Campus Safe: Safeguarding GPS-Based Physical Identity and Access Management (PIAM) System with A Lightweight Geo-Encryption

YEO ZI ZIAN

FACULTY OF COMPUTING AND INFORMATICS UNIVERSITY MALAYSIA SABAH 2022

Campus Safe: Safeguarding GPS-Based Physical Identity and Access Management (PIAM) System with A Lightweight Geo-Encryption

YEO ZI ZIAN

THESIS SUBMITTED IN PARTIAL FULFILLMENT FOR THE DEGREE OF BACHELOR OF COMPUTER SCIENCE WITH HONOURS (NETWORK ENGINEERING)

FACULTY OF COMPUTING AND INFORMATICS UNIVERSITY MALAYSIA SABAH 2022

NAME	: YEO ZI ZIAN
MATRIC NUMBER	: BI18110159
TITLE	: Campus Safe: Safeguarding GPS-Based Physical Identity
	and Access Management System (PIAM) System with A
	Lightweight Geo-Encryption
DEGREE	: BACHELOR OF COMPUTER WITH HONOURS
	(NETWORK ENGINEERING)
VIVA'S DATE	: 25 JAN 2022

CERTIFIED BY;

1. SUPERVISOR

DR TAN SOO FUN

Signature

DR TAN SOO FUN

SENIOR LECTURER Faculty <u>of Computing and Info</u>rmatics Universiti Malaysia Sabah

DECLARATION

I hereby declare that the material in this thesis is my own except for quotations, equations, summaries, and references, which have been duly acknowledged.

25 JAN 2022

leo

YEO ZI ZIAN BI18110159

ACKNOWLEDGEMENT

I would like to express my deepest gratitude to my supervisor, Dr Tan Soo Fun for giving me the chance to perform this amazing project with topic Campus Safe: Safeguarding GPS-Based Physical Identity and Access Management (PIAM) System with A Lightweight Geo-Encryption. Without her support, the assignment wouldn't have been completed. I would also like to thank Gavin Teo Juen for helping me while performing the final year project. Last but not least, I would like to express my appreciation to my family members for supporting me all the time during the given time for completing the final year project.

YEO ZI ZIAN 25 JAN 2022

ABSTRACT

Universiti Malaysia Sabah (UMS) has transformed itself into an attraction point for tourists who travel to Sabah in recent years. The increase in the number of tourists who visit UMS has raised concerns on campus safety issues. The registered tourists cannot be identified and tracked, so they may do whatever they want and go wherever they like. Some restricted areas such as the faculty, Dewan Canselori hall or even the hostel will become the place for the tourists to challenge to go. Recent industrial solutions to overcome the problem includes using manual registration, using 125kHz proximity card, using mobile application to scan QR code and others. These industrial solutions can obtain visitors' personal information without detecting their real-time location at a large area such as in UMS. Recent mobile apps that rely on QR code scanning in the campus entrance gates lack the real-time GPS tracking system to track the visitor's location. This project aimed to develop a GPS-based Physical Identity and Access Management (PIAM) System for UMS security division to address these gaps. Subsequently, this project embedded with a lightweight Geo-Encryption algorithm to preserve the privacy of real-time GPS location. The objective of this project includes, (i) To investigate the lightweight geo-encryption in terms of their computation speed, generated ciphertext, and key size by using literature review and experimental approach. (ii) To design and develop a GPS-Based Physical Identity and Access Management System in web Firebase platform by using prototype approach. (iii) To evaluate the usability performance of the developed GPS-Based Physical Identity and Access Management (PIAM) System by using the System Usability Scale (SUS) approach. Literature review and experiment aimed to select the fastest lightweight geo-encryption algorithms and the smallest ciphertext and key size. The user's requirements will be collected using a quantitative questionnaire online surveying tool. Some qualitative research methods such as interviews with the officer from the security division and observation at the main entrance gate of campus will also be performed to determine the Standard Operation Procedure (SOP) of access control and management in UMS security division. The collected user and system requirements will be used to design and develop the proposed project. Data Flow Diagram (DFD) will be used to develop the system flow, while Entity Relationship Diagram is used to design the system's database. The selected lightweight geo-encryption algorithm will be implemented in the proposed system,

which develops by using Java language. Business logic and interfaces of the system will be tested by using unit testing and system integration testing while user acceptance testing (UAT) with system usability scare (SUS) approach will be used to test the usability performance of the proposed system. The project's expected outcome is a GPS-Based Physical Identity and Access Management System with the selected lightweight geo-encryption algorithm that can be used to support the control access and management operations of UMS security division.

ABSTRAK

Campus Safe: Melindungi Identiti Fizikal Berasaskan GPS dan Sistem Pengurusan Capaian (PIAM) dengan Penyulitan Geo Ringan

Universiti Malaysia Sabah (UMS) telah mengubah dirinya menjadi tempat tarikan pelancong yang melancong ke Sabah sejak beberapa tahun kebelakangan ini. Peningkatan jumlah pelancong yang melawat UMS telah menimbulkan kebimbangan terhadap isu keselamatan kampus. Pelancong yang berdaftar tidak dapat dikenal pasti dan dijejaki, jadi mereka boleh melakukan apa sahaja yang mereka mahu dan pergi mana-mana sahaja yang mereka suka. Beberapa kawasan larangan seperti fakulti, Dewan Canselori mahupun asrama akan menjadi tempat untuk dicabar oleh pelancong. Penyelesaian industri terkini untuk mengatasi masalah tersebut termasuk menggunakan pendaftaran manual, aplikasi mudah alih untuk mengimbas kod QR dan lain-lain. Penyelesaian industri ini boleh mendapatkan maklumat peribadi pelawat tanpa mengesan lokasi masa nyata mereka di kawasan yang luas seperti di UMS. Aplikasi mudah alih terkini yang bergantung pada pengimbasan kod QR di pintu masuk kampus tidak mempunyai sistem penjejakan GPS masa nyata untuk menjejak lokasi pelawat. Projek ini bertujuan untuk membangunkan Sistem Identiti Fizikal dan Pengurusan Capaian (PIAM) berasaskan GPS untuk bahagian keselamatan UMS bagi menangani jurang ini. Selepas itu, projek ini dibenamkan dengan algoritma Penyulitan Geo yang ringan untuk memelihara privasi lokasi GPS masa nyata. Objective projek ini termasuk, i) Untuk menyiasat penyulitan geo ringan dari segi kelajuan pengiraan mereka, teks sifir yang dijana, dan saiz kunci dengan menggunakan kajian literatur dan pendekatan eksperimen. ii) Untuk mereka bentuk dan membangunkan Sistem Pengurusan Identiti Fizikal dan Akses Berasaskan GPS dalam platform Firebase web dengan menggunakan pendekatan prototaip. iii) Untuk menilai prestasi kebolehgunaan Sistem Pengurusan Identiti Fizikal dan Capaian (PIAM) Berasaskan GPS yang dibangunkan dengan menggunakan pendekatan Skala Kebolehgunaan Sistem (SUS). Kajian literatur dan percubaan bertujuan untuk memilih algoritma penyulitan geo ringan terpantas dan teks sifir dan saiz kunci terkecil. Keperluan pengguna akan dikumpul menggunakan alat tinjauan dalam talian soal selidik kuantitatif. Beberapa kaedah kajian kualitatif seperti temu bual dengan pegawai bahagian keselamatan dan pemerhatian di pintu masuk utama kampus juga

akan dilakukan bagi menentukan Standard Operation Procedure (SOP) kawalan capaian dan pengurusan di bahagian keselamatan UMS. Keperluan pengguna dan sistem yang dikumpul akan digunakan untuk mereka bentuk dan membangunkan projek yang dicadangkan. Rajah Aliran Data (DFD) akan digunakan untuk membangunkan aliran sistem, manakala Rajah Perhubungan Entiti digunakan untuk mereka bentuk pangkalan data sistem. Algoritma penyulitan geo ringan yang dipilih akan dilaksanakan dalam sistem yang dicadangkan, yang dibangunkan menggunakan bahasa Java. Logik perniagaan dan antara muka sistem akan diuji dengan menggunakan ujian unit dan ujian integrasi sistem manakala ujian penerimaan pengguna (UAT) dengan pendekatan kebolehgunaan sistem (SUS) akan digunakan untuk menguji prestasi kebolehgunaan sistem yang dicadangkan. Hasil jangkaan projek ini ialah Sistem Pengurusan Identiti Fizikal dan Capaian Berasaskan GPS dengan algoritma penyulitan geo ringan terpilih yang boleh digunakan untuk menyokong capaian kawalan dan operasi pengurusan bahagian keselamatan UMS.

TABLE OF CONTENTS

TITLE		Page
DECLARATI	DN	iii
ACKNOWLE	DGEMENT	iv
ABSTRACT		v
ABSTRAK		vii
TABLE OF C	ONTENTS	ix
LIST OF TAE	BLES	xii
LIST OF FIG	URES	xiv
LIST OF APF	PENDICES	
CHAPTER 1:	INTRODUCTION	1
1.1	Introduction	1
1.2	Problem Background	2
1.3	Problem Statement	3
1.4	Project Objective	4
1.5	Project Scope	5
1.6	Organization of the Report	6
1.7	Conclusion	7
CHAPTER 2:	LITERATURE REVIEW	8
2.1	Introduction	9
2.2	Methods of Detecting Real-Time Location	9
2.3	Privacy Concerns of Real-Time Location on Users	14
2.4	Recent Works on Protecting Real-Time GPS Location	15
2.5	Geo Encryption Algorithms and Related Works	21
	2.5.1 Overview of Geo-Encryption	21
	2.5.2 Comparison Between Symmetric and	24
	Asymmetric Geo-Encryption	
	2.5.3 Symmetric Geo-Encryption and Recent Works	26
	ix the second	IMS

2.6	Review on Existing Physical Identity and Access	38
	Management (PIAM) system	
	2.6.1 Vizitor	39
	2.6.2 Vizito	47
	2.6.3 Visitdesk Pad	52
CHAPTER 3:	METHODOLOGY	66
3.1	Introduction	66
3.2	Methodology	66
3.3	Software and Hardware Requirements	76
3.4	Conclusion	76
CHAPTER 4:	SYSTEM ANALYSIS AND DESIGN	78
4.1	Introduction	78
4.2	Questionnaire Analysis	78
4.3	System Design	93
	4.3.1 Context Diagram	93
	4.3.2 Data Flow Diagram (DFD) Level 0	94
	4.3.3 Data Flow Diagram Level 1	95
	4.3.4 Entity Relationship Diagram	107
4.4	Data Dictionary	108
4.5	Preliminary User Interface Design	110
4.6	Conclusion	124
CHAPTER 5:	EXPERIMENT IMPLEMENTATION	125
5.1	Introduction	125
5.2	Experiment Parameters and Datasets	125
5.3	Experiment Implementation	127
	5.3.1 AES Implementation	128
	5.3.2 XTEA Implementation	131
	5.3.3 IDEA Implementation	133
5.4	Experiment Result	136
	5.4.1 Comparison of Geo-Encryption Algorithms	136
	Computation Speed	

	5.4.2	Comparison of Geo-Encryption Algorithms	137
		Ciphertext Size	
	5.4.3	Comparison of Geo-Encryption Algorithms	138
		Key Generation Time	
	5.4.4	Comparison of Geo-Encryption Algorithms	139
		Encryption Time	
	5.4.5	Comparison of Geo-Encryption Algorithms	140
		Decryption Time	
5.5	Prelim	inary User Interface Design	141
5.6	Conclu	usion	142
CHAPTER 6	: EXPEF	RIMENT IMPLEMENTATION	143
6.1	Introd	luction	143
6.2	User I	nterface (UI) of PIAM System	143
	6.2.1	User Interfaces of User Authentication Module	144
	6.2.2	User Interfaces of Access Ticket Management	149
		Module	
	6.2.3	User Interfaces of Tracking of Location Module	154
	6.2.4	User Interfaces of Restricted Area Access Alert	155
		Module	
	6.2.5	User Interfaces of Report Generation Module	156
	6.2.6	Renew and Revoke Ticket Issuing Module	157
6.3	Platfo	rm Used to Create Database	158
6.4	Integr	rated Development Environment (IDE) Platform	158
6.5	Conclu	usion	159
CHAPTER 7	: TESTI	ING AND EVALUATION	160
7.1	Introd	luction	160
7.2	Unit T	esting	160
7.3	Syster	m Integration Testing	166
7.4	User A	Acceptance Testing Using SUS Approach	172
7.5	Discus	ssion of User Acceptance Testing with System	179
	Usabil	ity Scale	
7.6	Conclu	usion	180

CHAPTER 8:	CONCLUSION	181
8.1	Summary of Project	181
8.2	Limitations of The Project	183
8.3	Future Work	183
REFERENCES	5	XV
APPENDICES		xxiii

LIST OF TABLES

Table 1.1	: Module, Description, And Targeted Users Of The	5
	Proposed Piam System	
Table 2.1	: Comparison Between Various Methods Of Detecting	13
	Real-Time Location	
Table 2.2	: The Pros And Cons Of Data Encryption Methods	18
	For Protecting Real-Time GPS Location Information	
Table 2.3	: The Comparison Of Various Lightweight Symmetric	36
	Algorithms Which Can Use In Geo-Encryption	
Table 2.4	: Comparison Between The Existing Physical Identity	62
	And Access Management (Piam) System	
Table 4.1	: Tables In Database	108
Table 4.2	: Data Dictionary For Users' Table	108
Table 4.3	: Data Dictionary For Ticket_Information's Table	108
Table 4.4	: Data Dictionary For User_Location's Table	109
Table 7.1	: Unit Testing Of User Authentication Module	161
Table 7.2	: Unit Testing Of Access Ticket Management Module	162
Table 7.3	: Unit Testing Of Tracking Of Location Module	163
Table 7.4	: Unit Testing Of Restricted Area Access Alert Module	163
Table 7.5	: Unit Testing Of Renew And Revoke Ticket Issuing Module	164
Table 7.6	: Unit Testing Of Report Generation Module	164
Table 7.7	: Unit Testing Of Geo-Encryption Module	165
Table 7.8	: System Integration Testing Of Ums Piam System	166
Table 7.9	: Sus Score Of Ums Piam System	180

LIST OF FIGURES

Figure 2.1	: Geo-Codex Geo-Encryption Algorithm	23
Figure 2.2	: PVT->Geo-Lock Mapping Function	24
Figure 2.3	: Structure Of Symmetric Algorithm	25
Figure 2.4	: Structure Of Asymmetric Algorithm	25
Figure 2.5	: Structure Of Aes Algorithm	27
Figure 2.6	: Structure Of Present Algorithm	29
Figure 2.7	: Structure Of Piccolo Algorithm	30
Figure 2.8	: Round Permutation Of The Block Cipher Piccolo	31
Figure 2.9	: Structure Of Idea Algorithm	32
Figure 2.10	: The I-TH Cycle Of Xtea	34
Figure 2.11	: Structure Of Xtea Algorithm	35
Figure 2.12	: Admin Login Page	39
Figure 2.13	: Visitor Check-In Function	40
Figure 2.14	: Visitor Been Here Before Function	41
Figure 2.15	: Visitor Check Out Function	42
Figure 2.16	: Visitor Accept Invitation Function	43
Figure 2.17	: Admin's Dashboard	44
Figure 2.18	: Admin Generate Report Function	45
Figure 2.19	: Admin Pair Device Function	45
Figure 2.20	: Admin Invite Function	46
Figure 2.21	: Admin Login Page	47
Figure 2.22	: Visitor Check-In Function	48
Figure 2.23	: Visitor Check Out Function	49
Figure 2.24	: Admin's Dashboard	50

Figure 2.25	: Admin View Visitor Log Function	50
Figure 2.26	: Admin Manage Registered Visitor Function	51
Figure 2.27	: Admin Help Visitor Check-In Function	51
Figure 2.28	: Admin Login Page	53
Figure 2.29	: Visitor Check-In Function	54
Figure 2.30	: Visitor Check Out Function	55
Figure 2.31	: Visitor Self-Check In Function	56
Figure 2.32	: Visitor Accept Invitation Function	57
Figure 2.33	: Admin's Dashboard	58
Figure 2.34	: Admin Login QR Code Function	59
Figure 2.35	: Visitor Log Function	59
Figure 2.36	: Admin Generate Report Function	60
Figure 2.37	: Admin Invite Function	60
Figure 3.1	: Phase 1 Project Background And Literature Review	68
Figure 3.2	: Flowchart Of Experiment	70
Figure 3.3	: Phase 2 Experiment On Determining Lightweight	70
	Geo-Encryption Algorithm	
Figure 3.4	: Phase 3 User And System Requirements Gathering And Analysis	71
Figure 3.5	: Phase 4 Design Of The Proposed PIAM System	72
Figure 3.6	: Overview Of Encryption And Decryption Of	73
	Real-Time GPS Location	
Figure 3.7	: Phase 5 Implementation Of Safeguarding GPS-Based Physical	74
	Identity And Access Management (PIAM) System With A	
	Lightweight Geo-Encryption	
Figure 3.8	: Phase 6 Testing And Evaluation	75
Figure 3.9	: Phase 7 Report Writing And Documentation	75
Figure 4.1	: Respondents' Experience In Using A Real-Time	79
	Location Tracking Application	

Figure 4.2	:	Information Provided By Respondents When Using A	80
		Real-Time Location Tracking Application	
Figure 4.3	:	Respondents' Feeling When Using A Real-Time Location	81
		Tracking Application	
Figure 4.4	:	Respondents' Opinion About The Real-Time Location	81
		Tracking Application On Causing An Invasion Of Privacy	
Figure 4.5		Opinion On The Importance Of Protecting Personal	82
		Information In The Real-Time Location Tracking Application	
Figure 4.6		Opinion On Ever Close Gps Location Information Function	83
		When Using A Real-Time Location Tracking Application	
Figure 4.7	:	Respondents' Preferable On Language For The Proposed	84
		Real-Time Location Tracking Application	
Figure 4.8	:	The Information That Suitable To Give When Registering	85
		In The Proposed Real-Time Location Tracking Application	
Figure 4.9	:	Respondents' Preferable On Protecting Personal Data	86
		In The Proposed Real-Time Location Tracking Application	
Figure 4.10	:	Respondents' Preferable Methods Of Registering Account	86
		For A Real-Time Location Tracking Application	
Figure 4.11	:	Respondents' Preferable Features In The Ticket	87
		Management Function Of Real-Time Location Tracking	
		Application	
Figure 4.12	:	Respondents' Preferable Methods When Applying,	88
		Renew, And Cancel Access Ticket	
Figure 4.13	:	Information That Suitable To Provide When	88
		Applying And Renewing Access Ticket	
Figure 4.14	:	Information That Suitable To Provide After Applying For	89

Access Ticket On The Access Ticket

Figure 4.15	: Information That Needed To Provide When Canceling	90
	An Access Ticket	
Figure 4.16	: Respondents' Preferable On Push Notification As A	90
	Reminder When Entering Restricted Area In UMS	
Figure 4.17	: Respondents' Preferable On Type Of Notification	91
Figure 4.18	: Opinion On The Understanding Of Standard Operation	92
	Procedure (SOP) Of UMS	
Figure 4.19	: Respondents' Preferable On Saving Personal Information	92
Figure 4.20	: Context Diagram	93
Figure 4.21	: DFD Level 0	94
Figure 4.22	: Process 1.0 Register Account	95
Figure 4.23	: Process 2.0 Login Account	96
Figure 4.24	: Process 3.0 Apply For Access Ticket	97
Figure 4.25	: Process 4.0 Renew Access Ticket	98
Figure 4.26	: Process 5.0 Delete Access Ticket	99
Figure 4.27	: Process 6.0 Trigger GPS Real-Time Location Detection API	100
	And Restricted Area Access Alert	
Figure 4.28	: Process 7.0 Encryption	101
Figure 4.29	: Process 8.0 Decryption	102
Figure 4.30	: Process 9.0 Generate Report	103
Figure 4.31	: Process 10.0 Retrieve Users' GPS Real-Time Location	104
Figure 4.32	: Process 11.0 Renew Access Ticket Issuing	105
Figure 4.33	: Process 12.0 Revoke Access Ticket Issuing	106
Figure 4.34	: Entity Relationship Diagram Of The Proposed System	107
Figure 4.35	: Main Page	110
Figure 4.36	: Sign-In Page	111
Figure 4.37	: Register Page	112

Figure 4.38	: User Home Page	113
Figure 4.39	: Enter Access Ticket Number Page	114
Figure 4.40	: Retrieve Location Page	115
Figure 4.41	: Apply Access Ticket Page	116
Figure 4.42	: Receive Access Ticket Number Page	117
Figure 4.43	: Renew Access Ticket Page	118
Figure 4.44	: Revoke Access Ticket Page	119
Figure 4.45	: Admin Sign In Page	120
Figure 4.46	: Admin Home Page	121
Figure 4.47	: Generate Report Page	122
Figure 4.48	: Trigger Warning Page	123
Figure 5.1	: Datasets Used In Experiment	126
Figure 5.2	: Code Used To Call Out Selected Algorithms' Engine	127
Figure 5.3	: Parameter Setting Of Calling Aes Engine From Bouncy Castle	128
Figure 5.4	: Method Of Measuring Computation Speed Of AES	128
Figure 5.5	: Method Of Measuring Key Generation Time Of AES	129
Figure 5.6	: Method Of Measuring Encryption Time Of AES	130
Figure 5.7	: Method Of Measuring Decryption Time Of Aes	130
Figure 5.8	: Parameter Setting Of Calling XTEA Engine From Bouncy Castle	131
Figure 5.9	: Method Of Measuring Computation Speed Of XTEA	131
Figure 5.10	: Method Of Measuring Key Generation Time Of XTEA	132
Figure 5.11	: Method Of Measuring Encryption Time Of XTEA	132
Figure 5.12	: Method Of Measuring Decryption Time Of XTEA	133
Figure 5.13	: Parameter Setting Of Calling Idea Engine From Bouncy Castle	133
Figure 5.14	: Method Of Measuring Computation Speed Of IDEA	134
Figure 5.15	: Method Of Measuring Key Generation Time Of IDEA	135
Figure 5.16	: Method Of Measuring Encryption Time Of IDEA	135

Figure 5.17	: Method Of Measuring Decryption Time Of IDEA	136
Figure 5.18	: Computation Speed In Milliseconds Of Selected Algorithms	136
	Using 21, 23, And 25 Bytes Plaintext As Input	
Figure 5.19	: Ciphertext Size In Bytes Of Selected Algorithm Using	137
	21, 23, And 25 Bytes Plaintext As Input	
Figure 5.20	: Key Generation Time In Milliseconds Of Selected Algorithms	138
	Using 21, 23, And 25 Bytes Plaintext As Input	
Figure 5.21	: Encryption Time In Milliseconds Of Selected Algorithms	139
	Using 21, 23, And 25 Bytes Plaintext As Input	
Figure 5.22	: Decryption Time In Milliseconds Of Selected Algorithms	140
	Using 21, 23, And 25 Bytes Plaintext As Input	
Figure 6.1	: Register Page For User And Admin	144
Figure 6.2	: Login Page For User And Admin	145
Figure 6.3	: User Profile Page, And Edit User Profile Page	146
Figure 6.4	: Update Email Page, And Reset Password Page	147
Figure 6.5	: Log Out Page For User	148
Figure 6.6	: Fill In User Details Page And Choose Date Of Visit Page	149
Figure 6.7	: Confirm Access Ticket Page And Access Ticket	150
Figure 6.8	: Choose New Date Of Visit Page	151
Figure 6.9	: New Access Ticket Information Page And New Access Ticket	152
Figure 6.10	: Delete Ticket Information Page And Ticket Information Page	153
Figure 6.11	: Tracking Of Location Page	154
Figure 6.12	: Restricted Area Access Alert Page	155
Figure 6.13	: Report Generation Page And Generated User Report	156
Figure 6.14	: Renew User Access Ticket Page And Revoke User Access	157
	Ticket Page	

Figure 6.15 : Firebase Platform

UNIVERSITI MALAYSIA SABAH

158

Figure 6.16	: IDE Platform Android Studio	159
Figure 7.1	: Opinion Of Users On The Like Degree Of Using This System	173
	Frequently	
Figure 7.2	: Opinion Of Users About The Complexity Of The System	173
Figure 7.3	: Opinion Of Users On The Easiness Of The System When Using	174
Figure 7.4	: Opinion Of Users On The Needs Of A Technical Person	175
	While Using The System	
Figure 7.5	: Opinion Of Users On The Integration Of Various Functions	175
	In The System	
Figure 7.6	: Opinion Of Users About The Inconsistency In The System	176
Figure 7.7	: The Opinion Of Users About The Quickness Of People Learning	177
	To Use The System	
Figure 7.8	: Opinion Of Users About The Level Of Cumbersome To	177
	Use The System	
Figure 7.9	: Opinion Of Users About The Confidence Level When Using	178
	The System	
Figure 7.10	: Opinion Of Users About The Need To Learn A Lot Of Things	179
	Before Using The System	

LIST OF APPENDICES

	APPENDIX A: Application Letter For Interview Session With UMS
XXV	Security Force
xxvii	APPENDIX B: Interview Question
xxviii	APPENDIX C: Comments Of Examiners
XXX	APPENDIX D: Comments Of Examiners
xxxii	APPENDIX E: Results Of Experiments
xli	APPENDIX F: Project Timeline
xlvi	APPENDIX G: Progress Report Feedback Week 14 Semester 1
xlvi	APPENDIX H: Progress Report Feedback Week 7 Semester 2

Page

CHAPTER 1

INTRODUCTION

1.1 Introduction

The risk of the crime of 2.3 million students who represent 4% of the population started to further their studies in universities is higher than others in Britain (Wootton *et al.*, 2016). Statistics from the Office of National Statistics show that 19% of full-time students were the victims of crime in 2014-2015, compared to 16% of all adults in the general population. For the number of crimes such as burglary, violence, domestic violence, mugging, robbery, and theft, full-time students have a higher possibility of becoming a victim than the general population. There are various issues of personal safety faced by specific student groups. Recent reports show that women on university campuses who represent 56% of fresh university students in the UK are at risk of sexual harassment and assault (Wootton *et al.*, 2016).

Those problems in universities in Britain may also happen in universities in Malaysia and Universiti Malaysia Sabah (UMS). The issues that may occur are vandalism, littering, break into a restricted area without permission, and many more. This project proposes a GPS-based location encrypted visitor tracking system named Physical Identity and Access Control (PIAM) system. Campus Safe: Safeguarding GPS-Based Physical Identity and Access Management (PIAM) system Mobile App with lightweight Geo-Encryption is a mobile application used to track the real-time location of the visitors in UMS. The real-time location of the visitors will be encrypted with a lightweight geo-encryption algorithm to protect their privacy. The visitors just need to install the PIAM system and turn on the GPS location information function in their mobile phone at UMS Eco Campus Visitor Information Centre before entering and visit UMS.

The accessibility and availability of Wi-Fi in UMS are significant obstacles to implement in the proposed application. In UMS, Wi-Fi is only provided at some

specific areas such as faculty, library, and hostel. The places which provided Wi-Fi service usually will not become the attraction point of visitors, while ODEC beach, UMS peak, and UMS Pink Mosque, which don't offer Wi-Fi service, always become the destination of visitors. The possible solution is to install Wi-Fi at EcoCampus Visitor Information Center (EVIC) and allow the Wi-Fi to be used by the visitors who don't purchase the data package to install the proposed application on their mobile phone. While using the proposed application, the real-time location of visitors will be encrypted and stored in the storage of their smartphones. When their smartphones are connected to Wi-Fi or data, the encrypted real-time location will be synchronized to the system's database.

This proposed project aims to develop a GPS-Based Physical Identity and Access Management (PIAM) system with a lightweight Geo-Encryption. This chapter consisted of 7 sections: introduction, problem background and motivation, problem statements, problem objectives, project scope, organization of the report, and conclusion part.

1.2 Problem Background

Physical Identity and Access Management (PIAM) system focus on enterprise, company, or organization to manage identity lifecycle by processing physical identification, authentication, and access management. According to market research company information, the global market of the PIAM system is expected to reach US\$861.5 million by 2022, with a CAGR of 15.7 percent from 2016 to 2022. The growth of the PIAM system market is because of the increased security and operational management concerns, compliance mandates, and technology development (Strom, 2017). PIAM system can be implemented in many fields such as in university, working area, tourist attraction, or even in an airport. PIAM is a solution to help unify identity management, integrate different physical security systems and automate processes and facilitate controls of employees, suppliers, and other identities at airports (Kuchel, 2013).

While UMS still relies on a traditional manual approach to register visitors, granting and controlling their access manually, physical identity issuing and access control models in the recent industry market are dominated by 125kHz proximity cards and QR Scanner mobile applications. 125kHz proximity card is a contactless

