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ABSTRACT 

Temperature Response and Drying Characteristics of Palm Kernel Cake 
(PKC) in a Radial Packed Bed (RPB) 

A batch type radial packed bed (RPB) was designed and fabricated for a palm 
kernel cake transport phenomena study. The RPB system consists of aeration 
control, heating control and data acquisition. A preliminary study of transport 
phenomena of non-fermented PKC for heat transfer and moisture mass transfer 
was conducted in the RPB. The heat and mass transfer (HMT) as a function of air 
temperature, initial moisture content and bed height was conducted at various 
particle mean sizes (0.80, 1.50, 2.68 mm) and various initial moisture content (25, 
50, 75, 100% dry basis) with forced aeration. The steady state temperature of PKC 
was not affected by particle size, initial moisture content and bed height. The 
steady state value of moisture content was affected by particle size, initial moisture 
content and bed height. A longer duration was required for PKC to achieve the 
same final temperature increased with initial moisture content at fixed particle size, 
air flow rate and operating air temperature. Consequently, 1.50 mm PKC particle 
mean size and 50% dry basis initial moisture content were fixed in main HMT study. 
A factorial design of experiments was adopted to investigate the effect of air 
temperature (35, 45, 55 and 65 °C), aeration rate (65.33, 75.33, and 92.33 LPM), 
and bed height (8.50, 13.25, 18.00, 22.75 and 27.50 cm) on the HMT study. The 
bed shrinkage and changes in physical properties of PKC in HMT were assumed 
negligible. The HMT study of PKC in RPB air-water was modelled mathematically. 
For the transient heat transfer model, a first order process model was fitted to the 
inner temperature and outer temperature data with good agreement. The 
coefficients of determination ( Ff) were above 0.87. The moisture content data were 
compared and fitted to the different semi-empirical models such as Lewis, 
Henderson and Pabis, Logarithmic, Page and modified Page based on the ratio of 
the difference between the initial and final moisture content and the equilibrium 
moisture content. All the models fitted the drying data satisfactorily although they 
have slightly different value of R2. The Henderson and Pabis model which is simple 
and linearisable was chosen to model all the drying data. The temperature 
dependency of drying rate constant and effective diffusivity was described with the 
Arrhenius equation. The R2for drying rate constant was as high as 0.9903 but the 
R2 for effective diffusivity was as high as 0. 9732. Both semi empirical model, first 
order process model for heat transfer and Henderson and Pabis model for mass 
transfer adequately described the transport phenomena of PKC for the air 
temperature range of 35 to 65°C and air flow rate range of 65.33 to 92.33 LPM in 
air-water system of RPB. 
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ABSTRAK 

Sebuah bioreaktor radial packed bed (RPB) berjenis kumpulan telah direka and 
dtfabrikasi untuk isirong kelapa sawit (PKC) dalam kaftan fenomena pengakutan. 
Sistem RPB terdiri daripada kawalan pengudaraan kawalan pemanasan dan 
pengumpulan data. Satu kaftan awa/ fenomena pengangkutan PKC yang bukan 
fermentasi telah dijalankan kepada pemindahan haba dan Jisim dalam RPB. 
Pemindahan haba dan jisim (HMT) sebagai fungsi suhu udara/ kandungan 
lembapan awal dan ketinggian bioreaktor telah dija/ankan dengan pelbagai min saiz 
zarah (0.BD✓ 1.5°✓ 2.68 mm) dan kandungan lembapan awal (25, 5D✓ 75, 100% 
berasaskan berat kering) dengan pengudaraan paksa. Saiz zarah nilai kandungan 
lembapan awal dan ketinggian bioreaktor tidak memberi kesan ke atas suhu 
mantap PKC Saiz zarah kandungan lembapan awal dan ketinggian bioreaktor 
mempunyai kesan ke atas nilai akhir kandungan lembapan. PKC memerlukan 
tempoh yang /ebih lama untuk mencapai suhu mantap yang sama bagi kandungan 
lembapan permulaan yang /ebih tinggi bagi saiz zarah kadar al/ran udara dan suhu 
udara yang sama. Akibatnya/ 1.50 mm min saiz zarah PKC 50% berasaskan berat 
kering kandungan lembapan awal telah ditetapkan da/am kajian utama HMT. 
Rekabentuk ujikaji faktorial telah dipt1ih untuk mengkaji kesan suhu udara (35, 45, 
55 dan 65 °C) and kadar pengudaraan (65.33, 75.33, dan 92.33 LPM) dan 
ketinggian di RPB (8.5D✓ 13.25, 18.0D✓ 22.75 and 27.50 cm) ke atas kajian HMT. 
Pengecutan katil dan perubahan dalam sifat-sifat fizikal PKC dalam kajian HMT 
te/ah diabaikan. Kajian HMT PKC da/am RPB udara-air telah dimodelkan secara 
matematik. Untuk model pemindahan haba tidak mantap/ model proses peringkat 
pertama dipadankan kepada data suhu dalam dan suhu luar dengan bagus. Peka!i 
penentuan (If) mempunyai nilai !ebih 0.87. Data kandungan lembapan telah 
dtbandingkan dan dipadankan kepada model semi-empirika! yang berbeza seperti 
Lewis/ Henderson and Pabis/ Logaritmi� Page and Modified page berdasarkan 
nisbah perbezaan antara kandungan lembapan awa! dan akhlr dan kandungan 
Jembapan keseimbangan. Semua model dipadankan kepada data pengeringan 
memuaskan walaupun mempunyai nilai yang sedikit berbeza bagi R2. Henderson 
dan Pabis model yang mudah and linearisable telah dipi!ih untuk memodelkan 
semua data pengeringan. Pemalar kadar pengeringan dan kemeresapan berkesan 
bergantung kepada suhu telah diterangkan dengan persamaan Arrhenius. R2 untuk 
pemalar kadar pengeringan ada/ah setinggi 0.9903 dan ft untuk kemeresapan 
berkesan ada/ah setinggi 0.9732. Kedua-dua model semi-empirikal model proses 
peringkat pertama untuk pemindahan haba dan model Henderson and Pabis untuk 
pemindahan Jisim dapat menyifatkan fenomena pengangkutan PKC untuk Ju/at 
suhu udara 35 ke 65 °C dan Ju/at kadar pengaliran udara 65.33 ke 92.33 LPM 
dalam sistem udara-air RPB. 
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CHAPTER 1 

INTRODUCTION 

1.1 Research Background 

In Malaysia, animal feeds in particular the poultry industries are dependent on 

imported feedstuffs used to improve feed efficiency and chicken growth. The 

demand for feedstuffs is markedly increasing due to population growth. More than 

1.5 metric tonnes of maize was imported from different countries to meet local 

poultry feed demand annually since 1999 (Loh, 2002) and has achieved 2.4 million 

tonnes in 2005. In 2008, RM35 billion was spent to import food and feed to fulfil! 

the market demand (Malaysian Biotechnology Information Centre, 2011) while 1.2 

million tonnes of agricultural waste is disposed into landfills annually (Agamuthu, 

2009). On the other hand, Malaysia exported 2.33 million tonnes of palm kernel 

cake (PKC) to the international market especially the European Union which 

absorbs more than 50% of Malaysian PKC annually in 2011(Malaysian Palm Oil 

Board, 2011). Most PKC which was traded commercially at the international market 

was utilized as a formulation for cattle feed since 1996 (Hishamuddin, 2001). As 

cattle feed and poultry feed share certain similarities in term of protein source and 

mineral contents, the abundance of PKC makes it as a potential source of poultry 

industry. 

PKC has been successfully utilized as animals food as well as implemented 

as a substrate in solid state fermentation (SSF) for enzyme and animal feed 

production. The advantages of utilizing PKC includes contains no toxins, aflatoxin 

free, and palatable (Tang, 2001; Sundu et al./ 2006). Raw PKC has been 

implemented as a feed source for cattle and buffaloes (Wan Zahari and Alimon, 

2004), and as ingredients in feed formulation for poultry (Onwudike, 1986; Sundu 

et al./ 2006), rabbits (Carrion et al./ 2011), pigs (Agunbiade et al./ 1999; Rhule, 

1996), and fishes (Ng, 2004; Ng, 2003; Ng et al., 2002). 



PKC has also been applied as a carbon source for bioconversion to poultry 

(Sharon, 2008; Graminha et al./ 2007; Saw et al./ 2005), aquaculture (Hem, et al./ 

2008) and as a carbon source for enzyme production such as �-mannanase 

(Peyman et al., 2010; Abd-Aziz et al., 2008), lipase (Gutarra et a( 2005; How and 

Ibrahim, 2004), tannase (Sabu et al., 2006; Sabu, et al, 2005), xylanase (Pang et 

al, 2005), phytase (Ramachandran et al., 2005) and alpha amylase (Ramachandran 

et al., 2004). Kolade et al. (2006) developed a composting process which converts 

PKC into compost utilizing goat manure and poultry droppings as nitrogen 

supplements. Moreover, PKC has been employed as a potential substitute for 

commercial biomass briquettes production (Nasrin et al., 2008). Consequently, the 

major applications of PKC are enzymes and animal feed production through 

bioconversion. 

To respond to the increasing trend of feedstuff demands in the domestic 

market and prospects for future feedstuff production, an alternative strategy is 

needed to enhance the protein content of agriculture residues such as PKC. SSF 

can be a strategic direction to provide a source of protein to animal feed industry 

(Villas-Boas et al./ 2002) through environmental friendly and sustainable utilization 

of agriculture residues (Hblker & Lenz, 2005). SSF is a fermentation process 

conducted under absence or near absence of free water where the substrate 

possessing enough moisture for metabolism and growth of microorganism (Pandey, 

2003). The reduced water level is a favoured by cleaner industrial practice due to 

low levels of waste water and less processing energy. The SSF of agriculture 

residues is economically feasible (Sandhya et al./ 2005; Castilho et al./ 2000) and it 

also solves the problem of waste disposal (Xia and Cen, 1999). 

1.2 Problem Statement 

A bioreactor is the heart of a fermentation process where the substrate is 

converted to produce desired product under proper manipulated variables and 

process variables. There are many types of SSF bioreactor design that have been 

developed but the major issue is accumulation of metabolic heat and distribution of 

heterogeneous particles in a complex gas-liquid-solid multiphase bioreactor system 

(Lonsane et al./ 1992). 

2 



Aeration and mixing are the strategies that common in practice to enhance the 

heat and mass transfer within the bioreactor (Mitchell et al., 2000). Although air is 

blown through the bed of bioreactors, the sufficiency of oxygen in proportion to the 

biomass is still a concern (Raghavarao et al., 2003; Thibault et al., 2000; 

Gowthaman et al., 1995). The mechanism of substrate mixing may affect the 

growth of fungi. The mixing cause shear stress in the case where the hyphae may 

be severely damaged and thus the overall products formation was decreased 

(Stuart et al., 1998). Thus, types of bioreactor has been designed and developed 

with respect to their processes and applications. 

In laboratory scale, the SSF process is mainly conducted in flasks. Tray 

bioreactors, drum bioreactors, packed bed bioreactors and fluidized bed bioreactors 

are normally used to perform larger scale product formation (Mitchell et al., 2010; 

Ronbinson and Nigam, 2003; Mitchell et al., 2000). Each of the design tries to 

provide favourable conditions for SSF. Tray type bioreactor consists of flat trays. 

The substrate is spread onto each tray to form a thin layer. The critical depth of 

tray bioreactor was 2.4 cm in order to avoid occurrence of low oxygen 

concentration at the base level of substrate during SSF (Raghavarao et al., 2003). 

Thus, the numerous of trays and large volume are required in the large scale 

production. A packed bed bioreactor bioreactor is composed of a plastic column, 

packed with solid substrates. The air is blown forcefully continuously through the 

perforated bed (Khanahmadi et al., 2006; Ashley et al., 1999; Mitchell et al., 1999). 

The disadvantages of packed bed bioreactor are poor heat removal and non­

uniform growth of microorganism (Doelle et al., 1992). The circulation of air in a 

packed bed can be improved by blowing air, but high energy consumption is 

required. In rotating drum bioreactors, the bed is continuously or intermittently 

mixed with a fixed frequency and the air is circulated gently around the bed. The 

main drawback is that the rotating drum bioreactor can only be filled up to 30% 

capacity to ensure the mixing is sufficient for aeration (Couto & Sanroman, 2006; 

Mitchell et al., 2006a). In fluidized bed bioreactors, the bed is forcefully blown by 

air. Although the mixing, aeration, heat and mass transfer is increased, the damage 

to the inoculum and the heat buildup through shear forces could affects the final 

yield of product in a fluidized bed bioreactor (Foong et al., 2009). 
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Consequently, SSF has not found large scale production because of the limited 

number of bioreactors design that are suitable for SSF process. 

1.3 Rational of the Study 

A simple and practical design of a laboratory scale radial packed bed reactor with 

an air-water system was used for non-fermented PKC heat and mass transfer 

study. The influence of air temperature and volumetric air flow rate on the drying 

characteristic of non-fermented PKC in RPB was carried out in batch operation. The 

batch operation should be studied prior to the semi batch or continuous operation 

before fermentation process. 

SSF of PKC is a complex process that involves heat and mass transfer 

between the microorganisms and substrates. The metabolic heat that accumulated 

during SSF as well as the aeration rate dried up the moisture content of PKC. The 

substrates are degraded by microorganism during SSF process but the sizes of 

microbes are relatively small in comparison with PKC solid particles. If the SSF 

process happens at the same temperature and moisture content, the particle size, 

drying rate, moisture diffusivity and bulk density of PKC should be the same. 

Although the study does not include SSF, should the experimental conditions 

coincide with SSF conditions, the physical properties can match between the SSF 

and non SSF system for SSF interpretation. 

1.4 Research Theme 

This research is to explore the transport phenomena of PKC in a modified packed 

bed which is named as radial packed bed (RPB). 
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1.5 Research Objectives and Scope 

The objectives of this study are shown as below: 

1. To investigate the influence of particle size and initial moisture content on

the drying characteristic of PKC.

2. To study the effects of the hot air inlet temperature and air flow rate on the

transport phenomena of PKC.

3. To mathematically model the transport phenomena of PKC.

4. To evaluate the performance of equipment and design.

The scope of this study is listed below: 

1. PKC supplied by IOI Edible Oils Sdn. Bhd. is used.

2. Only a particle mean size and single initial moisture content is used for the

experimental study and process model.

3. The experiment is limited to five levels of the RPB for which experimental

data are available i.e. 8.50, 13.25, 18.00, 22.75 and 27.50 cm.

4. The process in the RPB is carried out without fermentation.

1.6 Significance of Research 

This study models the transport phenomena of non-fermented PKC in a static batch 

type RPB with forced aeration. The heat and mass transfer model of air-water 

system in RPB filled with PKC provides useful information to predict the 

performance of bioreactor under the operating air temperature and aeration rate. 

Then, the amount of water can be predicted to maintain desired moisture content 

of PKC to prevent overheating during SSF process based on the drying 

characteristic and drying model. 
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Chapter 3 reviews the mathematical modelling of heat and mass transfer 

and the goodness of fit statistics for models. 

Chapter 4 describes the methodology consists of physical characterization of 

PKC, the calibration of radial packed bed system, drying experiments, experimental 

design, preliminary studies and modelling methods. 

Chapter 5 reports the results and discussion on the findings of particle 

characterization, the radial packed bed system and the modelling of heat and mass 

transfer of air-water system in a radial packed bed filled with PKC particles. 

Chapter 6 summarizes the overall findings of the thesis and recommends 

some future works, 
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