3D VIRTUAL SEIT (BLOCK A) SECOND, THIRD AND FOURTH FLOOR

LIM CHUN CHUN

REPORT SUBMITTED AS PARTIAL FULFILLMENT FOR THE DEGREE IN BACHELOR OF COMPUTER SCIENCE WITH HONORS (SOFTWARE ENGINEERING)

SCHOOL OF ENGINEERING AND INFORMATION TECHNOLOGY UNIVERSITY MALAYSIA SABAH

2006

DECLARATION

The materials in this thesis are original except for quotations, excerpts, summaries and references, which have dully acknowledged.

TAN TSE GUAN 2 APRIL 2006 HK 2003 – 1929

CERTIFIED BY

MR. LAU HUI KENG (SUPERVISOR) MR. AZALI SAUDI (EXAMINER)

ACKNOWLEDGEMET

The completion of this project had made me learned a lot more knowledge but also build a better relationships with lecturers, family and friends. A project of this magnitude took the dedication and talent of many people. This dissertation could not have been written without Mr Lau Hui Keng who not only served as my supervisor but also encouraged and challenged me throughout this thesis. He not only supervised me but also giving more ideas in developing a better program.

My thanks also to the all the people for their feedback on the program testing. Their help was invaluable to the completion of this project.

Next, I will like to thanks two of my group members that often bore with me when doing this project. Without their help and also their supports, the project would not success. I would also like to apologize to them if I had hurt their feeling when attending in this project.

There is no one better than you. Mom and Dad, thank you for encouraging me to keep up the hard work and for giving me a "never quit" attitude. My thanks also to my many friends whose support makes light work out of the heaviest load.

ABSTRAK

3D VIRTUAL SEIT (BLOCK A — SECOND, THIRD AND FOURTH FLOOR)

Tujuan utama projek ini adalah untuk membina satu sistem yang bertajuk 3D Virtual School of Engineering and Information Technology (SEIT) – Blok A. Sistem ini membenarkan sesiapa yang berminat untuk mengetahui lebih lanjut mengenai Sekolah Kejuruteraan dan Teknologi Maklumat (SKTM) serta struktur bangunannya. Sistem ini membenarkan para penguna melihat SKTM - blok A yang berada dalam Universiti Malaysia Sabah dalam 3 dimensi dengan lebih teliti dan realiti. Para pengguna boleh melihat dan mengelilingi SKTM melalui Internet dan berpeluang melihat dengan lebih teliti. Sistem ini dibina dengan menggunakan perisian Virtual Reality Modeling Language (VRML) dan 3D Studio Max. Sistem ini boleh dilihat dengan menggunakan Cortona VRML Client. Animasi dalam sistem ini dibina menggunakan VRML skrip. Laporan ini menerangkan penghasilan tingkat dua, tiga dan empat dalam bangunan SKTM. Sistem ini boleh dikembangkan lagi pada masa depan dengan menambahkan blok-blok lain yang berada dalam SKTM, atau lebih-lebih lagi seluruh universiti.

iv

ABSTRACT

3D VIRTUAL SEIT (BLOCK A — SECOND, THIRD AND FOURTH FLOOR)

The main objective of this final year project is to create a virtual 3D of School of Engineering and Information Technology (SEIT) – Block A in University Malaysia Sabah. The system provide a basis for a school-wide virtual tour, with the 3D represented graphic. Users can have a better view of SEIT in a virtual reality, without coming to SEIT in person. The system was created using Virtual Reality Modeling Language (VRML) and 3D Studio Max. The system can be viewed with Cortona VRML Client and the animation behavior of the system was controlled in VRML script. This report explains the development for the second, third and fourth floor of block A SEIT. The system can be improved in the future by adding other block in the SEIT or even the whole university.

LIST OF ABBREVIATIONS

2D	Two Dimensions
3D	Three-Dimensional
AIFC	Audio Interchange Format File with Compression
AIFF	Audio Interchange File Format
API	Application Programming Interface
AU	Audio Units
AVI	Audio Video Interleave
BMP	Bitmap File
CAD	Computer-Aided Design
CD-ROM	Compact Disc Read-Only Memory
EAI	External Authoring Interface
ENGIT	Engineering and Information Technology
fps	Frames Per Second
FTP	File Transfer Protocol
GIF	Graphics Interchange Format
GUI	Graphical User Interface
HTML	Hypertext Markup Languages
HUD	Head Up Display
IICM	Institute for Information Processing and Computer-Supported
	New Media
ISO	International Organization for Standardization
JPEG	Joint Photographic Experts Group
Kbps	Kilobit Per Second
LOD	Levels of Detail
MIDI	Musical linstrument Digital Interface
MPEG	Moving Picture Experts Group
MPEG-4	Moving Picture Experts Group-Four
NTU	Nanyang Technological University
NURBS	Non-Uniform Rational B-Spline
PC	Personal Computer

PNG	Portable Network Graphic
RAS	Random Audio Sequencer
RGB	Red Green Blue
SEIT	School of Engineering and Information System
SGI	Silicon Graphics, Inc
SIM	Systems in Motion
T&L	Textures & Lighting
TCP/IP	Transmission Control Protocol/Internet Protocol
UCLA	University of California, Los Angeles,
UMS	University Malaysia Sabah
UMSINTEC	University Malaysia Sabah Information Technology
URL	Uniform Resource Locator
UV	Ultraviolet
VRML	Virtual Reality Modeling Language
VRMLview,	Virtual Reality Modeling Language view
VRwave	Virtual Reality Wave
WAV	Wave

TABLE OF CONTENT

CONTENT

PAGE

TITL	E PAGE		i
DEC	LARATI	ON	ii
ADK	NOWLE	DGEMENT	iii
ABS	TRAK		iv
ABS	TRACT		v
LIST	OF ABE	BREVIATIONS	vi
TAB	LE OF C	ONTENT	viii
LIST	OF TAE	BLES	xiii
LIST	OF FIG	GURES	xiv
LIST	OF APP	PENDICES	xviii
СНА	PTER 1:		1
1.1	Introd	luction	1
1.2	Proble	em Background	1
1.3	Proble	em Statement	2
1.4	Objec	tives	3
1.5	Projec	t Scopes	3
1.6	Organ	ization of the Report	4
СНА	PTER 2:	LITERATURE REVIEW	5
2.1	Introd	luction	5
2.2	Tools	and Technologies for Virtual Reality Prototyping	5
	2.2.1	Open Inventor	6
	2.2.2	VRML and Java	7
	2.2.2	Java3D	8
	2.2.4	WorldToolKit and WorldUp	8
	2.2.5	CYBELIUS TouchMore!	9

UNIVERSITI MALAYSIA SABAH

2.3	Techn	ologies for 3D Graphics Development	11
	2.3.1	Alias Maya	12
	2.3.2	Discreet 3D Studio Max	13
	2.3.3	Autodesk AutoCAD	14
	2.3.4	NewTek Lightwave 3D	15
2.4	Techn	ologies for VRML Browsers	16
	2.4.1	CASUS Presenter	17
	2.4.2	Community Place	18
	2.4.3	Cosmo Player	20
	2.4.4	Cortona VRML Client	21
	2.4.5	VRMLview	22
	2.4.6	VRwave	23
	2.4.7	WorldView	24
	2.4.8	Blaxxun Contact	25
2.5	2-Dim	ension and 3-Dimension Techniques	29
	2.5.1	2-Dimension Technique	29
	2.5.2	3-Dimension Technique	30
2.6	Existin	g System of Virtual Campus and School	33
	2.6.1	University of Nanyang Technological	33
	2.6.2	University of New South Wale	35
	2.6.3	University of California (Anderson School of Management)	36
2.7	Conclu	ision	39

CHAP ⁻	CHAPTER 3: METHODOLOGY			40
3.1	Introdu	uction		40
3.2	Plan			41
	3.2.1	Establish	Target Platform	41
		3.2.1.1	Synthetic Environment users	42
		3.2.1.2	Hardware Specification	42
		3.2.1.3	Software Specification	42
	3.2.2	The Feat	ures and Limitations of the Technology	42

S

	3.2.3	Storyboarding and Project Documentation	43
		3.2.3.1 System Overview	43
		3.2.3.2 Target Platform	44
		3.2.3.3 Preliminary Research	44
		3.2.3.4 Storyboard Sketches	45
		3.2.3.5 Interactivity	46
		3.2.3.6 User Interface	46
		3.2.3.7 Resource Requirements	47
3.3	Model	Objects	47
	3.3.1.	Importing from CAD	48
	3.3.2.	Polygon Reduction	51
	3.3.3.	Levels of Detail (LOD)	51
3.4	Edit Ap	opearances	51
	3.4.1	Editing Materials	52
	3.4.2	Applying Textures	52
3.5	Assem	ble Scene	53
	3.5.1	Importing Models	53
	3.5.2	Naming and Grouping	55
	3.5.3	Setting Object Location	56
3.6.	Enviro	nmental Objects	57
	3.6.1	Creating a Gradient Background	57
	3.6.2	Adding Lights	58
3.7	Anima	te Objects	59
	3.7.1	Controlling Animation Behavior in VRML with Java	59
3.8	Compl	ex Interactions	61
	3.8.1	Creating Drag Sensors	62
	3.8.2	Creating Switch Nodes	62
	3.8.3	Introduction to Scripting	63
3.9	Naviga	ation and User Interface	63
	3.9.1	Specifying Methods of Navigation	63
	3.9.2	Creating Viewpoints	64
	3.9.3	Hyperlinks and HUD	65

3.10	Package	65
3.11	Web Page Integration	66
3.12	Optimize and Test	67
	3.12.1 Importing and Optimizing 3D Models	67
	3.12.1.1 Reduce the polygon count	67
	3.12.1.2 Reduce detail	67
	3.12.1.3 Build only what will be seen	67
	3.12.1.4 Modularity	68
	3.12.2 Modification after Export	68
	3.12.2.1 Scale	68
	3.12.2.2 Position	68
	3.12.2.3 Polygon Reduction	68
	3.12.2.4 File size Reduction	68
	3.12.2.5 Optimization	68
	3.12.2.6 Materials and Texturing	69
	3.12.3 Restructure the scene graph	69
	3.12.4 Other Hints to Optimize the Virtual Worlds	69
3.13	Publish	69
3.14	Conclusion	70
СНА	PTER 4: SYSTEM ANALYSIS AND DESIGN	71
4.1	Introduction	71
4.2	Hierarchy of SEIT (Block)	71
4.3	Blueprint of Second, Third and Fourth Floor	72
4.4	Class Diagram of SecondFloorPlan	84
4.5	Conclusion	85
СНА	PTER 5: IMPLEMENTATION	86
5.1	Introduction	86
5.2	Object Modeling	87
5.3	Textures Editing	88
5.4	Assembling the Scenes	88

5.5	Expor	ting the Scenes Into VRML Files	89
5.6	Polygo	on Reduction	90
5.7	Objec	ts Environmentally	90
5.8	Additi	onal Stairs Navigation	91
5.9	View S	Scenes in the Cortona VRML Client	92
5.10	Study	Case	96
5.11	Softwa	are Limitation	99
5.12	Conclu	usion	100
CHAF	PTER 6:	TESTING	101
6.1	Introd	uction	101
6.2	Unit T	esting	101
6.3	Integr	Integration Test	
6.4	Syster	n Test	103
	6.4.1	Comparison of System Interface	104
	6.4.2	Comparison of Time Loading	105
	6.4.3	Comparison of System Functionality	106
	6.44	Comparison on User Preference of Getting to Know SEIT	107
6.5	Conclu	usion	107

6.5 Conclusion

CHAPTER 7: CONCLUSION	
Introduction	109
Constraints	109
Future Work	109
Recommendation	110
Conclusion	110
	TER 7: CONCLUSION Introduction Constraints Future Work Recommendation Conclusion

REFERENCES 111 **APPENDICES** Appendix A Questionnaires Appendix B Gantt Chart

LIST OF TABLES

TABLE TITLE

PAGE

Table 2.1	Comparison of Technologies	11
Table 2.2	Comparison of VRML Browsers	28
Table 2.3	Comparison 2-Dimensions and 3-Dimension Techniques	33
Table 2.4	Comparison of Functions for Existing Virtual Campus and School	38
Table 2.5	Comparison of Tools and Technologies Used for Existing System	
	of Virtual Campus and School	39
Table 4.1	The Amount Rooms in Second Floor	73
Table 4.2	The Amount Rooms in Third Floor	73
Table 5.1	Tools and Technologies Used for Implementation System of	
	Virtual School (SEIT – Block A)	86
Table 6.1	Unit Test for Second, Third and Fourth Floor	102
Table 6.2	Integration Test for Second, Third and Fourth Floor	102
Table 6.3	System Questionnaire Results	103

LIST OF FIGURES

FIGURE	TITLE	PAGE
		_
Figure 2.1	CYBELIUS TouchMore	9
Figure 2.2	CyberToolBox	10
Figure 2.3	Alias Maya	13
Figure 2.4	3D Studio Max	14
Figure 2.5	AutoCAD	15
Figure 2.6	LightWare 3D	16
Figure 2.7	CASUS Presenter	18
Figure 2.8	Community Place	19
Figure 2.9	Cosmo Player (SGI version)	21
Figure 2.10	Cortona VRML Client	22
Figure 2.11	VRMLview	23
Figure 2.12	Vrware	24
Figure 2.13	WorldView	25
Figure 2.14	Blaxxun Contact	27
Figure 2.15	2D graphic	30
Figure 2.16	3D graphic	32
Figure 2.17	The virtual campus of University of Nanyang Technological	34
Figure 2.18	View of walk around the virtual campus	35
Figure 2.19	The virtual campus of University of New South Wale	36
Figure 2.20	View of Walk Around The Virtual Campus	36
Figure 2.21	The virtual school of Anderson School of Management	37
Figure 2.22	The floor of the virtual school	37
Figure 3.1	VRML Object Development Cycle	41
Figure 3.2	Front view of SEIT	44
Figure 3.3	Ground floor view of SEIT (Block A)	44
Figure 3.4	First floor view of SEIT (Block A)	44
Figure 3.5	Second floor view of SEIT (Block A)	45
Figure 3.6	Third floor view of SEIT (Block A)	45

Figure 3.7	Ground Floor Blueprint	45
Figure 3.8	Dean Office Blueprint	46
Figure 3.9	ENGIT Centre Blueprint	46
Figure 3.10	Cortona VRML Client	47
Figure 3.11	Process Importing from CAD	48
Figure 3.12	3D Studio Max	49
Figure 3.13	Rational Reducer	49
Figure 3.14	Studio Max export to VRML format	50
Figure 3.15	Model imported into a VRML authoring package	50
Figure 3.16	Levels of Detail	51
Figure 3.17	Editing Materials	52
Figure 3.18	Applying Texture	53
Figure 3.19	Importing Mode	54
IFigure 3.20	Scene Tree	55
Figure 3.21	Scene Tree of SEIT	56
Figure 3.22	Set Object Location	57
Figure 3.23	Creating Background Node	58
Figure 3.24	Adding Lights	59
Figure 3.25	Creating Script Node	60
Figure 3.26	Java Programming Code	61
Figure 3.27	Events routing in an animation with the Script node	61
Figure 3.28	Creating Drag Sensor	62
Figure 3.29	Creating NavigationInfo	64
Figure 3.30	Creating Viewpoints	65
Figure 3.31	Package	66
Figure 4.1	Hierarchy of SEIT (Block A)	72
Figure 4.2	Second Floor Blueprint	74
Figure 4.3	Third Floor Blueprint	75
Figure 4.4	Tutorial Room	76
Figure 4.5	Lecturer Room	77
Figure 4.6	Professor Room	78
Figure 4.7	Toilet – Male	79

Figure 4.8	Toilet – Female	80
Figure 4.9	Toilet – Handicap	81
Figure 4.10	Meeting Room	82
Figure 4.11	Meeting Room (Seminar Room)	83
Figure 4.12	Class Diagram for SecondFloorPlan	85
Figure 5.1	Meeting Room on SEIT	87
Figure 5.2	Object Modeling Process	87
Figure 5.3	Editing Textures Process	88
Figure 5.4	Assembling the Scenes	89
Figure 5.5	Exporting the Scenes into VRML files	89
Figure 5.6	Polygon Reducer	90
Figure 5.7	Objects Environmentally	91
Figure 5.8	NavigationInfo Node	91
Figure 5.9	Lecturer Room	92
Figure 5.10	Tutorial Room	93
Figure 5.11	Professor Room	93
Figure 5.12	Toilet – Male	94
Figure 5.13	Toilet – Female	94
Figure 5.14	Toilet – Handicap	95
Figure 5.15	Meeting Room	95
Figure 5.16	Meeting Room (Fourth Floor)	96
Figure 5.17	View of SEIT Second Floor after Turning To The Left	96
Figure 5.18:	View of Second Floor SEIT after Walking Straight and	
	Turning Right	97
Figure 5.19:	View of the Room In Second Floor SEIT	97
Figure 5.20:	View of the Lecturer Room	98
Figure 5.21:	The Clearer view of Lecturer Room (Room 105)	98
Figure 5.22:	Before Export from 3D Studio Max	99
Figure 5.23: After Export from 3D Studio Max		99
Figure 5.24: Material Changing		100
Figure 6.1: Comparison of System Interface		104
Figure 6.2: Comparison of time loading		

Figure 6.3: Comparison on System Functionality	106
Figure 6.4: Comparison on user preference in getting to know SEIT	107

LIST OF APPENDICES

TITLE

Questionnaires

Gantt Chart

PAGE

Appendix A Appendix B

CHAPTER 1

INTRODUCTION

1.1 Introduction

The project is all about letting people from all around the world that are interested in getting to know more of School of Engineering and Information System (SEIT), University Malaysia Sabah (UMS) when visiting the university's website. The idea is to let people knowing more and better about SEIT in a quicker, more interesting and realistic way in the form of three-dimensional (3D) representation instead of in the static form of pictures and text.

People can get the chance to look into SEIT more clearly in a virtual way. They can get inside the building to get a closer look at the building, with this way they can see clearly enough the whole building including outside and inside of the building. Inside the building, people can see the inside structure of the building. They have the chance to see things inside include the lecturer's room, tutorial room, laboratory, and even toilet.

In this 21st century, with the mass storage capability and computing power, representation in 3D format is more appealing and realistic. 3D representation is applied in various field including games, movies, modeling, simulations, terrain mapping and so on. This inspired the idea of doing the project in 3D. The project is called as 3D virtual SEIT (Block A). Compared with the one currently available in SEIT with only 2D surface in the form of pictures and text, a 3D system is more interesting.

1.2 Problem Background

Basically there are two normal ways to get to know about SEIT and how SEIT looked like. One way is though SEIT website and find out about SEIT with the system of navigating in the form of 2D map. Another way is simply come to SEIT.

SEIT is located in University Malaysia Sabah (UMS), one of the local universities in Malaysia in Kota Kinabalu, Sabah. Some people come to know UMS when there is an education fair, or through UMS website.

Normally people who are interested in knowing and coming to SEIT are the new students of UMS and perhaps the parent. Students interested in getting know SEIT because SEIT may become their studying institution in the future. Parent getting to know SEIT to get a clear vision on the place, whether it is a good place to study.

Normally people will browse to the SEIT website in order to know SEIT. It is a easiest way compared to the others. Information about SEIT easily be obtain in the website.

1.3 Problem Statement

In SEIT, the previous system of navigating is in the form of 2D map with legend. The main problem with the 2D map is that the map cannot represent the 3D reality view of SEIT.

The project is done by only provide information about SEIT in text and pictures. Sometimes with only words, the information provided cannot reach and achieve thel objectives or send out the correct massage. Words cannot give a reality vision of SEIT to people. People sometimes get confused with what they read as people always tend to believe on the things they saw with their own eyes rather than the things that they can only read in words.

The previous system does have some pictures to support the text written. With these photos or pictures, it can let people to have a look of the campus. But this is not enough, picture is a just a picture, nothing special or interesting enough. A picture does not have any movement or motion; it does not look interesting enough.

With the 3D virtual SEIT, people can have a look of SEIT in a realistic way. They can have the chance to ready look into SEIT in the system, this way people can have a better view of SEIT using the system. People can go around SEIT, going in any direction using their keyboard. They can go in and out or up and down in any direction in SEIT by just pressing the arrow key in the keypad.

Another way to look clearly in SEIT is to come to SEIT but this is a problem for some people. For those who live far away from SEIT, is very difficult for them to come to SEIT. This takes time, and even money. Usually most of the people who are interested in SEIT are student, but it would be a problem to come to SEIT, especially for those who live far away for SEIT. With the project - 3D VIRTUAL SEIT (BLOCK A), now they don't

have to come to SEIT in order to know SEIT. Simple and easy, just go online to the SEIT website, SEIT will be there to be seen.

1.4 Objectives

- 1. Develop a 3D virtual SEIT using VRML v2.0 and 3D studio max v7.0.
- 2. To visually represent the area of SEIT Block A in 3D representation.
- 3. To provide alternative way of touring in SEIT.

1.5 **Project Scopes**

Scopes of this project include

■ Covering only Block A of SEIT

This project covers only Block A of SEIT, so School of Food Science and Nutrient is not include. But still it will be seen in the project, but none information about it will be included. In this report, only second, third and fourth floor will be covered.

Online based

This outcome of this project can be putting into the school's website and need to be view with VRML viewer or plug-in.

■ VRML v2.0 and 3D studio max v7.0

VRML v2.0 is an acronym for the Virtual Reality Modeling Language. Basically, it is a 3D interchange format that provides a specification for the description of three-dimensional space, a scene corresponding to reality or completely imaginary and conceptual (McAndless, *et al*, 1996). While 3D studio max v7.0 is tool used to draw the 3D graphic in the project.

1.6 Organization of the Report

Chapter 1 briefly discussed on outlines the project by giving introduction of the project. This chapter will also discuss on the problem statement and problem background of the project. The objectives and scope will also be mentioned. Finally chapter 1 included an

organization of the report that briefly explaining on the content to be covered for each chapter of the report.

Chapter 2 is on literature review. This chapter reviews on the tools and technologies for virtual reality prototyping, technologies for 3D graphics development, technologies for VRML browsers and existing systems that looks similar to the project. Comparison made on the existing systems by comparing on the functions.

Chapter 3 is on methodology. The chapter reports approaches and overall framework taken in building up the project. Methodology also contains the techniques use to applied in the design and implementation of the project. This chapter also contains the approaches used and the software and hardware specifications.

Chapter 4 is on system analysis and design. The chapter is discussing on system design, user interface design, drawing the building blueprints, and related algorithms of the project. Class diagram will be included.

Chapter 5 is discussing on the implementation of the program. This is where the interfaces and also the guidelines on using the program are being show. Screenshots are included as well, and also type of testing performed and testing results.

Chapter 6 is on the testing phase. A few type of testing can be done such as testing on functionality, structural, contents and others.

Chapter 7 is on conclusion and future works. This chapter summarizes the project and results obtained. The limitations and recommendations of the project for future works are included and mentioned.

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

This chapter consists of several sections. The first section is tools and technologies for virtual reality prototyping. This section describes the tools and technologies for virtual reality prototyping like Open Inventor, VRML and Java, Java3D, WorldToolKit and WorldUp, CYBELIUS TouchMore! and CyberToolBox. This section also discusses about the advantages and limitations for each tools and technologies. The second section describes the technologies for 3D graphics development. The 3D graphic software are Alias Maya, Discreet 3D Studio Max, Autodesk AutoCAD, NewTek Lightwave 3D. It also discusses about the features for the 3D graphic software. The third section is technologies for VRML browsers. In this section, it describes the technologies for VRML browsers like CASUS Presenter, Community Place, Cosmo Player, Cortona VRML Client, VRMLview, VRware, WorldView and Blaxxun Contact. This section also discusses about the features for the VRML browsers. The fourth section describes the 2-dimension and 3dimension techniques with the advantages and limitations of the 2D and 3D techniques. The last section reviews on the existing systems that look similar to the project. Comparison are made on the existing systems by comparing on the function of each existing systems, tools and technologies for virtual reality prototyping, technologies for 3D graphics development and technologies for VRML browsers. This section also describes the history of each existing systems.

2.2 Tools and Technologies for Virtual Reality Prototyping

There are varieties of technologies that are normally applied for the development of 3D graphics. Those technologies include Open Investor, Virtual Reality Modeling Language (VRML) and Java, Java3D, WorldToolKit and WorldUp, CYBELIUS TouchMore!, and CyberToolBox. The background, functions, advantages and disadvantages of those technologies are compared.

2.2.1 Open Inventor

Open Inventor is available for several platforms, most notably for Silicon Graphics workstations, which was originally developed, and also for PC. Open Inventor and other products based on it are represented by Template Graphics Software. Open Inventor is a library of objects and methods used for creating interactive graphic applications. It defines a file format and an application programming interface (API) for 3D. The basic idea is to create 3D objects and to store these objects as a hierarchical tree in a scene database. These objects are called nodes and they represent geometries, materials, translations and behavior of 3D objects (Wernecke, 1994).

The behavior of nodes is written in them and it is possible to create functional 3D models by extending these nodes. Since Open Inventor is a C++-based class library, extending means that functional nodes are created by deriving existing nodes and adding or replacing methods in them. By using Open Inventor, it is possible to create a virtual reality prototyping environment the supports heterogeneous virtual reality prototypes (Wernecke, 1994).

One of the benefits of Open inventor are that enables the use of various virtual reality input devices, including stereo viewing, haptic rendering and data gloves. In addition, Open Inventor has its specific file format; while the latest versions support also VRML97. The extendibility of Open Inventor can be regarded as a further benefit (Harri Kyllonen, 1999).

Open Inventor has some weaknesses. One of them is being the authoring tools, which are not very good. The Open Inventor file format is not very well supported, either. To be able to use the files by means of another system, the files have to be converted, possibly even several times. Furthermore, Open Inventor and C++-based virtual reality prototypes are highly platform and operating system dependent. Integration with Java applications and APIs has proven difficult and problematic. Thus Open Inventor is not suitable for Internet use. Finally, the license fees are also not likely to make Open Inventor a more tempting choice (Harri Kyllonen, 1999).

REFERENCES

- "3D Studio Max" in <u>http://www-personal.umich.edu/~emdanat/Tutorials/3DSMax/</u>. Accessed on 5/9/2005.
- "About Blaxxun Contact" in http://developer.base.com/html/. Accessed on 13/9/2005.
- "Basic Concepts" in <u>http://courses.home.att.net/autolisp/aconcept.htm</u>. Accessed on 1/8/2005.
- "Bringing 2D Interfaces into 3D Worlds" in <u>http://people.cs.vt.edu/~bowman/3dui.org/course_notes/siggraph2001/2dto3d.p_df</u>. Accessed on 25/8/2005.
- "Cortona VRML Client-Complete Web3D viewer" in <u>http://www.parallelgraphics.com/products/cortona/</u>. Accessed on 13/8/2005.
- "Creating an Interactive 3D Product Using VRML" in <u>http://www.virtualrealms.com.au/vrml/tute01/tutorial.htm</u>. Accessed on 11/9/2005.
- "External authoring interface" in <u>http://www.web3d.org/x3d/specifications/vrml/ISO-IEC-14772-IS-VRML97WithAmendment1/</u>. Accessed on 5/9/2005.
- "Functional specification and UTF-8 encoding" in <u>http://www.web3d.org/x3d/specifications/vrml/ISO-IEC-14772-IS-</u> <u>VRML97WithAmendment1/</u>. Accessed on 25/8/2005.
- "Image Viewers, Conversions, and Manipulation" in <u>http://ceu.fi.udc.es/SAL/E/5/VRMLVIEW.html</u>. Accessed on 27/9/2005.
- "LightWave's Future: The Development Model" in <u>http://www.newtek.com/lightwave/lwfuturedev.php</u>. Accessed on 27/9/2005.
- "On-line UCLA Virtual Campus" in <u>http://oldcda.design.ucla.edu/CAAD/worlds.html</u>. Accessed on 11/9/2005.
- "Previous work on the navigation controls" in <u>http://faculty.uaeu.ac.ae/~hazem/chapt2.doc</u>. Accessed on 25/8/2005.

UNIVERSITI MALAYSIA SABAH

"The Maya Family" in <u>http://www.alias.com/glb/eng/products-</u> <u>services/family_details.jsp?familyId=3900009</u>. Accessed on 27/9/2005.

"VRML Browsers" in <u>http://www.agocg.ac.uk/train/vrml2rep/part1/guide2.htm#heading16</u>. Accessed on 3/9/2005.

- Arno Schäfer. 1997. *A Java-based VRML 2.0-Browser: CASUS Presenter*. Thesis Institution of Computer Graphic.
- Carey R & Bell G. 1997. *The Annotated VRML2.0 Reference Manual*. Reading: Addison-Wesley Publishing Company.

Eckel B. 1998. Thinking in Java. New Jersey: Prentice Hall Incorporated.

- Fabiana Saldanha Tamiosso, Alberto Barbosa Raposo & Leo Pini Magalhes. 1998. *Building Interactive Animations using VRML and Java*. Thesis University of Waterloo.
- Harri Kyllonen. 1999. *Framework for Developing VRML-Based Virtual Prototypes*. Thesis University of Oulu.
- Lin Jia Wen, Teo Hwee Seong & Tan Pee Loon. 2004. *Virtual Campus of NTU*. Thesis University of Nanyang Technological.
- Ming Kwong Ti, Chiang Oon Tan & Chong Hang leong. 1997. *Virtual Campus-The University of New South Wales*. Thesis University of New South Wales.
- Rodger Lea, Kouichi Matsuda & Ken Miyashita. 1996. Java for 3D and VRML Worlds. Indianapolis: New Rider Publishing.
- Rushforth K, Deering M & Sowizral H. 1997. *The Java 3D API Specification*. Reading: Addison-Wesley Publishing Company.
- Wernecke J. 1994. *The Inventor Mentor: programming Object-oriented 3D graphics with Open Inventor.* Reading: Addison-Wesley Publishing Company.

