148].
Nonetheless, the difficulty here is to develop and fit a
generalized classifier that will work well for all individuals,
which currently remains a grand challenge in this research
domain.

From Table 6, it can be observed that not all of the
researchers indicated their method of classifying their
subject matter. Typically, setup descriptions that include
subject-independent and across subjects refer to inter-
subject classification while subject-dependent and within
subjects refer to intra-subject classification. *ese

Table 6: Comparison of classifiers used for emotion classification and its performance.

Research
author Classifiers Best performance

achieved
Intersubject or
Intrasubject

[110] Dynamical graph convolutional neural network 90.40% Intrasubject and
intersubject

[140] Support vector machine 80.76% Intrasubject and
intersubject

[93] Random forest, instance-based 98.20% Intrasubject
[118] Support vector machine — Intrasubject
[99] Multilayer perceptron 76.81% Intrasubject
[117] K-nearest neighbor 95.00% Intersubject
[92] Support vector machine 73.10% Intersubject

[104] Support vector machine, K-nearest neighbor, convolutional neural
network, deep neural network 82.81% Intersubject

[141] Support vector machine 81.33% Intersubject
[102] Support vector machine, convolutional neural network 81.14% Intersubject
[103] Gradient boosting decision tree 75.18% Intersubject
[113] Support vector machine 70.00% Intersubject
[100] Support vector machine 70.52% Intersubject
[107] Support vector machine, naı̈ve Bayes 61.00% Intersubject
[142] Support vector machine 57.00% Intersubject
[94] Support vector machine, K-nearest neighbor — Intersubject
[111] Support vector machine, K-nearest neighbor 98.37% —
[143] Convolutional neural network 97.69% —

[144] Support vector machine, backpropagation neural network, late fusion
method 92.23% —

[145] Fisherface 91.00% —
[93] Haar, Fisherface 91.00% —
[106] Extreme learning machine 87.10% —
[112] K-nearest neighbor, support vector machine, multilayer perceptron 86.27% —

[97] Support vector machine, K-nearest neighbor, fuzzy networks, Bayes,
linear discriminant analysis 83.00% —

[105] Näıve Bayes, support vector machine, K-means, hierarchical clustering 78.06% —
[130] Support vector machine, näıve Bayes, multilayer perceptron 71.42% —
[95] Gaussian process 71.30% —
[96] Naı̈ve Bayes 68.00% —
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descriptors were used interchangeably by researchers as
there are no specific guidelines as to how these words should
be used specifically in the description of the setups of these
emotion classification experiments. *erefore, according to
these descriptors, the table helps to summarize these papers
in a more objective manner. From the 30 papers identified,
only 18 (5 on intrasubject and 13 on intersubject) of the
papers have specifically mentioned their classifications on
the subject matter. Of these, the best performing classifier for
intrasubject classification was achieved by RF (98.20%) by
Kumaran et al. [93] on music stimuli while the best for
intersubject classification was achieved by DGCNN
(90.40%) by Song et al. [110] using video stimulations from
SEED and DREAMER datasets. As for VR stimuli, only
Hidaka et al. [116] performed using SVM (81.33%) but using
only five subjects to evaluate its performance, which is
considered to be very low when the number of subjects at
minimal is expected to be 30 to be justifiable as mentioned by
Alarcao and Fonseca [22].

4.6. Participants. From the 30 papers identified, only 26 of
the papers have reported the number of participants used for
emotion classification analysis as summarized in Table 7,
and the table is arranged from the highest total number of
participants to the lowest. *e number of participants varies
between the ranges from 5 to 100 participants, and 23 re-
ports stated their gender population with the number of
males (408) being higher than females (342) overall, while
another 3 reports only stated the number of participants
without stating the gender population. 7.70% was reported
using less than 10 subjects, 46.15% reported using between
10 and 30 participants, and 46.15% reported using more than
30 participants.

16 reports stated their mean age groups ranging between
15.29 and 30 with an exception that there was a study on
ASD (autism spectrum disorder) group being the youngest
with the mean age of 15.29. Another 4 only reported their
participants’ age ranging between 18 and 28
[106, 120, 141, 150] while 2 other studies only reported they
had volunteers from their university students [98, 115] and 1
other report stated they had 2 additional institutions vol-
unteered in addition to their own university students [118].

*e 2 reported studies with less than 10 participants
[92, 119] have had their justifications on why they would be
conducting with these numbers such that Horvat expressed
their interest in investigating the stability of affective EEG
features by running multiple sessions on single subjects
compared to running large number of subjects such as
DEAP with single EEG recording session for each subject.
Lan was conducting a pilot study on the combination of VR
using NAPS database with the Emotiv EPOC+ headset to
investigate the effectiveness of both devices and later found
that in order to achieve a better immersion experience, some
elements of ergonomics on both devices have to be
sacrificed.

*e participants who volunteered to join for these ex-
periments for emotion classification had all reported to have
no physical abnormalities or mental disorders and are thus

fit and healthy for the experiments aside from one reported
study which was granted permission to conduct on ASD
subjects [117]. Other reports have evaluated their under-
standing of emotion labels before partaking any experiment
as most of the participants would need to evaluate their
emotions using Self-Assessment Manikin (SAM) after each
trial. *e studies also reported that the participants had
sufficient educational backgrounds and therefore can justify
their emotions when questioned on their current mental
state. Many of the studies were conducted on university
grounds with permission since the research of emotion
classification was conducted by university-based academi-
cians, and therefore, the population of the participants was
mostly from university students.

Many of these reported studies only focused on the
feature extractions from their EEG experiments or from
SAM evaluations on valence, arousal, and dominance and
presented their classification results at the end. Based on the
current findings, no studies were found that conducted
specifically differentiating the differences between male and
female emotional responses or classifications. To have a
reliable classification result, such studies should be con-
ducted with at least 10 participants to have statistically
meaningful results.

5. Discussion

One of the issues that emerged from this review is that there
is a lack of studies conducted for virtual reality-based
emotion classification where the immersive experience of
the virtual reality could possibly evoke greater emotional
responses over the traditional stimuli presented through
computer monitors or audible speakers since virtual reality
combines senses such as sight, hearing, and sense of “being
there” immersively. *ere is currently no openly available
database for VR-based emotion classification, where the
stimuli have been validated for virtual reality usage in
emotional responses. Many of the research have had to self-
design their own emotional stimuli. Furthermore, there are
inconsistencies in terms of the duration of the stimulus
presented for the participants, especially in virtual reality
where the emotion fluctuates greatly depending on the
duration and content of the stimulus presented. *erefore,
to keep the fluctuations of the emotions as minimal as
possible as well as being direct to the intended emotional
response, the length of the stimulus presented should be kept
between 15 and 20 seconds. *e reason behind this selected
duration was that there is ample amount of time for the
participants to explore the virtual reality environment to get
oneself associated and stimulated enough that there are
emotional responses received as feedback from the stimuli
presented.

In recent developments for virtual reality, there are many
available products in the market used for entertainment
purposes with the majority of the products intended for
gaming experiences such as Oculus Rift, HTC Vive, Play-
station VR, and many other upcoming products. However,
these products might be costly and overburdened with re-
quirements such as the need for a workstation capable of
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handling virtual reality rendering environments or a con-
sole-specific device. Current smartphones have built-in
inertial sensors such as gyroscope and accelerometers to
measure direction and movement speed. Furthermore, this
small and compact device has enough computational power
to run virtual reality content provided with a VR headset and
a set of earphones. *e package for building a virtual reality
environment is available using System Development Kits
(SDKs) such as Unity3D which can be exported to multiple
platforms making it versatile for deployments across many
devices.

With regard to versatility, various machine learning
algorithms are currently available for use in different ap-
plications, and these algorithms can achieve complex cal-
culations with minimal time wasted thanks to the
technological advancements in computing as well as efficient
utilization of algorithmic procedures [151]. However, there
is no evidence of a single algorithm that can best the rest and
this makes it difficult for algorithm selection when preparing
for emotion classification tasks. Furthermore, with regard to
versatility, there needs to be a trained model for machine
learning algorithms that can be used for commercial de-
ployment or benchmarking for future emotion classifica-
tions. *erefore, intersubject variability (also known as
subject-dependent, studies across subjects, or leave-one-out

in some other studies) is a concept that should be followed as
this method generalizes the emotion classification task over
the overall population and has a high impact value due to the
nonrequirement of retraining the classification model for
every single new user.

*e collection of brainwave signals varies differently
depending on the quality or sensitivity of the electrodes
when attempting to collect the brainwave signals. Fur-
thermore, the collection of brainwave signals depends on the
number of electrodes and its placements around the scalp
which should conform to the 10–20 international EEG
standards. *ere needs to be a standardized measuring tool
for the collection of EEG signals, and the large variances of
products of wearable EEG headsets would produce varying
results depending on the handlings of the user. It is sug-
gested that standardization for the collection of the brain-
wave signals be accomplished using a low-cost wearable EEG
headset since it is easily accessible by the research com-
munity. While previous studies have reported that the
emotional experiences are stored within the temporal region
of the brain, current evidence suggests that emotional re-
sponses may also be influenced by different regions of the
brain such as the frontal and parietal regions. Furthermore,
the association of brainwave bands from both the lower and
higher frequencies can actually improve the emotional

Table 7: Reported number of participants used to conduct emotion classification.

Author Emotion classes Participants Male Female Mean
age± SD

[114] Happy, sad, fear, relaxation, disgust, rage 100 57 43 —
[113] Arousal and valence (4 quadrants) 60 16 44 28.9± 5.44
[149] Valence, arousal 58 (ASCERTAIN) 37 21 30
[107] Valence, arousal 58 (ASCERTAIN) 37 21 30
[112] Valence, arousal (high and low) 40 20 20 26.13± 2.79

[110]
Negative, positive, and neutral (SEED). Amusement, excitement,
happiness, calmness, anger, disgust, fear, sadness, and surprise

(DREAMER)
15 (SEED), 23 (DREAMER) 21 17 26.6± 2.7

[115]
Horror� (fear, anxiety, disgust, surprise, tension),

empathy� (happiness, sadness, love, being touched, compassion,
distressing, disappointment)

38 19 19 —

[100] Valence, arousal, dominance, liking 32 (DEAP) 16 16 26.9
[101] Valence, arousal (high and low) 32 (DEAP) 16 16 26.9
[102] Valence, arousal 32 (DEAP) 16 16 26.9
[103] — 32 (DEAP) 16 16 26.9
[104] Valence, arousal (2 class) 32 (DEAP) 16 16 26.9
[105] Valence, arousal, dominance 32 (DEAP) 16 16 26.9

[114] Happy, fear, peace, disgust, sadness 13 (watching video
materials), 18 (VR materials) 13 18 —

[130] Stress level (low and high) 28 19 9 27.5
[98] Valence, arousal (high and low) 25 — — —
[120] Fear 22 14 8 —
[106] Happy, fear, sad, relax 20 — — —
[117] Engagement, enjoyment, boredom, frustration, workload 20 19 1 15.29
[109] Happy, sad, fear, disgust, neutral 16 6 10 23.27± 2.37
[118] Anguish, tenderness 16 — — —
[111] Positive, neutral, negative 15 (SEED) 7 8 —
[99] Happy, fear, sad, calm 13 8 5 —
[141] Happy, relaxed, depressed, distressed, fear 10 10 — 21
[119] Happy, fear 6 5 1 26.67± 1.11
[92] Pleasant, happy, frightened, angry 5 4 1 —
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classification accuracy. Additionally, the optimal selection of
the electrodes as learning features should also be considered
since many of the EEG devices have different numbers of
electrodes and placements, and hence, the number and
selection of electrode positions should be explored sys-
tematically in order to verify how it affects the emotion
classification task.

6. Conclusions

In this review, we have presented the analysis of emotion
classification studies from 2016–2019 that propose novel
methods for emotion recognition using EEG signals. *e
review also suggests a different approach towards emotion
classification using VR as the emotional stimuli presentation
platform and the need for developing a new database based
on VR stimuli. We hope that this paper has provided a useful
critical review update on the current research work in EEG-
based emotion classification and that the future opportu-
nities for research in this area would serve as a platform for
new researchers venturing into this line of research.
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