Application of plasmonic metal nanoparticles in TiO₂-SiO₂ composite as an efficient solar-activated photocatalyst: A review paper

ABSTRACT

Over the last decade, interest in the utilization of solar energy for photocatalysis treatment processes has taken centre-stage. Researchers had focused on doping TiO_2 with SiO_2 to obtain an efficient degradation rate of various types of target pollutants both under UV and visible-light irradiation. In order to further improve this degradation effect, some researchers resorted to incorporate plasmonic metal nanoparticles such as silver and gold into the combined TiO_2 - SiO_2 to fully optimize the TiO_2 - SiO_2 's potential in the visible-light region. This article focuses on the challenges in utilizing TiO_2 in the visible-light region, the contribution of SiO_2 in enhancing photocatalytic activities of the TiO_2 - SiO_2 photocatalyst, and the ability of plasmonic metal nanoparticles (Ag and Au) to edge the TiO_2 - SiO_2 photocatalyst toward an efficient solar photocatalyst. © 2021 Joseph, Taufiq-Yap, Musta, Sarjadi and Elilarasi.