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ABSTRACT 

Digital gaming industry grows very fast and it becomes one of the most profitable 
industries since last decade. A good game is very profitable. Hence, the developers 
are trying hard to include Artificial Intelligence (AI) technologies for generate 
better game to attract more players, especially for Real-Time Strategy (RTS) game. 
Nevertheless, there are many problems in designing a good RTS game on top of 
improving the visualization for better attraction such as, level of difficulty, AI bots, 
formation marching, position of characters or objects, etc.. These problem can be 
solved using AI technology. Reinforcement is the process of strengthening an army 
and it is a crucial issue in gaming design as well.  It is also the focus of most 
players in planning their gameplay strategy. There are researches related to the 
reinforcement issues and the researchers showed that AI can be the solution. 
Evolutionary Computing (EC) is chosen as one of the AI method for its stochastic 
features and it shows promising results in many fields. Therefore, the main 
objective of this research is to investigate the performance of single objective and 
bi-objectives of the hybridised EC as a RTS game controller for reinforcement 
issue. The proposed EC methods are Genetic Algorithm (GA), Differential Evolution 
(DE), Evolutionary Programming (EP), and Pareto-based Differential Evolution 
(PDE). The sub-objectives are: 1) to create preliminary optimization experiment 
with different crossover and mutation rates using GA and Feed-Forward Artificial 
Neural Networks (FFNN). After determine the rates another single objectives 
algorithm is tested. Hence, the second sub-objective is 2) to evolve RTS controllers 
using DE and FFNN. After that, a bi-objectives algorithm is tested for comparing 
purposes and this contributed for the next two sub-objectives that is 3) to test the 
feasibility for implementing the PDE hybrid FFNN. 4) to compare single objective 
and multi-objective optimization algorithms performances. Then, Ch’ng and Teo 
showed that EP can generated promising results in their research. Henceforth, EP 
is introduced as a benchmarking algorithm and this created our last sub-objective. 
That is 5) to test the performance for EP, DE, PDE and FFNN applied under an 
identical environment. The experimental results show that all the algorithms 
applied were able to generate good solutions for solving the reinforcement issues. 
The first experiment result shows there is no significant difference among the 
combination of crossover and mutation rate. Thus, selective crossover rate and 
mutation rate from a literature was referred and used in the later experiments. The 
second experiment result shows both GA and DE algorithms can generate optimal 
solutions with very high fitness scores but the cost of spawning was extremely 
high. The next experiment result shows the generated PDE controllers obtained 
lower fitness score but the spawning strategy was better compared to both GA and 
DE controllers. In the last experiment, the results showed that DE and EP 
algorithms can generate superior controllers whilst PDE is only capable to generate 
sub-optimal controllers. Nevertheless, the solutions provided by PDE was 1) 
cheaper in term of spawning cost, 2) less time consuming, 3) strong defensive 
strategy in the early stage of the gameplay and 4) more practical during 
gameplays. 
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ABSTRAK 
 
 

AUTOMATIC GENERATION OF NEURAL GAME CONTROLLER USING 
SINGLE AND BI-OBJECTIVE EVOLUTIONARY OPTIMIZATION 

ALGORITHMS FOR RTS GAME 
 
Industri permainan digital tumbuh dengan pesat dan telah menjadi salah satu 
industri yang paling manfaat sejak dekad lepas. Ia berlaku kerana ganjaran 
penjualan permainan tersebut sangat menguntungkan dan dengan itu pemaju 
cuba untuk memasukkan teknologi Kepintaran Buatan (AI) untuk menarik lebih 
ramai pemain bagi permainan Real-Time Strategy (RTS). Walau bagaimanapun, 
terdapat banyak masalah dalam membuat permainan RTS yang baik selain 
daripada meningkatkan visualisasi. Masalah seperti reka bentuk untuk tahap 
kesukaran, ―AI bots‖, pembentukan berarak, kedudukan aksara atau objek, dan 
lain-lain, boleh diselesaikan dengan menggunakan teknologi AI. Pengukuhan 
merupakan salah satu isu yang penting dalam mereka permainan. Ia merupakan 
fokus utama pemain dalam merancang strategi permainan. Kajian dan penyelidik 
yang berkaitan mendapati isu ini boleh diselesaikan dengan menggunakan AI. Oleh 
itu, kajian ini bertujuan untuk menyelesaikan isu tersebut dengan AI. Kaedah 
Evolusi Pengkomputeraan (EC) dipilih untuk kajian ini kerana ia menunjukkan 
keputusan yang menyakinkan dalam kajian lain dan kaedah EC yang dicadangkan 
ialah Algoritma Genetik (GA), Perbezaan Evolution (DE), Pengaturcaraan Evolusi 
(EP), dan Perbeza Evolution berasaskan Pareto (PDE). Objektif kajian ialah: 1) 
melaksanakan percubaan awal dengan mengoptimumkan kadar-kadar silang dan 
mutasi yang berbeza menggunakan GA dan Rangkaian Neural Buatan Berhadapan 
(FFNN), 2) mengevolusikan pengawal RTS dengan DE dan FFNN, 3) menguji 
pelaksanakan kacukan PDE dan FFNN, 4) membandingkan kebolehan objektif 
tunggal dan multi-objektif algoritma, 5) menguji prestasi bagi EP, DE, PDE dan 
FFNN dalam persekitaran yang serupa. Keputusan eksperimen menunjukkan 
semua algoritma yang digunakan dapat menghasilkan penyelesaian. Hasil kajian 
pertama menunjukkan tidak terdapat perbezaan yang nyata antara gabungan 
kadar silang dan mutasi dalam menjana pengawal disebabkan saiz sampel yang 
kecil. Oleh itu, kadar silang dan kadar mutasi dipilih daripada sastera rujukan dan 
kadar-kadar tersebut digunakan dalam ujikaji penyelidikan ini. Hasil uji kaji kedua 
menunjukkan kedua-dua algoritma GA dan DE boleh menjana penyelesaian yang 
optimum dengan markah kecergasan yang tinggi tetapi kos pembiakan adalah 
sangat tinggi. Hasil eksperimen seterusnya menunjukkan pengawal PDE dijana 
memperolehi markah kecergasan yang rendah tetapi strategi pembiakan yang 
lebih baik berbanding dengan uji kaji sebelum ini. Dalam percubaan terakhir, 
keputusan yang dihasilkan oleh pengawal-pengawal GA, DE, dan PDE 
dibandingkan dengan algoritma EP. Salah seorang penyelidik menunjukkan EP 
mengatasi algoritma lain dalam eksperimen mereka. Keputusan semua algoritma 
GA, DE, dan EP boleh menjana pengawal unggul manakala PDE hanya mampu 
menjanakan pengawal  separuh optimum. Walau bagaimanapun, penyelesaian 
yang disediakan oleh PDE adalah 1) lebih murah dari segi kos pembiakan, 2) 
kurang masa yang digunakan, 3) strategi pertahanan yang lebih kukuh pada 
peringkat awal permainan dan 4) lebih praktikal semasa permainan dijalankan. 
Oleh itu, algoritma PDE mengatasi prestasi algoritma-algorithm yang lain. 
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CHAPTER 1 

 

INTRODUCTION 

 

 

1.1 Introduction 

Artificial Intelligence (AI) technology has been included in games since past 

decades. It is one of the most important components in any gaming industry. It is 

important to make a game more variable, believable, challenging, and robust 

(Laird and Lent 2005). The integration of AI technology has successfully attracted 

billions of players to spend their time and money into the games. Thus, gaming 

industry grows very fast and has become one of the most profitable industries. 

Electronic Arts, the most popular gaming developer company announced that their 

net annual revenue has reached $4 billion for the second quarter of 2013. This 

shows the reward is very high by selling a good game. In fact, on the other hand, 

it is also costly in the processes of designing and promoting a game. The costs 

could be associated with product expenses which include production costs, 

warehousing and distribution costs, personnel costs, expenses for defective 

products and royalties for manufacturing, software developers, etc. However, the 

development cost is not much if compared to the above mentioned expenses. 

Nevertheless, it is very time consuming in developing a game. Diablo III is a good 

example because the development on Diablo III began in 2001, and the game 

was first announced on June 28, 2008 (Blizzard Entertainment, 2008) but Blizzard 

only released the game on May 15, 2012 (Blizzard Entertainment, 2012). This 

happened due to design and development problems.  

 

Initially, there are lots of problems in designing a good game besides 

improving the graphic contents for better attraction, but the visualization is the 

graphic designer concern. The problems in designing for level of difficulty, AI bots, 

formation marching, position of characters or objects, etc. may possibly be solve 

using AI technology. Reinforcement is the process of strengthening of an army. It 

is a crucial issue in gaming design as well. As an example, playtests are carried 

out to determine the stats of combat units for a game in corresponding to the 
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time of the gameplay and the time for players to make tactical decisions 

(Niedenthal, 2007).  It is also the main focus of most players in planning their 

gameplay strategy. However, it is neglected by researchers where it becomes 

decision in the AI whether to reinforce or not to reinforce, and to wait or not to 

wait for reinforcement (Fernández-Ares et al., 2011a; 2011b) (Mora et al., 2012). 

A careful decision is required for building construction during gameplay because 

only certain units are available in certain building during the gameplay. Higher 

level of building will be unlocked only if the lower level of buildings have been 

constructed. As an example in Warcraft III game, a barrack (building) is needed 

for spawning Footman and Rifleman whilst a gryphon aviary (building) is required 

for spawning Gryphon Raider. The gryphon aviary will not be available unless the 

barrack had been constructed and ready for spawning Footman and Rifleman. 

Initially, very limited resources will be given to players. Hence, it is impossible for 

any player to spawn strong units during the early stage of a gameplay. In any 

gaming industries, a good strategy and planning is required in order to design the 

Non-Player Character (NPC). Otherwise, human player will simply uninstall a game 

if they found the NPC is too easy to be defeated. On the other hand, no human 

player wants to continue a game if they found the NPC is too superior to be 

defeated. Hence, this phenomenon raises the research question. Is it possible to 

overcome the reinforcement problem using AI technology?  

 

Many methods were tested in RTS game yet reinforcement is still being 

neglected. Those methods could be categorized into Evolutionary Algorithms 

(EAs), The HAMMER Model, Case-Based Reasoning (CBR) and Reinforcement 

Learning (RL), Fuzzy Method, Artificial Intelligence (AI) Planners, Heuristic Search 

Algorithm, Dynamic Scripting (DS), Influence Mapping, Bayesian Modelling, Agent 

Technology/ Multi-agent Technology (AT), N euro-Evolution, Soar Reinforcement 

Learning, Data Mining, Hidden Markov Model, Monte Carlo Method, RTS Simulator, 

and other research fields. More details regarding these methods are discussed in 

chapter 2. Rule-based hand coded AI or Evolutionary Computing (EC) are both 

suitable to overcome the problem. Rule-based hand coded AI could be a good 

solution but it is limited to its generic because it is pre-determined and predictable 
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(Johnson and Wiles, 2001) whilst EC is stochastic making it hard for player to 

predict the outcome.  

 

EC has been well known for its global optimization capability with a meta-

heuristic or stochastic optimization character that is mostly applied to solve 

unknown or dynamic problems. It has been applied in many research areas such 

as robotics, medicines, simulations, stock predictions, image processing, pattern 

recognition, gaming, etc. The most famous used EC methods are Genetic 

Algorithm (GA) (Barros et al., 2012; Deb, 2001; Koza, 1995;Jin and Branke, 2005), 

Evolutionary Programming (EP) (Deb, 2001), Evolutionary Strategy (ES) (BDack et 

al., 1991; Deb, 2001), Genetic programming (GP) (Deb, 2001; Espejo et al., 2010; 

Koza, 1995), Multi-objective Optimization Genetic Algorithm (MOGA) (Jones et al., 

2002; Fonseca and Fleming, 1998; Deb, 2001; Konak et al., 2006; Srinivas and 

Patnaik, 1994), Pareto Archived Evolution Strategy (PAES) (Knowles and Corne, 

1999, 2000; Oltean, 2005; Groşan and Dumitrescu 2002), etc. Others used 

Machine Learning (ML) methods such as Decision Tree Learning (Patil and 

Bichkar,2012; Safavian and Landgrebe, 1991), Association rule Learning (Hipp et 

al., 2000; Qureshi et al., 2013; Sasikala et al., 2011), Artificial Neural Networks 

(Baptista and Morgado-Dias, 2013; Zhang, 2000; Hagan et al. 1996; Andrews et al. 

1995), Reinforcement Learning (Shoham et al., 2003; Kaelbling et al., 1996; 

Busoniu et al., 2008; Shoham, 2003), etc. Some combined both EC and ML 

methods in their researches as EC does not concern about the existing data but 

ML concerns the construction and study of systems that can learn from data.  

 

In this research, there are four algorithms to be considered in overcome 

the reinforcement problem. The algorithms used are GA, Differential Evolution 

(DE), EP, and Pareto-based Differential Evolutionary algorithm (PDE). The GA, DE 

and PDE will be combined with the Feed-Forward Neural Network (FFNN) to 

generate the required solutions. All of these algorithms have been shown to work 

very well in robotics and other gaming research (Das and Suganthan, 2011; Niu et 

al., 2009; miles an Louis, 2006; Jang et al., 2009; Togelius et al., 2010;Olesen et 

al., 2008, Chin and Teo, 2010; Chin et al., 2008). However, their performance in 
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Real-Time Strategy (RTS) game has yet been investigated, particularly solving 

reinforcement problem. 

 

DE as a branch of EC had shown promising outcome in many applications 

such as neural networks learning (Ilonenet et al., 2003; Magoulas et al., 2004), 

multiprocessor synthesis (Rae and Parameswaran, 1998), optimization of dynamic 

system (Babu and Gautam, 2001), heat transfer (Babu and Sastry, 1999)( Babu, 

and Munawar, 2001; 2007), optimization design of heat exchangers (Babu and 

Munawar, 2001), optimization and synthesis of heat integrated distillation system 

(Babu and Singh, 2000), optimize water pumping system (Babu and Angira, 2003), 

network design optimization (Priem-Mendes et al., 2007), optimizing sensor (Joshi 

and Sanderson, 1999), Zero-Sum game (Boryczka and Juszczuk, 2010), etc. 

 

PDE is one of the branches of Evolutionary Multi-objective Optimizations 

(EMOs) algorithm that specifically involved a combination of Pareto theory and DE 

algorithm to solve multi-objectives problems. EMOs algorithms have been used in 

research fields such as economics, finance, engineering, optimal control, optimal 

design, resource management, chemical engineering, electric power systems, 

robotic, etc (Coello et al., 2004; Coello, 2006; Jones et al., 2002; Fleming and 

Purshouse, 2002; Zitzler, 1999). Nevertheless, the PDE only had been used to 

generate robot controllers (Chin and Teo, 2010), gaming (Yao et al., 2007), and 

solving multi-problems in economics area (Basu, 2011). 

 

The feature that makes EP standout from others EC techniques is that it 

does not involve any crossover operator in the optimization stage. The EP only 

used mutation operator and causing no genes is exchanged between individuals 

among a population. Hence, the computation time taken for evolving EPGC is less 

than other Evolutionary Algorithms (EA). Furthermore, the EP was used in RTS 

test bed and it has been shown to be successful in generating highly promising 

gaming controllers (Ch’ng and Teo, 2010). 

 

There is no research had been conducted thus far in comparing the 

controllers generated using GA, DE, and PDE algorithms, particularly in the 
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gaming research. Besides, a multi-objective controller has a larger search space 

for the learning process comparing to a single-objective game controller. Although 

the experimentation results obtained in Chapter 4 clearly showed that DE was 

generated better results than GA, yet the performance of PDE is still unknown. 

Hence, the performance of the generated controllers using the proposed 

algorithms will be tested, evaluated, compared, and discussed in the second 

section of Chapter 5. Since EP has been shown to be successful in generating 

highly promising gaming controllers (Ch’ng and Teo, 2010) thus it has been 

included in this study as a benchmarking algorithm to compare the performance of 

generated game AI controllers using DE hybrids FFNN and PDE hybrids FFNN in 

Chapter 6. These created the research questions which are presented in the next 

section. 

 

The rest of this chapter presents the research questions, research 

objectives, research scopes, research contributions and lastly the thesis 

organization is included in the last section of this chapter. 

 

1.2 Research Questions 

The research questions that are investigated in this research are stated as follows: 

a. Is it possible to combine GA with FFNN in generating the required RTS 

reinforcement controller?  

i. What is the best combination rate of crossover and mutation in 

order to generate optimal controller? 

b. What is the performance of DE hybrid FFNN in comparison with GA hybrid 

FFNN if the GA hybrid FFNN could generate the required controller? 

c. Is it possible to integrate PDE hybrid FFNN in generating better controller 

comparing to GA and DE experiments? 

d. Is it possible to include EP without ANN helps in generating required 

controller?  

e. How is the PDE hybrid FFNN algorithm performance as compared to the 

DE hybrid FFNN and the EP without ANN support in the RTS platform? 
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1.3 Research Objectives and Hypotheses 

Based on the research questions, the main objective of this research is to 

investigate the performance of single objective and bi-objectives of the hybridised 

EC as a RTS game controller. The sub-research objectives and hypothesises for 

each chapter are as follow:  

a. Chapter 4 Objectives 

i. Preliminary optimization experiment with different crossover and 

mutation rates using GA and FFNN – there are two sub-objectives 

involved in this experiment. The first objective is to test the 

feasibility of implementing GA and FFNN in RTS game and the 

second objective is to determine the crossover rate and mutation 

rate that best suit for evolving the required controllers. A 

preliminary experiment is conducted with GA and FFNN in order to 

figure out the most suitable crossover and mutation rates that could 

generate optimal RTS controllers.  

 

  Initially, researches have been conducted in comparing the 

performance of different crossover and mutation rates in the 

evolutionary-based cognition. Researchers found the crossover and 

mutation rates played important role in determining the outcomes 

of any experiments (Engelbrecht, 2002). GA is one of the commonly 

used algorithms to generate useful solutions for optimization and 

search problems. GA is applied in bioinformatics, computational 

science, engineering, economics, chemistry, manufacturing, 

mathematics, physics, gaming and other fields (Haupt and Haupt, 

2004). However, there is no research conducted thus far using GA 

and FFNN in generating controllers for RTS games. Hence, this 

forms the core motivation of this research. 

 

ii. Evolving a RTS controller using DE and FFNN – This experiment 

objective is to test the feasibility of implementing the DE and FFNN 

into the RTS platform.  

  




